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Abstract

The module system of SML is a small typed language of its own� As is� one would expect a proof
of its soundness following from a proof of subject reduction� but none exists� As a consequence
the theoretical study of reductions is di�cult� and for instance� the question of normalization of
the module calculus can not even be asked�

In this paper� we build a variant of the SML module system � inspired from recent works �
which enjoys the subject reduction property� This was the initial motivation� Besides our system
enjoys other type�theoretic properties� the obtained calculus is strongly normalizing� there are no
syntactic restrictions on module paths� it enjoys a purely applicative semantic� every module has
a principal type� and type inference is decidable� Moreover we conjecture that type abstraction
� achieved through an explicit declaration of the signature of a module at its de�nition � is
preserved�

Keywords� Module systems� subject�reduction� normalization� type inference� SML� lambda�calculus

R�esum�e

Le syst�eme de modules de SML est un vrai petit langage typ�e� Alors qu	on pourrait attendre une
preuve de la consistance des syst�emes de modules d�ecoulant de l	�etude des r�eductions de modules�
en particulier d	une preuve d	autor�eduction� aucune preuve de ce genre ne semble exister� Or
cela est un pr�eliminaire n�ecessaire �a toute �etude des r�eductions� et en particulier �a la question de
la normalisation du syst�eme de modules�

Dans ce rapport� nous construisons une variante du syst�eme de modules de SML� inspir�ee de
travaux r�ecents� qui poss�ede la propri�et�e d	autor�eduction� Cette motivation initiale conduit par
ailleurs �a un syst�eme de modules poss�edant des propri�et�es th�eoriques remarquables� le calcul de
modules est fortement normalisant� aucune restriction syntaxique sur les chemins d	acc�es n	est
n�ecessaire� la s�emantique de notre syst�eme est purement applicative� tout module poss�ede un type
principal� et l	inf�erence de type est d�ecidable� Nous conjecturons par ailleurs que l	abstraction
de type � obtenue par un m�ecanisme de d�eclaration explicite de la signature d	un module lors
de sa d�e�nition � est pr�eserv�ee�

Mots�cl�es� Syst�emes de modules� autor�eduction� normalisation� inf�erence de type� SML� lambda�calcul
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� Introduction

Modularity is an essential technique for software programming and reuse� It is also needed for reasoning
about programs� especially� it is a major issue of formal methods� In this respect� the SML language
is particularly interesting� because of the power of its module language� which is a small typed language
of its own 
HMT��� HMT
��� This module system was designed for use at an interactive toplevel� and
therefore separate compilation issues were not addressed� For instance� in order to type�check a functor
application m��m��� knowing the module types of m� and m� was not enough� some knowledge of the
underlying implementation of these modules was needed� thus preventing from true separate compilation�
A solution to these problems has only been found recently� with the formalism of translucent sums 
HL
���
or manifest types 
Ler
�� Ler
��� These approach share the same idea� the implementation of types that
can be seen outside a given module must appear in the module type� there is no possibility for knowing the
implementation of the type component of a module if it does not appear in its type� Thus� module types of
module variables belonging to the environment give all the information needed for type�checking a module�
allowing true separate compilation� one needs only declaring the types of the modules needed by another one
at the time of compiling it� Side�e�ects were at the core of the initial SML module language� as abstraction
was implemented through generative data type declarations� module language constructs �especially the
application� could generate new types� But� as this way understanding type abstraction is a too low�level
point of view� generativity stopped being considered a key notion� in 
HL
��� there is no such notion� and
in 
Ler
��� the generative behavior of functor application is replaced by an applicative one� Thus� module
languages look more and more like functional languages �at least as soon as no side�e�ect is present in the
base language�� Therefore� one could expect a soundness proof of these systems to follow from the study of
reductions in these calculus� But none seems to have been provided yet�

From a theoretical point of view� this is very unsatisfying� and as a consequence� the question of normal�
ization makes little sense� Moreover� from a practical point of view� this could prevent us from adapting this
module system to proof systems or logical frameworks� For instance in Elf 
HP
��� it has been chosen not to
implement the sharing speci�cation� in order to retain only theoretically well�established features� Indeed�
having some strange features in a programming language might not be too dangerous� but in proof systems�
it might make it inconsistent�

