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The Real Dimension Problem is NP R -Complete
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We show that computing the dimension of a semi-algebraic set of R n is a NP R -complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R -hard, the main ingredient of the proof is a NP R algorithm for computing the dimension.

Introduction

This paper is a continuation of 14], which dealt with the dimension of complex algebraic varieties. Here we wish to compute the dimension of semi-algebraic sets. This can be formalized as a decision problem DIM R . An instance of DIM R consists of a semi-algebraic S R n together with an integer d n (to be precise one should specify how S is represented, see section 1.1 for details). An instance is accepted if S has dimension at least d. W e also consider for each xed value of d the restriction DIM d R of DIM R . F or instance, DIM 0 R is the problem of deciding whether a semi-algebraic set has dimension 0, i.e., is nonempty.

This paper contributes to the still rather short list of NP R -complete problems. The canonical NP R -complete problem 4FEAS R (feasibility of a polynomial equation of degree at most 4) was exhibited in 4]. A few other examples can be found in 9]. Here we s h o w t h a t D I M R , and DIM d R for any d 0, are NP Rcomplete problems. We emphasize that the situation is di erent than for most NP-complete combinatorial problems: as in 14], the dimension problem is easily seen to be NP-hard. It is the fact that DIM R is in NP R which i s i n teresting. Thus this NP R -completeness result should be viewed as a \positive" result. The technical tools are roughly the same as in the complex case (\generic quanti ers" and transcendence degree arguments). Some aspects of the proof are more involved than in 14], while others are actually simpler (see in particular the remark before (2) in section 3.1).

For polynomials with integer coe cients we are also interested in the classical (bit cost) complexity. W e s h o w that the corresponding problems (4FEAS and DIM) can be reduced to each other in polynomial time. Finally, the randomized and deterministic complexity o f D I M R is touched upon in section 5.

Representation of semi-algebraic sets

Our results have v ery little dependence on the choice of a representation for semialgebraic sets. It is customary to represent them as unions of basic semi-algebraic sets of the form P 1 (x) 1 0 P m (x) m 0 (1) with i 2 f > = <g. Since the dimension of a union is the maximum of the dimensions, one could without loss of generality w ork with basic semi-algebraic sets only.

The main theorem of this paper is the positive result that DIM R is in NP R . I t i s thus desirable to work with a representation scheme for semi-algebraic sets which is as powerful as possible. Arithmetic circuits provide an appealing alternative to (1). In this case, S is represented by a circuit made of addition, multiplication and sign gates, which, on an input x 2 R n , outputs 1 i and only if x 2 S. I n fact, NP R -completeness still holds for the even more powerful scheme in which S is represented by b y an existential formula (this is also true over C ). For the sake of simplicity w e will stick to (1) in the remainder of this paper, and use a sparse representation for the P i 's. As in 14], the NP R -completeness result still holds for the dense representation and polynomials of degree at most 2 (here a single polynomial equation of degree at most 4 would su ce).

The de ning formula for S will be denoted (x). If we wish to emphasize the dependence of on a tuple of parameters a 2 R p , w e will also write (a x).

Background

The standard references for real algebraic geometry are 2] and 5].

Quanti er Elimination

We recall that the total degree of a rst-order formula is the sum of the polynomials appearing in . It is convenient to always have 2, so we will in fact de ne as 2 + P m i=1 deg p i , where p 1 : : : p m are the polynomials appearing in . This e ective quanti er elimination result follows from the recent w ork on single-exponential algorithms in real geometry (in fact more precise bounds can be found in, e.g., 1] or 17]).

Theorem 1 Let (x) be a rst-order formula with a total of n variables and l n free variables (thus x 2 R l ). Assume that is in prenex form with w blocks of quanti ers, has total degree , and that the polynomials in have integer coe cients of bit length at most L. L et n 1 : : : n w be the lengths of the quanti er blocks (thus n = l + P w i=1 n i ).

If is a closed formula (l = 0 ), its truth can be d e cided i n t i m e 2 O(w) Q k n k in the real number model.

For l 1, (x) is equivalent to a quanti er-free formula (x) of the form:

I _ i=1 J i ĵ =1 (Q ij (x) ij 0)
where ij is one of the 6 standard r elations (>, ,=,6 =, ,<), I = 2 O(w) l Q k n k , and J i and the degrees of the polynomials Q ij are b ounded b y 2 O(w) Q k n k : These polynomials have integer coe cients of bit length at most (L + l): 2 O(w) Q k n k :

Moreover can be c onstructed i n t i m e 2 O(w) l Q k n k in the real number model.

