Judica El

A module calculus enjoying the subject-reduction property Preliminary version

Keywords: Module systems, subject-reduction, normalization, type inference, SML, lambda-calculus R esum e

The module system of SML is a small typed language of its own. As is, one would expect a proof of its soundness following from a proof of subject reduction, but none exists. As a consequence the theoretical study of reductions is di cult, and for instance, the question of normalization of the module calculus can not even be asked. In this paper, we b u i l d a v ariant of the SML module system | inspired from recent w orks | which enjoys the subject reduction property. This was the initial motivation. Besides our system enjoys other type-theoretic properties: the obtained calculus is strongly normalizing, there are no syntactic restrictions on module paths, it enjoys a purely applicative s e m a n tic, every module has a principal type, and type inference is decidable. Moreover we conjecture that type abstraction | a c hieved through an explicit declaration of the signature of a module at its de nition | is preserved.

Le syst eme de modules de SML est un vrai petit langage typ e. Alors qu'on pourrait attendre une preuve de la consistance des syst emes de modules d ecoulant d e l ' etude des r eductions de modules, en particulier d'une preuve d'autor eduction, aucune preuve de ce genre ne semble exister. Or cela est un pr eliminaire n ecessaire a toute etude des r eductions, et en particulier a la question de la normalisation du syst e m e d e m o d u l e s . Dans ce rapport, nous construisons une variante du syst eme de modules de SML, inspir ee de travaux r ecents, qui poss ede la propri et e d'autor eduction. Cette motivation initiale conduit par ailleurs a un syst eme de modules poss edant des propri et es th eoriques remarquables: le calcul de modules est fortement normalisant, aucune restriction syntaxique sur les chemins d'acc es n'est n ecessaire, la s emantique de notre syst eme est purement applicative, tout module poss ede un type principal, et l'inf erence de type est d ecidable. Nous conjecturons par ailleurs que l'abstraction de type | obtenue par un m ecanisme de d eclaration explicite de la signature d'un module lors de sa d e nition | est pr eserv ee.

Mots-cl es: Syst emes de modules, autor eduction, normalisation, inf erence de type, SML, lambda-calcul 1 Introduction

Modularity is an essential technique for software programming and reuse. It is also needed for reasoning about programs: especially, it is a major issue of formal methods. In this respect, the SML language is particularly interesting, because of the power of its module language, which is a small typed language of its own HMT87, HMT90]. This module system was designed for use at an interactive toplevel, and therefore separate compilation issues were not addressed. For instance, in order to type-check a functor application m 1 (m 2), knowing the module types of m 1 and m 2 was not enough: some knowledge of the underlying implementation of these modules was needed, thus preventing from true separate compilation. A solution to these problems has only been found recently, with the formalism of translucent sums HL94], or manifest types [START_REF] Kahrs | The de nition of Extended ML: a gentle introduction[END_REF][START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF]. These approach share the same idea: the implementation o f t ypes that can be seen outside a given module must appear in the module type there is no possibility for knowing the implementation of the type component of a module if it does not appear in its type. Thus, module types of module variables belonging to the environment g i v e all the information needed for type-checking a module, allowing true separate compilation: one needs only declaring the types of the modules needed by another one at the time of compiling it. Side-e ects were at the core of the initial SML module language: as abstraction was implemented through generative data type declarations, module language constructs (especially the application) could generate new types. But, as this way understanding type abstraction is a too low-level point of view, generativity stopped being considered a key notion: in HL94], there is no such notion, and in Ler95], the generative behavior of functor application is replaced by a n applicative one. Thus, module languages look more and more like functional languages (at least as soon as no side-e ect is present in the base language). Therefore, one could expect a soundness proof of these systems to follow from the study of reductions in these calculus. But none seems to have b e e n p r o vided yet.