In order to study reductions in module systems in this paper� we decided to start from the system
of 
Ler
�� because of its conceptual simplicity� and of its relative independence with respect to the base
module language� Unfortunately� this system lacks the subject reduction property� a module expression of a
given type may reduce to one that has not the same type or is even not syntactically well�formed� Indeed� in
this module system as in SML� access to module components is only allowed through expressions of the form
p�n where n is a name of a �eld and p an access path� access paths being a syntactic fragment of module
expressions�

� in SML and in the system of 
Ler
��� paths are of the form x�� � � � �xn� where x�� � � � � xn are identi�ers�

�This research was partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation

co�nanced by MRE�PRC and CNRS�
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� in 
Ler
��� they also contain simple functor application p��p�� of paths to paths�

Thus the structure struct type elt � m�t end is syntactically well�formed if and only if m is indeed a path�
Let us now consider applying a functor implementing data structures on ordered types to a module m�

If the functor is

functor�Ordered�type � sig type t val compare � t �� t �� bool end�

struct type elt � Ordered�type�t ��� end

and we try to reduce its application to m� we get struct type elt�m�t end which is not well�formed if m
is not a path� Therefore� we must withdraw syntactic restrictions on access paths� in the following� access
paths and module expressions are the same notions�

As pointed out in 
Ler
�� �This extension adds considerable expressive power but raises delicate issues��
Actually� there are two of them�

The �rst one is type comparison� which de�nition of type equality has to be chosen� Is type comparison
and type�checking decidable� We shall see in section � that� given a suitable notion of type normalization�
we can compare types� and type inference is decidable�

The second one is the lost of type abstraction in systems which have a typing rule transforming abstract
types into types manifestly equal to themselves� In 
Ler
��� it is stated that

�If all structure expressions are allowed in paths� the �self� rule makes abstract types that happen
to have the same implementation automatically compatible�

structure A � struct abstype t � � with decls end

structure B � struct abstype t � � with decls end

By application of the �self� rule� we obtain the following signatures for A and B�
A � sig type t � �struct abstype t � � with decls end��t � ���end

B � sig type t � �struct abstype t � � with decls end��t � ���end

Hence A�t � B�t which violate type abstraction�

To avoid this problem� all module�language constructs whose evaluation can generate new types
�by evaluating an abstype or datatype de�nition� must not occur in type projections��

We agree with this statement� but go further� all module�language constructs whose evaluation can generate
new types must not occur in type projections nor even in module expressions� Indeed� we think that the
signature constraint operation that applies to module expressions � �m � M � denotes the module m whose
type is constrained to be M � has nothing to do with the module language� but rather should be part of
the de�nition mechanism� Type abstraction has to be expressed when de�ning a module� not when de�ning
a type�� Thus� instead of declaring a module A as

structure A � struct abstype t � string end �	 in SML 	�

or as

module A � �struct type t � string end � sig type t end� �	 in Leroy
s system 	�

we would rather declare it in the following way�

module A � sig type t end � struct type t � string end

In the �rst two cases� de�nitions are considered as transparent in the sense that A can be replaced by its
de�nition� whereas in the third case� the de�nition of A is opaque� and export the signature sig type t end

as the only information about A� the de�nition of A can be thrown away� only its declared signature matters�
Hence� abstraction is no longer achieved through type generativity �the generation of a unique new type at
its declaration� but through type abstraction at module de�nition time� In fact� this point of view is quite
not new� thus� in Modula� 
Wir���� there is only one way to de�ne a new type � then one speci�es in an
interface �le whether the de�nition has to be exported�

Let us sum up our proposal� We assume given a base language distinguishing types and values� We build
a manifest types calculus on this language� This syntax is very close to that of 
Ler
��� Changes are �

�As for concrete type de�nitions� we think the focus is on the de�nition of a recursive type� not on generativity�
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� no syntactic notion of access path�

� no way to explicitly constrain a module with a signature�

� when de�ning a module� one must give the signature the de�ned module should export �though an
e�ective implementation could infer the principal type of the module� and take it as the default signature
if the user gives none��

It should be noticed that the resulting system is more expressive than that of 
Ler
��� since it allows modules
to be local to an expression� However� module expressions remain second�class values� thus avoiding the
di�culties inherent to module systems where modules are �rst�class values �see 
Ler
�� HL
���� These local
modules might be useful to account for Haskell type classes 
Jon
�� H�
��� or Alcool abstract types 
Rou
��
Rou
���

The remaining of this paper is organized as follows� In section �� we present formally our system and
prove the subject reduction property for two notions of reduction� We also prove the strong normalization
theorem� any reduction strategy for reducing a modular program leads to a �monolithic� program� where
no module expression appears� In section �� we deal with the problem of type inference� and give therefore
a deterministic inference system computing the principal type of a module expression� hence� every module
enjoys a principal type� We show that the only remaining point� namely the comparison of type expressions� is
decidable through a suitable notion of normalization of base�language type expressions� Finally� in section ��
we discuss a possible weakness of our module system with respect to module comparison� and give possible
solutions�

� A calculus enjoying the subject reduction property

We now formalize the previous remarks in a formal calculus derived from 
Ler
�� Ler
��� It is to be noticed
that our calculus does not account for concrete types de�nitions nor for recursive type de�nition of ML�
however� they can be accounted via the use of a �xpoint operator�

��� Syntax

We follow syntactic conventions from 
Ler
��� v� t� x are names �for value� type� and module components
of structures�� and vi� ti� xi are identi�ers �for values� types and modules�� Identi�ers are composed of a
name plus a stamp part �say an integer�� To avoid name clashes� renamings can change the stamp parts of
identi�ers but the name parts must be preserved to support access by name to structure components�

Values �
e ��� vi identi�er

j m�v access to a value �eld of a structure
j � � � base�language�dependent expressions

Types �
� ��� ti identi�er

j m�v access to a type �eld of a structure
j int j � � � j � � � base�language�dependent type expressions

Module expressions �
m ��� xi identi�er

j m�x module �eld of a structure
j struct s end structure construction
j functor�xi � M�m functor
j m��m�� application of a module

Structure body �
s ��� � j d � s
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Structure component �
d ��� val vi � e value de�nition

j type t � � type de�nition
j module xi � M � m module de�nition

Module type �
M ��� sig S end signature type

j functor�xi � M��M� functor type

Signature body �
S ��� � j D � S

Signature component �
D ��� val vi � � value declaration

j type ti abstract type declaration
j type ti � � manifest type declaration
j module xi � M module declaration

Environments �
E ��� S

Finally� as we want to study of the reductions of the module calculus� we have to distinguish ��reductions
at the level of the base�language calculus and at the level of the module calculus� In order not to confuse
both of them� we call ��reduction the ��reduction at the level of module system� That is� ��reduction is the
smallest context�stable relation on the syntax such that �functor�xi � M�m���m���� m�fxi � m�g� We
de�ne ��equivalence as the smallest equivalence relation including the ��reduction�

��� Typing rules

We de�ne the following judgments �gures � and � �we omit well�formedness conditions for module types and
we assume base�language dependent rules de�ning typing judgments E � e � � and E � � � type��

E � M modtype module type M is well�formed
E � m � M module expression m has type M
E � M� �� M� module type M� is a subtype of M�

E � m � m� � M considered as modules of type M � m and m� are de�ning compatible types

Compared to the systems of 
HL
�� Ler
�� Ler
��� the main novelty of our system is the comparison of
modules under a given module type� For instance� under the type sig type ti end� the module expressions

struct type ti � int� type uj � int end

struct type ti � int� type uj � float end

are equal� but under the type sig type ti� type uj end� they are not�
We write BV �S� �resp� BV �E�� the set of identi�ers bound by a signature body S �resp� a typing

environment E�� As in 
Ler
�� Ler
��� one of the rule for typing module makes use of the strengthening
M�m of a module type M by a module expression m� this rule is a way to express the �self� rule saying
that every type is manifestly equal to itself� The strengthening operation is de�ned as follows�

�sig S end��m � sig S�m end

�functor�xi � M��M���m � functor�xi � M���M��m�xi��

��m � �

�D�S��m � D�m� �S�m�

�



Module expressions �E � m � M � and structures �E � s � S��

E�xi � M �E� � xi � M
E � m � sig S�� module xi � M �S� end

E � m�x � Mfni � m�n j ni � BV �S��g

E �M modtype xi �� BV �E� E� module xi � M � m � M �

E � functor�xi � M�m � functor�xi � M�M �

E � m� � functor�xi � M�M � E � m� � M

E � m��m�� � M �fxi � m�g

E � m � M � E �M � �� M

E � m � M

E � m � M

E � m � M�m

E � s � S

E � �struct s end� � �sig S end�
E � � � �

E � e � � vi �� BV �E� E� val vi � � � s � S

E � �val vi � ei� s� � �val vi � � �S�

E � � type ti �� BV �E� E� type ti � � � s � S

E � �type ti � � � s� � �type ti � � �S�

E � m � M xi �� BV �E� E� module xi � M � s � S

E � �module xi � M � m� s� � �module xi � M �S�

Module types subtyping E �M� �� M��

E �M� �� M� E� module xi � M� �M �
� �� M �

�

E � functor�xi � M��M �
� �� functor�xi � M��M �

�

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � � ng E�D�� � � � �Dn � D��i� �� D�
i

E � sig D�� � � � �Dn end �� sig D�
�� � � � �D

�
m end

E � � � � �

E � val vi � � �� val vi � � �
E �M �� M �

E � module xi � M �� module xi � M �

E � type ti � � �� type ti E � type ti �� type ti

E � � � � �

E � type ti � � �� type ti � � �
E � ti � �

E � type ti �� type ti � �

Figure �� Typing rules
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Type equivalence � �E � � � � ��

E � m�t type E � m��t type

m and m� have the same head variable c
for all mi� m

�
i argument of c in m� m� with type Mi� E � mi � m�

i � Mi

E � m�t � m��t

E � m � sig S�� type ti�� �S� end

E � m�t � �fni � m�n j ni � BV �S��g
E�� type ti�� �E� � ti � �

�base�language dependent rules� congruence� re�exivity� symmetry and transitivity rules omitted�
Module equivalence � �E � m � m� � M �

E � m � sig D�� � � � �Dn end

E � m� � sig D�� � � � �Dn end

�i � f�� � � � � ng Di � type tj�� � �� E � m�t � m��t
Di � module xi � M � E � m�x � m��x � Mfn� ni � BV �sig D�� � � � �Dn end�g

E � m � m� � sig D�� � � � �Dn end

E � m � functor�xi � M��M� E � m� � functor�xi � M��M� E� module xi � M� � m�xi� � m��xi� � M�

E � m � m� � functor�xi � M��M�

Figure �� Typing rules

�val vi�� ��m � val vi��

�type ti��m � type ti�m�t

�type ti�� ��m � type ti��

�module xi � M ��m � module xi � �M�m�x�

��� Module reductions

We now focus on reductions in the module language� We give our results �rst� then explain brie�y at the
end of this subsection how to prove them�

Theorem � �subject reduction for ��reduction� If E � m � M � and m�� m
�� then E � m� � M �

Theorem � �Con�uence of ��reduction� The ��reduction is con�uent

Theorem � �Strong normalization for ��reduction� The ��reduction is strongly normalizing�

However� ��reduction in itself is not very interesting� Indeed� module expressions are very often in ��
normal form� Instead� we can study what happens when we replace a module by its de�nition� that is� what
happens when we add to ��reduction the 	�reduction de�ned as the smallest context�stable relation such
that

struct S�� type ti � � �S� end�t ��

�fni � struct S�� type ti � � �S� end�n j ni � BV �S��g
struct S�� val vi � e�S� end�t ��

efni � struct S�� val vi � e�S� end�n j ni � BV �S��g
struct S�� module xi � M � m�S� end�t ��

mfni � struct S�� module xi � M � m�S� end�n j ni � BV �S��g

A functional program being of the form struct s end�result in an empty environment� �	�reducing it
is an easy way to transform it into a single base�language expression where no module construct appear�
provided that the reduction process terminates�

Then we have the following results�
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Theorem 	 �Subject reduction for �	 reduction� If E � m � M � and m��� m
�� then E � m� � M �

Theorem 
 �Con�uence of �	�reduction� The �	�reduction is con�uent

Theorem � �Strong normalization for �	�reduction� The �	�reduction is strongly normalizing�

Theorem � means we can transform every modular program into one involving only base�language con�
structs� In the following section� we address the question to know whether the modular program and the
base�language program have the same semantics� This result is a kind of �conservativity� property� Indeed�
in a proof language� this result imply that every inhabited type in the empty environment for the module
language is inhabited in the base language� that is that every proposition provable within the module system
is provable in the base proof language�

For both reduction notions� con�uence properties are proved with the standard Tait and Martin�L�of	s
method 
Tak
���

Subject reduction for � and 	 is proved the usual way �substitution property and study of possible types
of a functor�

In this proof� we have in particular to prove the following proposition�

Proposition � If E � M modtype and E � �functor�xi � M ��m��xi� � M then E � �functor�xi �
M ��m��xi� � m � M

This proposition implies that two ��equivalent modules for a given type are equal for this type�

In a �rst attempt� we put this property as a rule of our system� as is done in 
HL
��� but this rendered
the proof of type normalization untractable in section � �in the system of 
HL
��� type inference is anyway
undecidable��

As for theorems � and �� strong normalization is proved �rst for a typing system �w that is weaker
than �� obtained by requiring that signatures in a subtype relation have the same number of component
�m � n in the subtyping rule for signatures�� Thus� sig type t � � type u � � � end is a subtype of
sig type t type u � � � end but not of sig type t end�

We can do for �w a proof similar to 
Coq��� for the Calculus of Constructions �in fact� we only need the
part of the proof concerning dependent types�� we de�ne a notion of full premodel for our calculus �that is�
an in�nite set of constants such that for every module type build upon this set there is a constant of that
type in the set�� and interpret the terms of our calculus in a way such that every interpretation of a module
type is strongly normalizing� and the interpretation of a module type is the set of module expressions of this
type�

The case of � is then handled by the study of explicit coercions� These two proofs are not detailed
because of their lengths�

��� Denotational semantics

Following 
Ler
��� the denotational semantics of the calculus �for the functional fragment of the base lan�
guage� is obtained by erasing all type information� mapping structures to records and functors to functions�
We easily have the following result�

Theorem � The �	�reduction preserves the denotational semantics� More precisely� if e is a well�typed
expression of the base language involving module expressions� then the semantics of e is not wrong� and if e
�	�reduces to e� then e and e� have the same semantics�

Proof� Since �	 is strongly normalizing� we can prove this statement by induction on the maximal length
of a �	�reduction path starting from e� The proof is then straightforward�

As a corollary� the above transformation of a modular program into a monolithic one preserves its
semantics�

�



Typing�

E�xi � M �E� �A xi � M
E �A m � sig S�� module xi�M �S� end

E �A m�x � Mfni � m�n j ni � BV �S��g

E �A s � S

E �A �struct s end� � �sig S end�

E �M modtype xi �� BV �E� E� module xi�M �A m � M �

E �A functor�xi � M�m � functor�xi � M�M ��m

E �A m� � functor�xi�M�M � E �A m� � M �� E �A M ���m� �� M

E �A m��m�� � M �fxi � m�g

E �A � � �

E �A e � � vi �� BV �E� E� val vi�� �A s � S

E �A �val vi � ei� s� � �val vi�� �S�

E � � type ti �� BV �E� E� type ti � � �A s � S

E �A �type ti � � � s� � �type ti � � �S�

E �A m � M � E �A M ��m �� M xi �� BV �E� E� module xi�M �A s � S

E �A �module xi�M � m� s� � �module xi�M �S�

Subtyping�

E �A M� �� M� E� module xi � M� �A M �
� �� M �

�

E �A functor�xi � M��M �
� �� functor�xi � M��M �

�

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � � ng E�D�� � � � �Dn �A D��i� �� D�
i