Real Computation and Complexity

Here we will just recall the de nition of NP R (see [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF][START_REF] Blum | Complexity and Real Computation[END_REF][START_REF] Matera | The space complexity of elimination theory: Upper bounds[END_REF] for more information on the Blum-Shub-Smale model). A problem A R 1 is in NP R if there exists a problem B 2 P R and a polynomial p such that for any x 2 R n , x 2 A if there exists y 2 R p(n) such t h a t hx yi 2 B (y is the \certi cate" that x 2 A).

This means essentially that for each n, A\R n can be de ned by an existential formula F n (x) of size polynomial in n (the free variable x lives in R n ).

In order to recover the de nition above, two conditions must be added: (i) There exists a xed tuple a 1 : : : a p of real numbers such that for every n the parameters of F n are in fa 1 : : : a p g (so we will write F n (x y) instead of F n (x) A \ R n is then de ned by F n (x a)).

The NP R algorithms exhibited in this paper will be parameter-free. If one just adds condition (i), the class NP R de ned by P oizat 16] is obtained (a short summary of this point of view can be found in 7]). For NP R there is an additional uniformity condition:

(ii) F n (x y) can be produced in polynomial time by a (standard) Turing machine. The main point here is the polynomial bound on the size of F n . The uniformity condition may also lead to additional complications (this is certainly the case in this paper and in 14]). Over the reals, this condition is redundant if arbitrary real parameters are allowed (a family of circuits or formulas can be encoded in the digits of a real parameter), so that P R = P R and NP R = N P R .

3 Generic Quanti ers

E cient Elimination

We will use a non-standard quanti er 9 which has the following meaning: if F(v) is a rst-order formula where the free variable v lives in R d , w e s a y that R j = 9 v F (v) if the subset of R d de ned by F has nonempty i n terior. It is then natural to de ne another quanti er 8 by: 8 v F (v) :9 v:F(v). That is, R j = 8 v F (v) if the set de ned by F is dense in R d (and in this case it contains an open dense set). Formulas involving generalized quanti ers will sometimes be called generalized formulas when there is a risk of confusion. Over C it is not completely obvious that generalized formulas can be replaced by ordinary rstorder formulas in a \concise" manner (see 14] or better 13]). In the real case

this is of course no problem since 9 v F (v) is equivalent t o 9x 2 R d 9 > 0 8y 2 R d jjx ; yjj 2 ) F(y)]
(2) However this transformation is not quite satisfactory because (2) has two q u a n tier blocks. It will be seen shortly that one can do better. We begin with a series of simple lemmas.

Lemma 1 Let G(v) be a quanti er-free rst-order formula where the free variable v lives in R d . L et p 1 : : : p m be the polynomials appearing in G. If there exists an x 2 R d satisfying G such that p i (x) 6 = 0 for i = 1 : : : mthen R j = 9 v G (v).

Proof. T h e s i g n o f t h e p i 's remain constant in a neighbourhood of x. Since the satisfaction of G depends only on those signs all points in the neighbourhood satisfy G.

Proposition 1 Let F(v) a rst-order formula where the free variable v lives in R d , and K R the eld generated by the parameters of F. Then R j = 8 v F (v) i and only if for any a = ( a 1 : : : a d ) of transcendence d e gree d over K, R j = F(a).

Proof. Since quanti er elimination does not require any i n troduction of new parameters, we will assume that F is quanti er free. If R j = F(a) f o r a n a with transcendence degree d, the conclusion follows from Lemma 1 applied to G = :F.

The converse holds because R has in nite transcendence degree.

Lemma 2 Let K be a sub eld of R and a = ( a 1 : : : a k ) a s e quence of elements of R that are algebraically independent over K. F or any s < k and (v 1 : : : v s ) 2 R s , there exists a subsequence (a i j ) 1 j k;s whose elements are algebraically independent over the the eld K 0 = K(v 1 : : : v s ).

Proof. Let K 00 be the eld extension of K 0 generated by t h e a i 's: tr.deg K 0 K 00 k ; s since tr.deg K K 00 = tr.deg K 0 K 00 + tr.deg K K 0 (this is e.g. the corollary of Theorem 4 in section V.14.3 of 6]), tr.deg K K 0 s and tr.deg K K 00 k by de nition of a. Let B be a transcendence base of K 00 over K 0 made up of elements of a. B has at least k ; s elements, and they are algebraically independent o ver K 0 as needed. Lemma 3 Let K be a sub eld of R, x 2 R d and 2 R, 6 = 0 . If the components of y 2 R d are algebraically independent over the eld K(x ) then the components of x + y are algebraically independent over K.