From a theoretical point of view, this is very unsatisfying, and as a consequence, the question of normalization makes little sense. Moreover, from a practical point of view, this could prevent us from adapting this module system to proof systems or logical frameworks. For instance in Elf HP92], it has been chosen not to implement t h e sharing speci cation, in order to retain only theoretically well-established features. Indeed, having some strange features in a programming language might not be too dangerous, but in proof systems, it might make it inconsistent.

In order to study reductions in module systems in this paper, we decided to start from the system of Ler95] because of its conceptual simplicity, and of its relative independence with respect to the base module language. Unfortunately, this system lacks the subject reduction property: a module expression of a given type may reduce to one that has not the same ty p e o r i s e v en not syntactically well-formed. Indeed, in this module system as in SML, access to module components is only allowed through expressions of the form p:n where n is a name of a eld and p an access path, access paths being a syntactic fragment of module expressions:

in SML and in the system of Ler94], paths are of the form x 1 : : : : : x n , where x 1 : : : x n are identi ers in Ler95], they also contain simple functor application p 1 (p 2) of paths to paths. The rst one is type comparison: which de nition of type equality has to be chosen? Is type comparison and type-checking decidable? We shall see in section 3 that, given a suitable notion of type normalization, we can compare types, and type inference is decidable.

The second one is the lost of type abstraction in systems which h a ve a t yping rule transforming abstract types into types manifestly equal to themselves. In Ler95], it is stated that \If all structure expressions are allowed in paths, the \self" rule makes abstract types that happen to have the same implementation automatically compatible: To a void this problem, all module-language constructs whose evaluation can generate new types (by e v aluating an abstype or datatype de nition) must not occur in type projections." We agree with this statement, but go further: all module-language constructs whose evaluation can generate new types must not occur in type projections nor even in module expressions. Indeed, we think that the signature constraint operation that applies to module expressions | (m : M) denotes the module m whose type is constrained to be M | has nothing to do with the module language, but rather should be part of the de nition mechanism. Type abstraction has to be expressed when de ning a module, not when de ning a t ype.1 Thus, instead of declaring a module A as structure A = struct abstype t = string end (* in SML *) or as module A = (struct type t = string end : sig type t end) (* in Leroy's system *) we w ould rather declare it in the following way: module A : sig type t end = struct type t = string end In the rst two cases, de nitions are considered as transparent in the sense that A can be replaced by its de nition, whereas in the third case, the de nition of A is opaque, and export the signature sig type t end as the only information about A: the de nition of A c a n b e t h r o wn away, only its declared signature matters. Hence, abstraction is no longer achieved through type generativity (the generation of a unique new type at its declaration) but through type abstraction at module de nition time. In fact, this point of view is quite not new: thus, in Modula2 Wir83], there is only one way to de ne a new type then one speci es in an interface le whether the de nition has to be exported.

Let us sum up our proposal. We assume given a base language distinguishing types and values. We build a manifest types calculus on this language. This syntax is very close to that of Ler95]. Changes are : no syntactic notion of access path no way to explicitly constrain a module with a signature when de ning a module, one must give the signature the de ned module should export (though an e ective implementationcould infer the principal type of the module, and take it as the default signature if the user gives none). It should be noticed that the resulting system is more expressive than that of Ler95], since it allows modules to be local to an expression. However, module expressions remain second-class values, thus avoiding the di culties inherent to module systems where modules are rst-class values (see [START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF][START_REF] Hudak | Report on the Programming Language Haskell: A no-strict purely Functional Language[END_REF]). These local modules might be useful to account for Haskell type classes Jon91, H + 92], or Alcool abstract types [START_REF] Pierce | Bounded quanti cation is undecidable[END_REF][START_REF] Cois | Alcool 90, Typage de la surcharge dans un langage fonctionnel[END_REF].

The remaining of this paper is organized as follows. In section 2, we present formally our system and prove the subject reduction property for two notions of reduction. We also prove the strong normalization theorem: any reduction strategy for reducing a modular program leads to a \monolithic" program, where no module expression appears. In section 3, we deal with the problem of type inference, and give therefore a deterministic inference system computing the principal type of a module expression hence, every module enjoys a principal type. We show that the only remaining point, namely the comparison of type expressions, is decidable through a suitable notion of normalization of base-language type expressions. Finally, in section 4, we discuss a possible weakness of our module system with respect to module comparison, and give possible solutions.