E �A sig D�� � � � �Dn end �� sig D�
�� � � � �D

�
m end

E �A � � � �

E �A val vi � � �� val vi � � �
E �A M �� M �

E �A module xi � M �� module xi � M �

E �A type ti � � �� type ti E �A type ti �� type ti

E �A � � � �

E �A type ti � � �� type ti � � �
E �A ti � �

E �A type ti �� type ti � �

Figure �� Type inference system

� Type inference

In order to obtain a type inference algorithm� we provide in �gures � and � an inference system which runs
in a deterministic way for a given module expression except for type comparison � �where two main rules
plus re�exivity� symmetry� transitivity and context stability may �lter the same type expressions�� We show
here that this system gives the most general type of a given module expression� The only remaining point
to have a type inference algorithm is to get a procedure to decide if two types of the base�language are in
the � comparison relation�

This system is obtained from the one given �gures � and � in the usual way by moving subsumption and
strengthening rules in the application rule� and a notion of 
�reduction of a type is added in order to orient
the equality between a �eld of structure and the corresponding declaration in its signature�

Compared to the type inference system for the system of 
Ler
��� our system has only one straightforwards
case for application whereas the syntactic restriction on access paths leads to the de�nition of the notion of
least subtype of a type where a given module variable does not appear� This notion is rather complex� and
above all is not always de�ned� therefore this system does not have the principal type property �
Ler
����

�



Types equivalence� �E �A � � � ��

E �A � �� �
�

E �A � � � �

E � m�t type E � m��t type

m and m� have the same head variable c
for all mi� m

�
i argument of c in m� m� with type Mi� E � mi � m�

i � Mi

E � m�t � m��t

�re�exivity� symmetry and transitivity omitted�
Reduction�

E�� type ti � � �E� �A ti �� �
E �A m � sig S�� type ti � � �S� end

E �A m�t�� �fni � m�n j ni � BV �S��g

�context rules for base�language types omitted�
Module equivalence� �E �A m � m� � M �

E �A m � N E �A N�m �� sig D�� � � � �Dn end

E � m� � N � E �A N ��m� �� sig D�� � � � �Dn end

�i � f�� � � � � ng Di � type tj�� � �� E �A m�t � m��t
Di � module xi � M � E �A m�x � m��x � Mfn� ni � BV �sig D�� � � � �Dn end�g

E �A m � m� � sig D�� � � � �Dn end

E �A m � M E �A M�m �� functor�xi � M��M�

E �A m� � M � E �A M ��m� �� functor�xi � M��M�

E� module xi � M� �A m�xi� � m��xi� � M�

E �A m � m� � functor�xi � M��M�

Figure �� Type inference system

��� Soundness and completeness

Theorem 
 �Soundness� If E �A m � M then E � m � M �and thus E � m � M�m� � if E �A M �� M �

then E �M �� M � � if E �A � � � � then E � � � � ��

Proof� Induction on the derivation�

Theorem � �Completeness� If E � m � M � then there exists a unique M � such that E �A m � M � and
E �A M ��m �� M � Thus M ��m is the principal type of m� If E � M �� M � then E �A M �� M � � if
E � � � � � then E �A � � � ��

Proof� Induction on the derivation

��� Type normalization

In order to compare two types� we shall give a notion of type normalization in our system in order to have for
each type a canonical form� The �rst notion coming in mind is 
�normalization� However� it is not enough�
thus in environment