Proof. We need to show that for P 2 K X 1 : : : X d ], if P(x + y) = 0 t h e n P is identically 0. P(x+ X) can be written as a polynomial P x (X) with coe cients in K x ]. If P(x + y) = 0 then P x (y) = 0, hence P x is identically 0 by t h e hypothesis on y. T h us P(x + a) = 0 f o r a n y a 2 R d . W e conclude that P 0 since 6 = 0 .

Let F(u v) be a rst-order formula where u 2 R p and v 2 R d (one can think of u as a \parameter" and v as an \instance"). Let F(u y 1 : : : y d+p+2 ) b e t h e formula:

9x 2 R d 9 > 0 d+p+2 î =1 F(u x + y i ):
Here each v ariable y i is in R d . Then W(F) denotes the set of sequences y = (y 1 : : : y d+p+2 ) 2 R d(d+p+2) such that 8u 2 R p F(u y 1 : : : y d+p+2 ) , 9 v F (u v)]:

(

Theorem 2 For any rst-order formula F, W(F) is dense in R d(d+p+2) .

Proof. Let K be the sub eld of R generated by the parameters of F. By Proposition 1, it su ces to show that y 2 W(F) w h e n e v er the components of y are algebraically independent o ver K.

Fix any u 2 R p . I f R j = 9 v F (u v) it is clear that R j = F(u y) f o r e v ery y 2 R d(d+p+2) . W e n o w examine the case R j = 8 v :F(u v). Take y = ( y 1 : : : y d+p+2 ) with coordinates that are algebraically independent o ver K, and x any x 2 R d and > 0. By Lemma 2, at least d(d + p + 2 ) ; (d + p + 1) among the d(d + p + 2 )c o m p o n e n ts of the y i 's are algebraically independent o ver K(u x ). Thus there exists at least one y i with coordinates that are algebraically independent over K(u x ). By Lemma 3 the coordinates of x + y i are then algebraically independent o ver K(u). Thus R j = :F(u x+ y i ) b y Proposition 1, and therefore R j = : F (u y).

As we shall see in Section 3.2, the density o f W(F) implies that one can deterministically construct a point i n t h i s s e t ( o r j u s t c hoose one at random). Thus Theorem 2 makes it possible to replace a generic quanti er by an existential formula.

When there are no parameters (p = 0) the sequences in W(F) h a ve length d+2. The example of the unit sphere (F(v) v 2 1 + +v 2 d = 1]) shows that this bound cannot be improved in general (this follows from the fact that generically, d + 1 points in R d lie on the same (d ; 1)-sphere).

Explicit Construction

Lemma 4 Let G(v) be a quanti er-free formula such that R j = 8 v 2 R d G(v).

Assume that the polynomials in G are o f d e gree at most D, w i t h i n t e ger coe cients bounded b y M in absolute value. Any point = ( 1 : : : d ) satisfying 1 M+1 and j 1 + M(D + 1 ) j;1 D j;1 for j 2 satis es G.

Proof. Let p 1 : : : p m be the polynomials occurring in G. T h e n satis es p i ( ) 6 = 0 for any i = 1 : : : m . A proof of this simple fact can be found in Lemma 2 of 12] (here we h a ve a corrected a mistake in the statement of that lemma). Hence satis es G by Lemma 1.

Note that the sequence in this lemma can be constructed in a polynomial number of arithmetic operations (more precisely in O(log log M + d log D) operations starting from the integer 1). Nonetheless the components of are of bit size exponential in d.

Lemma 4 can be applied to a quanti ed formula if we eliminate quanti ers rst.

Corollary 1 Let G be a p r enex formula such that R j = 8 v 2 R d G(v). Let be its total degree, w the number of quanti er blocks, and n the total number of variables. If the parameters in G are integers of bit size at most L, o n e c an construct in O(log L) + O(n) w log arithmetic operations an integer point that satis es G. This point depends only on L, n and .

Proof. Immediate from Theorem 1 and Proposition 4.

We are now ready to give an explicit construction of a point i n W(F).

Theorem 3 Let F(u v) be a p r enex formula with a total number of n variables, w quanti er blocks, and m atomic predicates of degree at most D with integer coe cients of bit size at most L. O n e c an construct in O(log L) + n O(w) log(mD) arithmetic operations an integer point in W(F).