A calculus enjoying the subject reduction property

We n o w formalize the previous remarks in a formal calculus derived from [START_REF] Kahrs | The de nition of Extended ML: a gentle introduction[END_REF][START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF]. It is to be noticed that our calculus does not account for concrete types de nitions nor for recursive t ype de nition of ML however, they can be accounted via the use of a xpoint operator.

Syntax

We follow syntactic conventions from Ler95]: v, t, x are names (for value, type, and module components of structures), and v i , t i , x i are identi ers (for values, types and modules). Identi ers are composed of a name plus a stamp part (say a n i n teger). To a void name clashes, renamings can change the stamp parts of identi ers but the name parts must be preserved to support access by name to structure components.

Values : e ::= v i identi er j m.v access to a value eld of a structure j . . . base-language-dependent expressions Types : ::= t i identi er j m:v access to a type eld of a structure j int j ! j . Environments : E ::= S Finally, a s w e w ant to study of the reductions of the module calculus, we h a ve to distinguish -reductions at the level of the base-language calculus and at the level of the module calculus. In order not to confuse both of them, we c a l l -reduction the -reduction at the level of module system. That is, -reduction is the smallest context-stable relation on the syntax such that (functor(x i : M)m 1)(m 2) ! m 1 fx i m 2 g. W e de ne -equivalence as the smallest equivalence relation including the -reduction.

Typing rules

We de ne the following judgments gures 1 and 2 (we o m i t w ell-formedness conditions for module types and we assume base-language dependent rules de ning typing judgments E `e : and E ` : type):

E `M modtype module type M is well-formed E `m : M module expression m has type M E `M1 <: M 2 module type M 1 is a subtype of M 2 E `m = m 0 : M considered as modules of type M, m and m 0 are de ning compatible types Compared to the systems of HL94, Ler94, Ler95], the main novelty of our system is the comparison of modules under a given module type. F or instance, under the type sig type t i end, the module expressions struct type t i = int type u j = int end struct type t i = int type u j = float end are equal, but under the type sig type t i type u j end, they are not.

We write BV(S) (resp. BV(E)) the set of identi ers bound by a signature body S (resp. a t yping environment E). As in Ler94, Ler95], one of the rule for typing module makes use of the strengthening M=m of a module type M by a module expression m: t h i s r u l e i s a w ay to express the \self" rule saying that every type is manifestly equal to itself. The strengthening operation is de ned as follows:

(sig S end)=m = sig S=m end (functor(x i : M 1)M 2)=m = functor(x i : M 1)(M 2 =m(x i)) =m = (D S)=m = D=m (S=m) Module expressions (E `m : M) and structures (E `s : S): E x i : M E 0 `xi : M E `m : sig S 1 module x i : M S 2 end E `m:x : Mfn i m:n j n i 2 BV(S 1)g E `M modtype x i = 2 BV(E) E module x i : M `m : M 0 E `functor(x i : M)m : functor(x i : M)M 0 E `m1 : functor(x i :