E�xh � functor�xi � sig type ti end�sig type uj end

the expressions

xh��functor�xi � sig end�struct type ti � int end��struct end���u

and

xh�struct type ti � int end��u






are in 
�normal form� and syntactically distinct though they are equivalent as

E �A �functor�xi � sig end�struct type ti � int end��struct end�

� struct type ti � int end

� sig type ti end

However� we shall see that we can always proceed in this way to compare types� that is� by 
�normalizing
them� then comparing module expressions that are arguments of the head variable �in 
Ler
�� Ler
��� it
seems that types are compared through the same normalization process but 
�normal access paths obtained
are compared syntactically� hence� if t is an abstract type of a functor x� x�y��t is di�erent from x�z��t even
if the de�nition of z is y��

Then� we may wonder whether this process always terminates� In order to answer this question� we �rst
give the following de�nition�

De�nition � �Normalizing types and normalizing modules for a given module type� In an envi�
ronment E� we say a module m is normalizing for module type M if E � m � M � and one of the following
case is veri�ed�

� M � sig D�� � � � �Dn end� for all i such that Di � type tj�� � �� m�t is normalizing and for all i such
that Di � module xj � N � m�x is normalizing for type Nfnh � m�n j nh � BV �D�� � � � � Di���g�

� M � functor�xi � M��M�� and m�xi� is normalizing for type M� in E� module xi � M��

A type � is said to be normalizing if and only if it has a 
�normal form� and the arguments of the head
variables of the access path of its normal form are normalizing �for types expected by the head variables��

We have the following result�

Theorem �� �Type normalization� If E �A m � M then m is normalizing for M � if E �A � type then
� is normalizing�

Proof� The proof can be done by de�ning a reducibility notion as in 
GLT�
� for the simply�typed lambda�
calculus� We de�ne the notion of reducible type and reducible module expression for a given type as follows�

� reducible types are normalizing types�

� m is reducible for sig S end if for every type ti�� � � in S� m�t is reducible and for every module xi � M
in s� m�x is reducible for Mfni � m�n j ni � BV �s�g�

� m is reducible for functor�xi � M��M� if for every m� reducible for M�� m�m�� is reducible for
M�fxi � m�g�

The reader may check that this de�nition is well�founded �by induction on the size of module types for a
suitable notion of size�� One can then prove the two following lemmas�

Lemma � If E � m � M then m is reducible of type M

Lemma � Every reducible term is normalizing

Then we have to check that normalization is a way to compare base�language types�

Lemma � For all types � and � � such that E �A � � � �� 
�normal forms of � and � � have the same head
variables� and �eld selections and arguments applied to these variables are equal �for the expected types for
the head variables��

Proof� By induction on the derivation of the equality�

��



��� Termination

We have seen that we have a way to compare well�formed type� We now only have to see that we have a
typing algorithm� that is the algorithm stops even if the given module is ill�typed�

Theorem �� The �A gives a type inference algorithm� terminating on every module expression� Therefore�
type inference for the module system is decidable�

Proof� Theorem 
 says the inference system terminates on every well�typed module expression� Hence�
the subtyping inference system terminates on every couple of well�formed module types �since the sum of
their size decreases� until we have to infer the type of well�typed module expressions�� Then� typing rules
terminates� since the size of module expressions we want to infer the type of are decreasing and the subtyping
test needed for the application rule is only performed between well�formed module types�

� Discussion

Now we would like to discuss strengths and weaknesses of our proposal� and especially of one key notion�
module equality�

In order to eliminate the somewhat arti�cial distinction between module types and access paths� we had
to slightly complicate the comparison of base�language types� and we needed to add the notion of module
equality for a given type� On the one hand� we believe this comparison is now more intuitive� Moreover
our module comparison provides a simple semantics to manifest modules in signatures � that would be an
equivalent of substructures sharing in SML� � in terms of a syntactic sugar�

sig

module x � sig

type t

val compare � t �� t �� bool

end

� StringOrd

end

would expands to

sig

module x � sig

type t � StringOrd�t

val compare � t �� t �� bool

end

end

On the other hand� generating abstract types is now more di�cult� in the sense that a functor cannot
generate an abstract type by itself�

Let us study this problem on an example� implementing �nite sets over types equiped with comparison
functions� This can be done by a functor SORT of the following type�

SET�functor�Ordered type � sig type t val compare � t� t� bool end�sig type set � � � end