Proof. For the sake of clarity, w e consider quanti er-free formulas rst. Recall that W(F) is de ned by [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF]. This formula can be transformed into an \ordinary" rst-order formula if we substitute (2) to the generic quanti er in [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF]. (This transformation is not so easy in the complex case.) When put in prenex form, the resulting formula has O(n 2 ) v ariables and O(1) quanti er blocks. It involves O(mn) atomic predicates atomic predicates of degree at most 2D with coe cients of bit size at most L+D. The result then follows from Corollary 1 since we know from Theorem 2 that W(F) is dense.

In the general case, we can rst eliminate quanti ers in F with Theorem 1.

NP R -Completeness

We will show a s a n i n termediate result that the \projection problem" PROJ R is NP R -complete. An instance of this problem consists of a semi-algebraic S R n together with an integer d n. An instance is positive if the image of S by the 9z 2 R n;d (u x z) where the free variable x is in R d . Here u 2 R p is the tuple of nonzero parameters occurring in (so that (: : :) is parameter-free). By de nition of W(F), d (S) has nonempty i n terior if R j = F(y 1 : : : y d+p+2 ) where (y 1 : : : y d+p+2 ) i s a n y s equence in W(F). By Theorem 3 such a sequence can be constructed in polynomial time. Moreover, F can be written in prenex form as an existential formula of polynomial size since F itself is existential (there are (d + p + 2)(n ; d) + d + 1 quanti ed variables in the resulting formula). This shows that PROJ R 2 NP R .

Its NP R -hardness follows from a (trivial) reduction of 4FEAS R to PROJ R : a polynomial p 2 R X 2 : : : X n+1 ] has a real root if and only if the projection on the rst coordinate x 1 of the set S = fx 2 R n+1 p(x 2 : : : x n+1 ) = 0 g has a nonempty i n terior.

Theorem 5 DIM R and, for any d 0, DIM d R are NP R -complete problems. Proof. A semi-algebraic set S has dimension at least d if there exists a ddimensional coordinate subspace on which S has a projection with a nonempty interior. Hence DIM R can be solved by the following NP R algorithm: guess d distinct indices i 1 : : : i d in f1 : : : n g and (renumbering variables if necessary) decide with the NP R algorithm of Theorem 4 whether the projection of S on the corresponding coordinate subspace has nonempty i n terior.

One can show as in the proof of Theorem 4 that DIM d R (and a fortiori DIM R ) are NP R -hard (just add d dummy v ariables to a polynomial equation).

For systems with integer coe cients in the bit model of computation, there is currently no hope of proving a completeness result since even the exact complexity of 4FEAS is unknown (in terms of structural complexity, this problem is only known to lie somewhere between NP and PSPACE). However, one can show t h a t DIM and 4FEAS are reducible to each other in polynomial time.

Theorem 6 DIM is polynomially equivalent to 4FEAS.

Proof Sketch. The reduction of 4FEAS R to DIM R provides a reduction of 4FEAS to DIM.

The proof that DIM R is in NP R provides a reduction of DIM R to 4FEAS R . In the bit model of computation this yields a reduction of DIM to 4FEAS (note that one can take p = 0 in this case). Unfortunately this reduction does not work in polynomial time since it entails the computation of integer points with exponential bit size. Instead of computing the j 's of Lemma 4, we c a n i n troduce new variables to represent them. The corresponding reduction is polynomial-time as needed.

Randomized and Deterministic Algorithms

In this section we w i s h t o t a k e a closer look at the complexity of sequential algorithms for DIM R . As in the NP R -completeness proof, we reduce DIM R to PROJ R . The resolution of this auxiliary problem is by far the most expensive step.