M)M 0 E `m2 : M E `m1 (m 2) : M 0 fx i m 2 g E `m : M 0 E `M 0 <: M E `m : M E `m : M E `m : M=m E `s : S E `(struct s end) : (sig S end) E ` : E `e : v i = 2 BV(E) E val v i : `s : S E `(val v i = e i s) : (val v i : S) E ` type t i = 2 BV(E) E type t i = `s : S E `(type t i = s) : (type t i = S) E `m : M x i =
2 BV(E) E module x i : M `s : S E `(module x i : M = m s) : (module x i : M S) Module types subtyping E `M1 <: M 2 : E `M2 <: M 1 E module x i : M 2 `M 0 1 <: M 0 E `val v i : < : val v i : 0 E `M < : M 0 E `module x i : M < : module x i : M 0 E `type t i = < : type t i E `type t i <: type t i E ` 0 E `type t i = < : type t i = 0 E `ti E `type t i <: type t i = E `m:t type E `m0 :t type m and m 0 have the same head variable c for all m i , m 0 i argument o f c in m, m 0 with type M i , E `mi m 0 i : M i E `m:t m 0 :t E `m : sig S 1 type t i = S 2 end E `m:t fn i m:n j n i 2 BV(S 1)g E 1 type t i = E 2 `ti (base-language dependent rules, congruence, re exivity, symmetry and transitivity rules omitted) Module equivalence : (E `m m 0 : M) E `m : sig D 1 : : : D n end E `m0 : sig D 1 : : : D n end 8i 2 f 1 : : : n g D i = type t j (=)) E `m:t m 0 :t D i = module x i : M) E `m:x m 0 :x : Mfn n i 2 BV(sig D 1 : : : D n end)g E `m m 0 : sig D 1 : : : D n end E `m : functor(x i : M 1)M 2 E `m0 : functor(x i : M 1)M 2 E module x i : M 1 `m(x i) m 0 (x i) : M 2 E `m m 0 : functor(x i : M 1)M 2

Figure 2: Typing rules (val v i :)=m = val v i : (type t i)=m = type t i =m:t (type t i =)=m = type t i = (module x i : M)=m = module x i : (M=m:x)

Module reductions

We n o w focus on reductions in the module language. We g i v e our results rst, then explain brie y at the end of this subsection how t o p r o ve t h e m .

Theorem 1 (subject reduction for -reduction) If E `m : M, and m ! m 0 , t h e n E `m0 : M. Theorem 2 (Con uence of -reduction) The -reduction is con uent Theorem 3 (Strong normalization for -reduction) The -reduction is strongly normalizing. However, -reduction in itself is not very interesting. Indeed, module expressions are very often innormal form. Instead, we can study what happens when we replace a module by its de nition, that is, what happens when we a d d t o -reduction the -reduction de ned as the smallest context-stable relation such that struct S 1 type t i = S 2 end:t ! fn i struct S 1 type t i = S 2 end:n j n i 2 BV(S 1)g struct S 1 val v i = e S 2 end:t ! efn i struct S 1 val v i = e S 2 end:n j n i 2 BV(S 1)g struct S 1 module x i : M = m S 2 end:t ! mfn i struct S 1 module x i : M = m S 2 end:n j n i 2 BV(S 1)g A functional program being of the form struct s end:result in an empty e n vironment, -reducing it is an easy way to transform it into a single base-language expression where no module construct appear, provided that the reduction process terminates.

Then we h a ve the following results:

Theorem 4 (Subject reduction for reduction) If E `m : M, a n d m ! m 0 , t h e n E `m0 : M.

Theorem 5 (Con uence of -reduction) The -reduction is con uent Theorem 6 (Strong normalization for -reduction) The -reduction is strongly normalizing.

Theorem 6 means we can transform every modular program into one involving only base-language constructs. In the following section, we address the question to know whether the modular program and the base-language program have the same semantics. This result is a kind of \conservativity" property. Indeed, in a proof language, this result imply that every inhabited type in the empty e n vironment for the module language is inhabited in the base language, that is that every proposition provable within the module system is provable in the base proof language.

For both reduction notions, con uence properties are proved with the standard Tait and Martin-L of's method Tak93].

Subject reduction for and is proved the usual way (substitution property and study of possible types of a functor)

In this proof, we h a ve in particular to prove the following proposition:

Proposition 1 If E `M modtype and E `(functor(x i : M 0)m)(x i) : M then E `(functor(x i :

M 0)m)(x i) m : M
This proposition implies that two -equivalent modules for a given type are equal for this type.

