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Abstract

We show that computing the dimension of a semi�algebraic set of
Rn is a NPR�complete problem in the Blum�Shub�Smale model of
computation over the reals� Since this problem is easily seen to be
NPR�hard� the main ingredient of the proof is a NPR algorithm for
computing the dimension�
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R�esum�e

On montre que le calcul de la dimension d�un ensemble semi�
alg	ebrique de Rn est un probl
eme NPR�complet dans le mod
ele de
Blum�Shub�Smale de calcul sur les nombres r	eels� Puisqu�il est facile
de voir que ce probl
eme est NPR�dur� le principal ingr	edient de la
preuve est un algorithme NPR de calcul de la dimension�
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mod
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� Introduction

This paper is a continuation of ���� which dealt with the dimension of complex
algebraic varieties� Here we wish to compute the dimension of semi�algebraic
sets� This can be formalized as a decision problem DIMR� An instance of DIMR

consists of a semi�algebraic S � R
n together with an integer d � n �to be precise

one should specify how S is represented� see section ��� for details�� An instance
is accepted if S has dimension at least d� We also consider for each �xed value of
d the restriction DIMd

R
of DIMR� For instance� DIM�

R
is the problem of deciding

whether a semi�algebraic set has dimension � �� i�e�� is nonempty�
This paper contributes to the still rather short list of NPR�complete prob�

lems� The canonical NPR�complete problem �FEASR �feasibility of a polynomial
equation of degree at most �� was exhibited in ��� A few other examples can
be found in ��� Here we show that DIMR� and DIMd

R
for any d � �� are NPR�

complete problems� We emphasize that the situation is di�erent than for most
NP�complete combinatorial problems� as in ���� the dimension problem is easily
seen to be NP�hard� It is the fact that DIMR is in NPR which is interesting�
Thus this NPR�completeness result should be viewed as a �positive� result� The
technical tools are roughly the same as in the complex case ��generic quanti�ers�
and transcendence degree arguments�� Some aspects of the proof are more in�
volved than in ���� while others are actually simpler �see in particular the remark
before ��� in section �����
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For polynomials with integer coe�cients we are also interested in the classical
�bit cost� complexity� We show that the corresponding problems ��FEAS and
DIM� can be reduced to each other in polynomial time� Finally� the randomized
and deterministic complexity of DIMR is touched upon in section ��

��� Representation of semi�algebraic sets

Our results have very little dependence on the choice of a representation for semi�
algebraic sets� It is customary to represent them as unions of basic semi�algebraic
sets of the form

P��x� �� �� � � � �Pm�x� �m � ���

with �i � f���������g� Since the dimension of a union is the maximum of the
dimensions� one could without loss of generality work with basic semi�algebraic
sets only�

The main theorem of this paper is the positive result that DIMRis in NPR� It is
thus desirable to work with a representation scheme for semi�algebraic sets which
is as powerful as possible� Arithmetic circuits provide an appealing alternative
to ���� In this case� S is represented by a circuit made of addition� multiplication
and sign gates� which� on an input x � Rn� outputs � i� and only if x � S� In
fact� NPR�completeness still holds for the even more powerful scheme in which
S is represented by by an existential formula �this is also true over C �� For the
sake of simplicity we will stick to ��� in the remainder of this paper� and use a
sparse representation for the Pi�s� As in ���� the NPR�completeness result still
holds for the dense representation and polynomials of degree at most � �here a
single polynomial equation of degree at most � would su�ce��

The de�ning formula for S will be denoted ��x�� If we wish to emphasize the
dependence of � on a tuple of parameters a � Rp� we will also write ��a� x��

� Background

The standard references for real algebraic geometry are �� and ���

��� Quanti�er Elimination

We recall that the total degree � of a �rst�order formula � is the sum of the
polynomials appearing in �� It is convenient to always have � � �� so we will in
fact de�ne � as � �

Pm
i�� deg pi� where p�� � � � � pm are the polynomials appearing

in ��
This e�ective quanti�er elimination result follows from the recent work on

single�exponential algorithms in real geometry �in fact more precise bounds can
be found in� e�g�� �� or �����
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Theorem � Let ��x� be a �rst�order formula with a total of n variables and
l � n free variables �thus x � Rl�� Assume that � is in prenex form with
w blocks of quanti�ers� has total degree �� and that the polynomials in � have
integer coe�cients of bit length at most L� Let n�� � � � � nw be the lengths of the
quanti�er blocks �thus n � l�

Pw
i�� ni��

If � is a closed formula �l � ��� its truth can be decided in time ��
O�w�
Q

k
nk

in the real number model�
For l � �� ��x� is equivalent to a quanti�er�free formula ��x� of the form�

I�
i��

Ji�
j��

�Qij�x��ij���

where �ij is one of the � standard relations �����	��������� I � ��
O�w�l

Q
k
nk �

and Ji and the degrees of the polynomials Qij are bounded by ��
O�w�
Q

k
nk � These

polynomials have integer coe�cients of bit length at most �L � l����
O�w�
Q

k
nk �

Moreover � can be constructed in time ��
O�w�l

Q
k
nk in the real number model�

��� Real Computation and Complexity

Here we will just recall the de�nition of NPR �see ��� �� �� for more information
on the Blum�Shub�Smale model�� A problem A � R� is in NPR if there exists
a problem B � PR and a polynomial p such that for any x � Rn� x � A if there
exists y � Rp�n� such that hx� yi � B �y is the �certi�cate� that x � A��

This means essentially that for each n� A�Rn can be de�ned by an existential
formula Fn�x� of size polynomial in n �the free variable x lives in Rn��

In order to recover the de�nition above� two conditions must be added�

�i� There exists a �xed tuple a�� � � � � ap of real numbers such that for every n
the parameters of Fn are in fa�� � � � � apg �so we will write Fn�x� y� instead
of Fn�x�� A �Rn is then de�ned by Fn�x� a���

The NPR algorithms exhibited in this paper will be parameter�free� If one just
adds condition �i�� the class NPR de�ned by Poizat ��� is obtained �a short
summary of this point of view can be found in ���� For NPRthere is an additional
uniformity condition�

�ii� Fn�x� y� can be produced in polynomial time by a �standard� Turing ma�
chine�

The main point here is the polynomial bound on the size of Fn� The uniformity
condition may also lead to additional complications �this is certainly the case in
this paper and in ����� Over the reals� this condition is redundant if arbitrary
real parameters are allowed �a family of circuits or formulas can be encoded in
the digits of a real parameter�� so that PR� PRand NPR� NPR�
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� Generic Quanti�ers

��� E�cient Elimination

We will use a non�standard quanti�er �� which has the following meaning� if
F �v� is a �rst�order formula where the free variable v lives in Rd� we say that
R j� ��v F �v� if the subset of Rd de�ned by F has nonempty interior� It is then
natural to de�ne another quanti�er �� by� ��v F �v� 	 
��v
F �v�� That is�
R j� ��v F �v� if the set de�ned by F is dense in Rd �and in this case it contains
an open dense set�� Formulas involving generalized quanti�ers will sometimes be
called generalized formulas when there is a risk of confusion� Over C it is not
completely obvious that generalized formulas can be replaced by ordinary �rst�
order formulas in a �concise� manner �see ��� or better ����� In the real case
this is of course no problem since ��v F �v� is equivalent to

�x � Rd �� � � �y � Rd �jjx� yjj� � �� F �y� ���

However this transformation is not quite satisfactory because ��� has two quanti�
�er blocks� It will be seen shortly that one can do better� We begin with a series
of simple lemmas�

Lemma � Let G�v� be a quanti�er�free �rst�order formula where the free variable
v lives in Rd� Let p�� � � � � pm be the polynomials appearing in G� If there exists
an x � Rd satisfying G such that pi�x� �� � for i � �� � � � �m then R j� ��v G�v��

Proof� The sign of the pi�s remain constant in a neighbourhood of x� Since the
satisfaction of G depends only on those signs all points in the neighbourhood
satisfy G� �

Proposition � Let F �v� a �rst�order formula where the free variable v lives in
Rd� and K � R the �eld generated by the parameters of F � Then R j� ��v F �v� i

and only if for any a � �a�� � � � � ad� of transcendence degree d over K� R j� F �a��

Proof� Since quanti�er elimination does not require any introduction of new
parameters� we will assume that F is quanti�er free� If R j� F �a� for an a with
transcendence degree d� the conclusion follows from Lemma � applied to G � 
F �
The converse holds because R has in�nite transcendence degree� �

Lemma � Let K be a sub�eld of R and a � �a�� � � � � ak� a sequence of elements of
R that are algebraically independent over K� For any s � k and �v�� � � � � vs� � Rs�
there exists a subsequence �aij���j�k�s whose elements are algebraically indepen�
dent over the the �eld K � � K�v�� � � � � vs��
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Proof� Let K �� be the �eld extension of K � generated by the ai�s� tr�degK�K �� �
k � s since tr�degKK