Now consider implementing �nite sets of strings� Which comparison function do we choose� We may
want the ASCII lexicographic comparison function� or instead to sort according to the lexicographic ordering
based on the natural ordering on the French alphabet lexicographic ordering �where ��e� is smaller than �f��
whereas it is greater than �f� in ASCII�� Then� we would have two modules StringOrd� and StringOrd� of
signature sig type t � string� val compare � t� t� bool end� where the compare functions are di�erent�
If we naively de�ne

�The right semantics for this notion seems to be still unclear

��



module StringSet� � SET�StringOrd��

module StringSet� � SET�StringOrd��

where the notation module x � m is a syntactic sugar for module x � M � m where M is the principal
type inferred for M � then

E � StringSet��set� StringSet��set

since
E � StringOrd��t� StringOrd��t

hence

E � StringOrd�� StringOrd� � sig type t � string� val compare � t� t� bool end

�
Notice that this problem is semantic in nature� since the manipulation of StringSet��set and

StringSet��set is highly dependent upon the compare functions� letting them be equal can give strange
results but no type error can occur� Nonetheless some safety brought by abstract data types is lost� The
same problem arises in Jones	s proposal for modular programming 
Jon
�� with parameterized signatures
since in this framework� a type can only be parameterized by other types� There are at least two ways
towards a solution�

� Force the programmer to always give an explicit signature when de�ning a module�

� Extend the system of abstract manifest types to abstract manifest values and make the comparison
of module checking that values components are the same� The comparison of values should be done
through a decidable equivalence relation included in the semantic equivalence �which is itself generally
undecidable�� for instance through ��equivalence or � in normalizing languages such as system F or
the Calculus of Constructions � ��equivalence� Such an extension would solve this problem as it would
guarantee that if m and m� are the same for sig val v � � end� then m�v and m��v have the same
semantics� A comparison over values may seem unusual to an ML programmer� but it is usual in type
systems where types may depend on values� Anyway� adding it would make the module comparison
more restrictive� but closer to intuition since equal modules would have equal denotational semantics�
more precisely� they would have to be intentionally equal�

The �rst solution however cannot solve the problem in case of local modules� Moreover� it relies on the
discipline of the module user� not on that of the module provider� The second one is better since this kind
of unexpected use of a module is no longer legal�

� Conclusion

Our module system is close to those of 
Ler
�� HL
��� However� to our knowledge� it is the �rst SML�like
module system whose subject reduction property is proven� This allows the theoretical study of reductions�
leading to the strong normalization proofs� Also� we establish a kind of �conservativity� theorem� a modular
functional program can be expanded to a monolithic non�modular one�

In the system of 
HL
��� type inference is undecidable� In that of 
Ler
�� syntactic restrictions on access
paths make some modules lack a principal type and complicate type inference 
Ler
��� On the contrary� in
our system every module expression enjoys a principal type� and type inference is decidable�

We think the replacement of type generativity by abstraction at de�nition gives a less operational account
for type abstraction� which seems to be preserved� We conjecture that the representation independence proof
of 
Ler
�� is adaptable to our system� It would give a more formal result to this respect�

We think our system helps in understanding modules from a type�theoretical point of view� The study
of module reductions in the system itself helps bringing the study of module systems back to the study of
typed lambda�calculi� Moreover� it seems to provide a �rm basis for its use in proofs systems�

In this respect� we are currently working on its adaptation to the Calculus of Constructions 
CH���
CCF�
��� which should be quite easy �despite the fact there is no distinction between types and terms�

��



in order to have a modular proof language well�suited to proving modular programs� Since the Calculus
of Construction is both a programming language and a proof language� this would have the advantage to
provide a uni�ed framework� simpler than the Extended ML approach 
San
�� KSTar� because of the inherent
complexity of the semantic of the SML module system� We also believe our system may help in designing a
safe and powerful module system for Elf�

In the same direction� it would be interesting to compare our module system with Bourbaki	s mathemat�
ical notion of theory 
Bou���� which is for instance implemented in the IMPS 
FGT
�� prover�
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