In a rst attempt, we put this property as a rule of our system, as is done in HL94], but this rendered the proof of type normalization untractable in section 3 (in the system of HL94], type inference is anyway undecidable).

As for theorems 3 and 6, strong normalization is proved rst for a typing system `w that is weaker than `, obtained by requiring that signatures in a subtype relation have the same number of component (m = n in the subtyping rule for signatures). Thus, sig type t = type u = 0 end is a subtype of sig type t type u = 0 end but not of sig type t end.

We can do for `w a proof similar to Coq87] for the Calculus of Constructions (in fact, we only need the part of the proof concerning dependent t ypes): we de ne a notion of full premodel for our calculus (that is, an in nite set of constants such that for every module type build upon this set there is a constant o f t h a t type in the set), and interpret the terms of our calculus in a way s u c h that every interpretation of a module type is strongly normalizing, and the interpretation of a module type is the set of module expressions of this type.

The case of `is then handled by the study of explicit coercions. These two proofs are not detailed because of their lengths.

Denotational semantics

Following Ler95], the denotational semantics of the calculus (for the functional fragment of the base language) is obtained by erasing all type information, mapping structures to records and functors to functions. We easily have the following result:

Theorem 7 The -reduction preserves the denotational semantics. More p r ecisely, if e is a well-typed expression of the base language involving module expressions, then the semantics of e is not wrong, and if e -reduces to e 0 then e and e 0 have the same semantics.

Proof: Since is strongly normalizing, we can prove this statement b y induction on the maximal length of a -reduction path starting from e. The proof is then straightforward. As a corollary, the above transformation of a modular program into a monolithic one preserves its semantics.

Typing: In order to obtain a type inference algorithm, we provide in gures 4 and 4 an inference system which runs in a deterministic way for a given module expression except for type comparison (where two main rules plus re exivity, symmetry, transitivity and context stability m a y lter the same type expressions). We s h o w here that this system gives the most general type of a given module expression. The only remaining point to have a t ype inference algorithm is to get a procedure to decide if two t ypes of the base-language are in the comparison relation.

E x i : M E 0 `A x i : M E `A m : sig S 1 module x i :M S 2 end E `A m:x : Mfn i m:n j n i 2 BV(S 1)g E `A s : S E `A (struct s end) : (sig S end) E `M modtype x i = 2 BV(E) E module x i :M `A m : M 0 E `A functor(x i : M)m : functor(x i : M)M 0 =m E `A m 1 : functor(x i :M)M 0 E `A m 2 : M 00 E `A M 00 =m 2 <: M E `A m 1 (m 2) : M 0 fx i m 2 g E `A : E `A e : v i = 2 BV(E) E val v i : `A s : S E `A (val v i = e i s) : (val v i : S) E ` type t i = 2 BV(E) E type t i = `A s : S E `A (type t i = s) : (type t i = S) E `A m : M 0 E `A M 0 =m <: M x i = 2 BV(E) E module x i :M `A s : S E `A (module x i :M = m s) : (module x i :M S) Subtyping: E `A M 2 <: M 1 E module x i : M 2 `A M 0 1 <: M 0 2 E `A functor(x i : M 1)M 0 1 <: functor(x i : M 2)M 0 2 : f1 : : : m g ! f 1 : : : n g 8 i 2 f 1 : : : n g E D 1 : : : D n `A D (i) <: D 0 i E `A sig D 1 : : : D n end <: sig D 0 1 : : : D 0 m end E `A 0 E `A val v i : < : val v i : 0 E `A M < : M 0 E `A module x i : M < : module x i : M 0 E `A type t i = < : type t i E `A type t i <: type t i E `A 0 E `A type t i = < : type t i = 0 E `A t i E `A type t i <: type t i =
This system is obtained from the one given gures 1 and 2 in the usual way b y m o ving subsumption and strengthening rules in the application rule, and a notion of -reduction of a type is added in order to orient the equality b e t ween a eld of structure and the corresponding declaration in its signature.