�� � tr�degK�K �� � tr�degKK
� �this is e�g� the corollary of

Theorem � in section V����� of ���� tr�degKK
� � s and tr�degKK

�� � k by
de�nition of a� Let B be a transcendence base of K �� overK � made up of elements
of a� B has at least k � s elements� and they are algebraically independent over
K � as needed� �

Lemma � Let K be a sub�eld of R� x � Rd and � � R� � �� �� If the components
of y � Rd are algebraically independent over the �eld K�x� �� then the components
of x� �y are algebraically independent over K�

Proof� We need to show that for P � K�X�� � � � �Xd� if P �x� �y� � � then P is
identically �� P �x� �X� can be written as a polynomial Px���X� with coe�cients
in K�x� �� If P �x � �y� � � then Px���y� � �� hence Px�� is identically � by the
hypothesis on y� Thus P �x � �a� � � for any a � Rd� We conclude that P 	 �
since � �� �� �

Let F �u� v� be a �rst�order formula where u � Rp and v � Rd �one can think
of u as a �parameter� and v as an �instance��� Let �F �u� y�� � � � � yd�p��� be the
formula�

�x � Rd �� � �
d�p���
i��

F �u� x� �yi��

Here each variable yi is in Rd� Then W �F � denotes the set of sequences y �
�y�� � � � � yd�p��� � Rd�d�p��� such that

�u � Rp � �F�u� y�� � � � � yd�p��� ��v F �u� v�� ���

Theorem � For any �rst�order formula F � W �F � is dense in Rd�d�p����

Proof� Let K be the sub�eld of R generated by the parameters of F � By Propo�
sition �� it su�ces to show that y � W �F � whenever the components of y are
algebraically independent over K�

Fix any u � Rp� If R j� ��v F �u� v� it is clear that R j� �F �u� y� for every y �
R

d�d�p���� We now examine the case R j� ��v 
F �u� v�� Take y � �y�� � � � � yd�p���
with coordinates that are algebraically independent over K� and �x any x � Rd

and � � �� By Lemma �� at least d�d � p � �� � �d � p � �� among the d�d �
p��� components of the yi�s are algebraically independent over K�u� x� ��� Thus
there exists at least one yi with coordinates that are algebraically independent
over K�u� x� ��� By Lemma � the coordinates of x � �yi are then algebraically
independent over K�u�� Thus R j� 
F �u� x��yi� by Proposition �� and therefore
R j� 
 �F �u� y�� �

�



As we shall see in Section ���� the density of W �F � implies that one can deter�
ministically construct a point in this set �or just choose one at random�� Thus
Theorem � makes it possible to replace a generic quanti�er by an existential
formula�

When there are no parameters �p � �� the sequences in W �F � have length
d��� The example of the unit sphere �F �v� 	 �v��� � � ��v�d � �� shows that this
bound cannot be improved in general �this follows from the fact that generically�
d� � points in Rd lie on the same �d� ���sphere��

��� Explicit Construction

Lemma � Let G�v� be a quanti�er�free formula such that R j� ��v � Rd G�v��
Assume that the polynomials in G are of degree at most D� with integer coe�cients
bounded byM in absolute value� Any point � � ���� � � � � �d� satisfying �� �M��
and �j � � �M�D � ��j���Dj�� for j � � satis�es G�

Proof� Let p�� � � � � pm be the polynomials occurring in G� Then � satis�es pi��� ��
� for any i � �� � � � �m� A proof of this simple fact can be found in Lemma �
of ��� �here we have a corrected a mistake in the statement of that lemma��
Hence � satis�es G by Lemma �� �

Note that the sequence in this lemma can be constructed in a polynomial num�
ber of arithmetic operations �more precisely in O�log logM � d logD� operations
starting from the integer ��� Nonetheless the components of � are of bit size
exponential in d�

Lemma � can be applied to a quanti�ed formula if we eliminate quanti�ers
�rst�

Corollary � Let G be a prenex formula such that R j� ��v � R
d G�v�� Let

� be its total degree� w the number of quanti�er blocks� and n the total number
of variables� If the parameters in G are integers of bit size at most L� one can
construct in O�log L� � O�n�w log � arithmetic operations an integer point that
satis�es G� This point depends only on L� n and ��

Proof� Immediate from Theorem � and Proposition �� �

We are now ready to give an explicit construction of a point in W �F ��

Theorem � Let F �u� v� be a prenex formula with a total number of n variables�
w quanti�er blocks� and m atomic predicates of degree at most D with integer
coe�cients of bit size at most L� One can construct in O�log L��nO�w� log�mD�
arithmetic operations an integer point in W �F ��
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Proof� For the sake of clarity� we consider quanti�er�free formulas �rst� Recall
that W �F � is de�ned by ���� This formula can be transformed into an �ordinary�
�rst�order formula if we substitute ��� to the generic quanti�er in ���� �This
transformation is not so easy in the complex case�� When put in prenex form�
the resulting formula has O�n�� variables and O��� quanti�er blocks� It involves
O�mn� atomic predicates atomic predicates of degree at most �D with coe�cients
of bit size at most L�D� The result then follows from Corollary � since we know
from Theorem � that W �F � is dense�

In the general case� we can �rst eliminate quanti�ers in F with Theorem ��
�

� NPR�Completeness

We will show as an intermediate result that the �projection problem� PROJR is
NPR�complete� An instance of this problem consists of a semi�algebraic S � Rn

together with an integer d � n� An instance is positive if the image of S by the
projection �d � Rn � R

d on the �rst d coordinates has a non�empty interior�

Theorem � PROJR is NPR�complete�

Proof� The projection �d�S� is de�ned by a formula F �u� x��

�z � Rn�d��u� x� z�

where the free variable x is in Rd� Here u � Rp is the tuple of nonzero parameters
occurring in � �so that ���� �� �� is parameter�free�� By de�nition of W �F �� �d�S�
has nonempty interior if R j� �F �y�� � � � � yd�p��� where �y�� � � � � yd�p��� is any se�
quence inW �F �� By Theorem � such a sequence can be constructed in polynomial
time� Moreover� �F can be written in prenex form as an existential formula of
polynomial size since F itself is existential �there are �d � p � ���n � d� � d � �
quanti�ed variables in the resulting formula�� This shows that PROJR� NPR�

Its NPR�hardness follows from a �trivial� reduction of �FEASR to PROJR� a
polynomial p � R�X�� � � � �Xn�� has a real root if and only if the projection on
the �rst coordinate x� of the set S � fx � R

n��� p�x�� � � � � xn��� � �g has a
nonempty interior� �

Theorem � DIMR and� for any d � �� DIMd
R are NPR�complete problems�

Proof� A semi�algebraic set S has dimension at least d if there exists a d�
dimensional coordinate subspace on which S has a projection with a nonempty
interior� Hence DIMR can be solved by the following NPR algorithm� guess d
distinct indices i�� � � � � id in f�� � � � � ng and �renumbering variables if necessary�
decide with the NPR algorithm of Theorem � whether the projection of S on the
corresponding coordinate subspace has nonempty interior�

�



One can show as in the proof of Theorem � that DIMd
R
�and a fortiori DIMR�

are NPR�hard �just add d dummy variables to a polynomial equation�� �

For systems with integer coe�cients in the bit model of computation� there is
currently no hope of proving a completeness result since even the exact complexity
of �FEAS is unknown �in terms of structural complexity� this problem is only
known to lie somewhere between NP and PSPACE�� However� one can show that
DIM and �FEAS are reducible to each other in polynomial time�

Theorem � DIM is polynomially equivalent to �FEAS�

Proof Sketch� The reduction of �FEASR to DIMRprovides a reduction of �FEAS
to DIM�

The proof that DIMR is in NPR provides a reduction of DIMR to �FEASR�
In the bit model of computation this yields a reduction of DIM to �FEAS �note
that one can take p � � in this case�� Unfortunately this reduction does not
work in polynomial time since it entails the computation of integer points with
exponential bit size� Instead of computing the �j�s of Lemma �� we can introduce
new variables to represent them� The corresponding reduction is polynomial�time
as needed� �

� Randomized and Deterministic Algorithms

In this section we wish to take a closer look at the complexity of sequential
algorithms for DIMR� As in the NPR�completeness proof� we reduce DIMR to
PROJR� The resolution of this auxiliary problem is by far the most expensive
step�

��� Reduction to PROJR

We say that a semi�algebraic set S of dimension � d is in normal position with
respect to a subset of d distinct variables fXi�� � � � �Xidg if the projection of S
on the corresponding d�dimensional coordinate subspace has nonempty interior�
The proof of Theorem � suggests to enumerate all such subsets� and for each one
to check whether S is in normal position� This can be done without a�ecting the
overall complexity bound �see section ����� but there is a more practical solution�
performing a su�ciently �generic� linear transformation on S will put this set
in normal position with respect to the �rst d variables� Unfortunately� such a
transformation can blow up the system�s size� In the complex case there is a
way around this di�culty� a de�nable set has dimension at least d if it has a
nonempty intersection with a �generic� a�ne subspace of dimension n � d� A
similar property holds over the reals� as in the complex case ���� we can just

 



pretend to perform a linear transformation� That is� we consider the variety
!S � R

�n de�ned by the system

�
��x�
y � Ax�

���

where A is the matrix of the linear transformation� We recall that � is a system of
m �in�equations de�ning S� It is clear that �d�AS� � !�d� !S� where !�d � R

�n � R
d

denotes projection on the variables y�� � � � � yd� Note that the last n� d equations
can be dropped from this system since they are automatically satis�ed �from the
relation y � Ax� if a solution exists for x�� � � � � xn and y�� � � � � yd� Therefore we
have to solve an instance of PROJRmade of m� d inequations in n� d variables
�here we are PROJecting on the variables y�� � � � � yd�� These observations can be
summarized by the following principle �which does not use the hypothesis that
S is semi�algebraic in any essential way��

A semi�algebraic set S has dimension at least d if given a generic linear sub�
space Bx � � of dimension n � d� the a�ne subspace y � Bx has a nonempty
intersection with S for y in a subset of Rd with nonempty interior�

In a randomized implementation� the coe�cients of B would be randomly
drawn integers� It is possible to work out a polynomial bound on their bit size�
We will not go into the details since they are essentially the same as in the
complex case� It is also possible to construct a suitable B deterministically� see
again ����

��� Complexity of PROJR

It is almost a folklore result that PROJR �and thus DIMR� can be solved in
time �sD�O�n

�� by quanti�er elimination� Since there does not seem to be an
appropriate reference in the literature� we sketch the proof below� As a �rst
attempt� one can use ��� to express the fact that the projection of S has a
nonempty interior� The resulting formula has � quanti�er blocks since F is an
existential formula in this case� It can therefore be decided in time �sD�O�n

��

with the algorithms of �� or ���� To do better� one computes in time �sD�O�n
��

with the algorithm of Theorem � a quanti�er�free formula ��x� de�ning �d�S��
This formula is a disjunction of �sD�O�n

�� conjunctions� �d�S� has nonempty
interior if one of the conjunctions de�nes a set with nonempty interior� Consider
a conjunction C of constraints of the form pi �i � where pi is a non�constant
polynomial and �i is a standard relation� The set de�ned by C has nonempty
interior if no �i is an equality and if the formula C � obtained from C by replacing
every large inequality by a strict inequality is satis�able� The satis�ability of C �

can be decided in time �sD�O�n
�� since the pi�s are bounded in degree and number

by �sD�O�n�� This is also an upper bound on the overall running time of the
algorithm�

�



Theorem � also yields a �sD�O�n
�� algorithm since it reduces PROJR to the

satisfaction of an existential formula in O�n�� variables� In practice on would
not perform a deterministic reduction as in the proof of that theorem� Instead a
sequence in W �F � would be drawn at random� To see how a bit size bound can
be worked out� we refer again the interested reader to ����

� Final Remarks

The main open problem is whether DIMR can be solved in time �sD�O�n�� Some
progress in this direction has been made in ��  where this bound is achieved for
smooth semi�algebraic sets� In the complex case it is known that the dimension
can always be computed within that time bound �and in fact in time sO���DO�n���
For instance this follows from the fact that the randomized reduction in ���
produces existential formulas with only O�n� variables �see also � � ��� ��� ����
It is by no means clear whether a similarly �parsimonious� reduction exists in
the real case� If this question turns out to have a positive answer� a �sD�O�n�

bound for DIMR can be expected�
On the other hand� as we have already pointed out in section ���� life is some�

times easier over the reals than over the complex numbers� Consider for instance
the problem of determining whether a complex algebraic variety has isolated
points �this question is motivated by the problem of computing the dimensions
of all components of a variety as in ���� see also ����� It is not clear whether this
problem in in PHC � the polynomial hierarchy over C �this amounts basically to
asking whether the existence of isolated points is a property that can be expressed
by �rst�order formulas of polynomial size with a bounded number of quanti�er
alternations�� However� it is quite obvious that the corresponding problem over
the reals is in PHR�
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