Reduction to PROJ R

We s a y that a semi-algebraic set S of dimension d is in normal position with respect to a subset of d distinct variables fX i 1 : : : X i d g if the projection of S on the corresponding d-dimensional coordinate subspace has nonempty i n terior. The proof of Theorem 5 suggests to enumerate all such subsets, and for each one to check whether S is in normal position. This can be done without a ecting the overall complexity bound (see section 5.2), but there is a more practical solution: performing a su ciently \generic" linear transformation on S will put this set in normal position with respect to the rst d variables. Unfortunately, such a transformation can blow up the system's size. In the complex case there is a way around this di culty: a de nable set has dimension at least d if it has a nonempty i n tersection with a \generic" a ne subspace of dimension n ; d. A similar property holds over the reals: as in the complex case 14], we can just pretend to perform a linear transformation. That is, we consider the variety Ŝ R 2n de ned by the system ( (x) y = Ax: [START_REF] Blum | Complexity and Real Computation[END_REF] where A is the matrix of the linear transformation. We recall that is a system of m (in)equations de ning S. I t i s c l e a r t h a t d (AS) = ^ d ( Ŝ) where ^ d : R 2n ! R d denotes projection on the variables y 1 : : : y d . Note that the last n ; d equations can be dropped from this system since they are automatically satis ed (from the relation y = Ax) if a solution exists for x 1 : : : x n and y 1 : : : y d . Therefore we have t o s o l v e an instance of PROJ R made of m + d inequations in n + d variables (here we are PROJecting on the variables y 1 : : : y d ). These observations can be summarized by the following principle (which does not use the hypothesis that S is semi-algebraic in any essential way). A semi-algebraic set S has dimension at least d if given a generic linear subspace Bx= 0 of dimension n ; d, the a ne subspace y = Bxhas a nonempty intersection with S for y in a subset of R d with nonempty interior. In a randomized implementation, the coe cients of B would be randomly drawn integers. It is possible to work out a polynomial bound on their bit size. We will not go into the details since they are essentially the same as in the complex case. It is also possible to construct a suitable B deterministically, s e e again 14].

Complexity o f P R OJ R

It is almost a folklore result that PROJ R (and thus DIM R ) can be solved in time (sD) O(n 2 ) by quanti er elimination. Since there does not seem to be an appropriate reference in the literature, we s k etch the proof below. As a rst attempt, one can use (2) to express the fact that the projection of S has a nonempty i n terior. The resulting formula has 3 quanti er blocks since F is an existential formula in this case. It can therefore be decided in time (sD) O(n 3 ) with the algorithms of 1] or 17]. To do better, one computes in time (sD) O(n 2 ) with the algorithm of Theorem 1 a quanti er-free formula (x) de ning d (S). This formula is a disjunction of (sD) O(n 2 ) conjunctions. d (S) has nonempty interior if one of the conjunctions de nes a set with nonempty i n terior. Consider a conjunction C of constraints of the form p i i 0 w h e r e p i is a non-constant polynomial and i is a standard relation. The set de ned by C has nonempty interior if no i is an equality and if the formula C 0 obtained from C by replacing every large inequality b y a strict inequality is satis able. The satis ability o f C 0 can be decided in time (sD) O(n 2 ) since the p i 's are bounded in degree and number by ( sD) O(n) . This is also an upper bound on the overall running time of the algorithm.

Theorem 4 also yields a (sD) O(n 2 ) algorithm since it reduces PROJ R to the satisfaction of an existential formula in O(n 2 ) v ariables. In practice on would not perform a deterministic reduction as in the proof of that theorem. Instead a sequence in W(F) w ould be drawn at random. To see how a bit size bound can be worked out, we refer again the interested reader to 14].

Final Remarks

The main open problem is whether DIM R can be solved in time (sD) O(n) . Some progress in this direction has been made in 18] where this bound is achieved for smooth semi-algebraic sets. In the complex case it is known that the dimension can always be computed within that time bound (and in fact in time s O(1) D O(n) ). For instance this follows from the fact that the randomized reduction in 14] produces existential formulas with only O(n) v ariables (see also [START_REF] Chapuis | Saturation and stability in the theory of computation over the reals[END_REF][START_REF] Cucker | On the complexity of some problems for the Blum, Shub & Smale model[END_REF][START_REF] Giusti | Algorithmes { disons rapides { pour la d ecomposition d'une vari et e a l g ebrique en composantes irr eductibles et equidimensionnelles[END_REF][START_REF] Koiran | Randomized and deterministic algorithms for the dimension of algebraic varieties[END_REF]). It is by no means clear whether a similarly \parsimonious" reduction exists in the real case. If this question turns out to have a positive a n s w er, a (sD) O(n) bound for DIM R can be expected.

On the other hand, as we h a ve already pointed out in section 3.1, life is sometimes easier over the reals than over the complex numbers. Consider for instance the problem of determining whether a complex algebraic variety has isolated points (this question is motivated by the problem of computing the dimensions of all components of a variety as in 10] see also 11]). It is not clear whether this problem in in PH C , the polynomial hierarchy o ver C (this amounts basically to asking whether the existence of isolated points is a property that can be expressed by rst-order formulas of polynomial size with a bounded number of quanti er alternations). However, it is quite obvious that the corresponding problem over the reals is in PH R .

  projection d : R n ! R d on the rst d coordinates has a non-empty i n terior. Theorem 4 PROJ R is NP R -complete. Proof. The projection d (S) i s d e n e d b y a formula F(u x):
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