Compared to the type inference system for the system of Ler95], our system has only one straightforwards case for application whereas the syntactic restriction on access paths leads to the de nition of the notion of least subtype of a type where a given module variable does not appear. This notion is rather complex, and above all is not always de ned, therefore this system does not have the principal type property [START_REF] Leroy | Applicative functors and fully transparent higher-order modules[END_REF]).

Types equivalence: (E `A 0) E `A ! 0 E `A 0 E `m:t type E `m0 :t type m and m 0 have the same head variable c for all m i , m 0 i argument o f c in m, m 0 with type M i , E `mi m 0 i : M i E `m:t m 0 :t (re exivity, symmetry and transitivity omitted) Reduction: E 1 type t i = E 2 `A t i ! E `A m : sig S 1 type t i = S 2 end E `A m:t ! fn i m:n j n i 2 BV(S 1)g (context rules for base-language types omitted) Module equivalence: (E `A m m 0 : M) E `A m : N E `A N=m <: sig D 1 : : : D n end E `m0 : N 0 E `A N 0 =m 0 <: sig D 1 : : : D n end 8i 2 f 1 : : : n g D i = type t j (=)) E `A m:t m 0 :t D i = module x i : M) E `A m:x m 0 :x : Mfn n i 2 BV(sig D 1 : : : D n end)g E `A m m 0 : sig D 1 : : : D n end E `A m : M E `A M=m<: functor(x i : M 1)M 2 E `A m 0 : M 0 E `A M 0 =m 0 <: functor(x i : M 1)M 2 E module x i : M 1 `A m(x i) m 0 (x i) : M 2 E `A m m 0 : functor(x i : M 1)M 2 Proof: Induction on the derivation. Theorem 9 (Completeness) If E `m : M, then there exists a unique M 0 such that E `A m : M 0 and E `A M 0 =m <: M. Thus M 0 =m is the principal type o f m. I f E `M < : M 0 then E `A M < : M 0 i f E ` 0 then E `A 0 .

Proof: Induction on the derivation

Type normalization

In order to compare two t ypes, we shall give a notion of type normalization in our system in order to have for each t ype a canonical form. The rst solution however cannot solve the problem in case of local modules. Moreover, it relies on the discipline of the module user, not on that of the module provider. The second one is better since this kind of unexpected use of a module is no longer legal.

Conclusion

Our module system is close to those of [START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF][START_REF] Hudak | Report on the Programming Language Haskell: A no-strict purely Functional Language[END_REF]. However, to our knowledge, it is the rst SML-like module system whose subject reduction property i s p r o ven. This allows the theoretical study of reductions, leading to the strong normalization proofs. Also, we establish a kind of \conservativity" theorem: a modular functional program can be expanded to a monolithic non-modular one.

In the system of HL94], type inference is undecidable. In that of Ler95] syntactic restrictions on access paths make some modules lack a principal type and complicate type inference Ler96]. On the contrary, i n our system every module expression enjoys a principal type, and type inference is decidable.

We think the replacement o f t ype generativity b y abstraction at de nition gives a less operational account for type abstraction, which seems to be preserved. We conjecture that the representation independence proof of Ler95] is adaptable to our system. It would give a more formal result to this respect. We think our system helps in understanding modules from a type-theoretical point of view. The study of module reductions in the system itself helps bringing the study of module systems back to the study of typed lambda-calculi. Moreover, it seems to provide a rm basis for its use in proofs systems.

In this respect, we are currently working on its adaptation to the Calculus of Constructions CH88, CCF + 95], which should be quite easy (despite the fact there is no distinction between types and terms) in order to have a modular proof language well-suited to proving modular programs. Since the Calculus of Construction is both a programming language and a proof language, this would have the advantage to provide a uni ed framework, simpler than the Extended ML approach San90, KSTar] because of the inherent complexity of the semantic of the SML module system. We also believe our system may help in designing a safe and powerful module system for Elf.

In the same direction, it would be interesting to compare our module system with Bourbaki's mathematical notion of theory Bou70], which is for instance implemented in the IMPS FGT95] p r o ver.

 : : m g ! f 1 : : : n g 8 i 2 f 1 : : : n g E D 1 : : : D n `D (i) <: D 0 i E `sig D 1 : : : D n end <: sig D

Figure

 Figure 1: Typing rules

Figure 3 :

 3 Figure 3: Type inference system

Figure 4 :

 4 Figure 4: Type inference system

 Thus the structure struct type elt = m:t end is syntactically well-formed if and only if m is indeed a path.

	Let us now consider applying a functor implementing data structures on ordered types to a module m. If the functor is
	functor(Ordered_type : sig type t val compare : t -> t -> bool end)
	struct type elt = Ordered_type.t ... end
	and we try to reduce its application to m, w e g e t struct type elt=m.t end which i s n o t w ell-formed if m is not a path. Therefore, we m ust withdraw s y n tactic restrictions on access paths: in the following, access paths and module expressions are the same notions. As pointed out in Ler95] \This extension adds considerable expressive p o wer but raises delicate issues". Actually, there are two of them.

 StringOrd1 StringOrd2 : sig type t = string val compare : t ! t ! bool end .Notice that this problem is semantic in nature: since the manipulation of StringSet1.set and StringSet2.set is highly dependent u p o n t h e compare functions, letting them be equal can give strange results but no type error can occur. Nonetheless some safety brought b y abstract data types is lost. The same problem arises in Jones's proposal for modular programming Jon96] with parameterized signatures since in this framework, a type can only be parameterized by other types. There are at least two w ays towards a solution:Force the programmer to always give an explicit signature when de ning a module.Extend the system of abstract/manifest types to abstract/manifest values and make the comparison of module checking that values components are the same. The comparison of values should be done through a decidable equivalence relation included in the semantic equivalence (which is itself generally undecidable), for instance through -equivalence or | in normalizing languages such as system F or the Calculus of Constructions | -equivalence. Such an extension would solve this problem as it would guarantee that if m and m 0 are the same for sig val v : end, t h e n m:v and m

	module StringSet1 = SET(StringOrd1)
	module StringSet2 = SET(StringOrd2)
	where the notation module x = m is a syntactic sugar for module x : M = m where M is the principal type inferred for M, then E `StringSet1.set StringSet2.set
	since	E `StringOrd1.t StringOrd2.t
	hence	
	E `	
	thus in environment	The rst notion coming in mind is -normalization. However, it is not enough E x h : functor(x i : sig type t i end)sig type u j end
	the expressions	
	x h ((functor(x i : sig end)struct type t i = int end)(struct end)):u
	and	x h (struct type t i = int end):u

0 :v have the same semantics. A comparison over values may s e e m u n usual to an ML programmer, but it is usual in type systems where types may d e p e n d o n v alues. Anyway, adding it would make the module comparison more restrictive, but closer to intuition since equal modules would have equal denotational semantics more precisely, t h e y w ould have t o b e i n tentionally equal.

As for concrete type de nitions, we think the focus is on the de nition of a recursive t ype, not on generativity.

The right semantics for this notion seems to be still unclear

This research w as partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation co nanced by MRE-PRC and CNRS.

are in -normal form, and syntactically distinct though they are equivalent a s E `A (functor(x i : sig end)struct type t i = int end)(struct end) struct type t i = int end : sig type t i end However, we shall see that we c a n a l w ays proceed in this way to compare types, that is, by -normalizing them, then comparing module expressions that are arguments of the head variable (in [START_REF] Kahrs | The de nition of Extended ML: a gentle introduction[END_REF][START_REF] Leroy | Manifest types, modules, and separate compilation[END_REF], it seems that types are compared through the same normalization process but -normal access paths obtained are compared syntactically hence, if t is an abstract type of a functor x, x(y):t is di erent from x(z):t even if the de nition of z is y).

Then, we m a y w onder whether this process always terminates. In order to answer this question, we r s t give the following de nition:

De nition 1 (Normalizing types and normalizing modules for a given module type) In an environment E, we say a module m is normalizing for module type M if E `m : M, and one of the following case is veri ed: M = sig D 1 : : : D n end, for all i such that D i = type t j (=), m:t is normalizing and for all i such that D i = module x j : N, m:x is normalizing for type Nfn h m:n j n h 2 BV(D 1 : : : D i;1)g M = functor(x i : M 1)M 2 , and m(x i) is normalizing for type M 2 in E module x i : M 1 .

A type is said to be normalizing if and only if it has a -normal form, and the arguments of the head variables of the access path of its normal form are normalizing (for types expected b y t h e h e ad variables).

We h a ve the following result:

Theorem 10 (Type normalization) If E `A m : M then m is normalizing for M i f E `A type then is normalizing.

Proof: The proof can be done by de ning a reducibility notion as in GLT89] for the simply-typed lambdacalculus. We de ne the notion of reducible type and reducible module expression for a given type as follows: reducible types are normalizing types m is reducible for sig S end if for every type t i (=) i n S, m:t is reducible and for every module x i : M in s, m:x is reducible for Mfn i m:n j n i 2 BV(s)g m is reducible for functor(x i : M 1)M 2 if for every m 0 reducible for M 1 , m(m 0) is reducible for M 2 fx i m 0 g. The reader may c heck that this de nition is well-founded (by induction on the size of module types for a suitable notion of size). One can then prove t h e t wo following lemmas:

Lemma 1 If E `m : M then m is reducible of type M Lemma 2 Every reducible term is normalizing Then we h a ve t o c heck that normalization is a way to compare base-language types: Lemma 3 For all types and 0 such that E `A 0 , -normal forms of and 0 have the same head variables, and eld selections and arguments applied to these variables are e qual (for the expected types for the head variables).

Proof: By induction on the derivation of the equality.

Termination

We h a ve seen that we h a ve a w ay to compare well-formed type. We n o w o n l y h a ve to see that we h a ve a typing algorithm, that is the algorithm stops even if the given module is ill-typed.

Theorem 11 The `A gives a type inference algorithm, terminating on every module expression. Therefore, type inference for the module system is decidable.

Proof: Theorem 9 says the inference system terminates on every well-typed module expression. Hence, the subtyping inference system terminates on every couple of well-formed module types (since the sum of their size decreases, until we h a ve to infer the type of well-typed module expressions). Then, typing rules terminates, since the size of module expressions we w ant to infer the type of are decreasing and the subtyping test needed for the application rule is only performed between well-formed module types.

Discussion

Now w e w ould like to discuss strengths and weaknesses of our proposal, and especially of one key notion: module equality.

In order to eliminate the somewhat arti cial distinction between module types and access paths, we h a d to slightly complicate the comparison of base-language types, and we needed to add the notion of module equality for a given type. On the one hand, we believe this comparison is now more intuitive. Moreover our module comparison provides a simple semantics to manifest modules in signatures | that would be an equivalent of substructures sharing in SML 2 | in terms of a syntactic sugar: On the other hand, generating abstract types is now more di cult, in the sense that a functor cannot generate an abstract type by itself.

Let us study this problem on an example: implementing nite sets over types equiped with comparison functions. This can be done by a functor SORT of the following type: SET:functor(Ordered type : sig type t val compare : t ! t ! bool end)sig type s e t: : :end Now consider implementing nite sets of strings. Which comparison function do we c hoose? We m a y want the ASCII lexicographic comparison function, or instead to sort according to the lexicographic ordering based on the natural ordering on the French alphabet lexicographic ordering (where \ e" is smaller than \f", whereas it is greater than \f" in ASCII). Then, we w ould have t wo m o d u l e s StringOrd1 and StringOrd2 of signature sig type t = string val compare : t ! t ! bool end, where the compare functions are di erent. If we naively de ne