
HAL Id: hal-02102028
https://hal-lara.archives-ouvertes.fr/hal-02102028

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A module calculus enjoying the subject-reduction
property. (Preliminary Version)

Judicael Courant

To cite this version:
Judicael Courant. A module calculus enjoying the subject-reduction property. (Preliminary Version).
[Research Report] LIP RR-1996-30, Laboratoire de l’informatique du parallélisme. 1996, 2+14p. �hal-
02102028�

https://hal-lara.archives-ouvertes.fr/hal-02102028
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A module calculus enjoying the

subject�reduction property
Preliminary version

Judica�el Courant October ��

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A module calculus enjoying the subject�reduction property
Preliminary version

Judica�el Courant

October ��

Abstract

The module system of SML is a small typed language of its own� As is� one would expect a proof
of its soundness following from a proof of subject reduction� but none exists� As a consequence
the theoretical study of reductions is di�cult� and for instance� the question of normalization of
the module calculus can not even be asked�

In this paper� we build a variant of the SML module system � inspired from recent works �
which enjoys the subject reduction property� This was the initial motivation� Besides our system
enjoys other type�theoretic properties� the obtained calculus is strongly normalizing� there are no
syntactic restrictions on module paths� it enjoys a purely applicative semantic� every module has
a principal type� and type inference is decidable� Moreover we conjecture that type abstraction
� achieved through an explicit declaration of the signature of a module at its de�nition � is
preserved�

Keywords� Module systems� subject�reduction� normalization� type inference� SML� lambda�calculus

R�esum�e

Le syst�eme de modules de SML est un vrai petit langage typ�e� Alors qu	on pourrait attendre une
preuve de la consistance des syst�emes de modules d�ecoulant de l	�etude des r�eductions de modules�
en particulier d	une preuve d	autor�eduction� aucune preuve de ce genre ne semble exister� Or
cela est un pr�eliminaire n�ecessaire �a toute �etude des r�eductions� et en particulier �a la question de
la normalisation du syst�eme de modules�

Dans ce rapport� nous construisons une variante du syst�eme de modules de SML� inspir�ee de
travaux r�ecents� qui poss�ede la propri�et�e d	autor�eduction� Cette motivation initiale conduit par
ailleurs �a un syst�eme de modules poss�edant des propri�et�es th�eoriques remarquables� le calcul de
modules est fortement normalisant� aucune restriction syntaxique sur les chemins d	acc�es n	est
n�ecessaire� la s�emantique de notre syst�eme est purement applicative� tout module poss�ede un type
principal� et l	inf�erence de type est d�ecidable� Nous conjecturons par ailleurs que l	abstraction
de type � obtenue par un m�ecanisme de d�eclaration explicite de la signature d	un module lors
de sa d�e�nition � est pr�eserv�ee�

Mots�cl�es� Syst�emes de modules� autor�eduction� normalisation� inf�erence de type� SML� lambda�calcul

A module calculus enjoying the subject�reduction property�
Preliminary version

Judica�el Courant

October ��

� Introduction

Modularity is an essential technique for software programming and reuse� It is also needed for reasoning
about programs� especially� it is a major issue of formal methods� In this respect� the SML language
is particularly interesting� because of the power of its module language� which is a small typed language
of its own
HMT��� HMT
��� This module system was designed for use at an interactive toplevel� and
therefore separate compilation issues were not addressed� For instance� in order to type�check a functor
application m��m��� knowing the module types of m� and m� was not enough� some knowledge of the
underlying implementation of these modules was needed� thus preventing from true separate compilation�
A solution to these problems has only been found recently� with the formalism of translucent sums
HL
���
or manifest types
Ler
�� Ler
��� These approach share the same idea� the implementation of types that
can be seen outside a given module must appear in the module type� there is no possibility for knowing the
implementation of the type component of a module if it does not appear in its type� Thus� module types of
module variables belonging to the environment give all the information needed for type�checking a module�
allowing true separate compilation� one needs only declaring the types of the modules needed by another one
at the time of compiling it� Side�e�ects were at the core of the initial SML module language� as abstraction
was implemented through generative data type declarations� module language constructs �especially the
application� could generate new types� But� as this way understanding type abstraction is a too low�level
point of view� generativity stopped being considered a key notion� in
HL
��� there is no such notion� and
in
Ler
��� the generative behavior of functor application is replaced by an applicative one� Thus� module
languages look more and more like functional languages �at least as soon as no side�e�ect is present in the
base language�� Therefore� one could expect a soundness proof of these systems to follow from the study of
reductions in these calculus� But none seems to have been provided yet�

From a theoretical point of view� this is very unsatisfying� and as a consequence� the question of normal�
ization makes little sense� Moreover� from a practical point of view� this could prevent us from adapting this
module system to proof systems or logical frameworks� For instance in Elf
HP
��� it has been chosen not to
implement the sharing speci�cation� in order to retain only theoretically well�established features� Indeed�
having some strange features in a programming language might not be too dangerous� but in proof systems�
it might make it inconsistent�

In order to study reductions in module systems in this paper� we decided to start from the system
of
Ler
�� because of its conceptual simplicity� and of its relative independence with respect to the base
module language� Unfortunately� this system lacks the subject reduction property� a module expression of a
given type may reduce to one that has not the same type or is even not syntactically well�formed� Indeed� in
this module system as in SML� access to module components is only allowed through expressions of the form
p�n where n is a name of a �eld and p an access path� access paths being a syntactic fragment of module
expressions�

� in SML and in the system of
Ler
��� paths are of the form x�� � � � �xn� where x�� � � � � xn are identi�ers�

�This research was partially supported by the ESPRIT Basic Research Action Types and by the GDR Programmation

co�nanced by MRE�PRC and CNRS�

�

� in
Ler
��� they also contain simple functor application p��p�� of paths to paths�

Thus the structure struct type elt � m�t end is syntactically well�formed if and only if m is indeed a path�
Let us now consider applying a functor implementing data structures on ordered types to a module m�

If the functor is

functor�Ordered�type � sig type t val compare � t �� t �� bool end�

struct type elt � Ordered�type�t ��� end

and we try to reduce its application to m� we get struct type elt�m�t end which is not well�formed if m
is not a path� Therefore� we must withdraw syntactic restrictions on access paths� in the following� access
paths and module expressions are the same notions�

As pointed out in
Ler
�� �This extension adds considerable expressive power but raises delicate issues��
Actually� there are two of them�

The �rst one is type comparison� which de�nition of type equality has to be chosen� Is type comparison
and type�checking decidable� We shall see in section � that� given a suitable notion of type normalization�
we can compare types� and type inference is decidable�

The second one is the lost of type abstraction in systems which have a typing rule transforming abstract
types into types manifestly equal to themselves� In
Ler
��� it is stated that

�If all structure expressions are allowed in paths� the �self� rule makes abstract types that happen
to have the same implementation automatically compatible�

structure A � struct abstype t � � with decls end

structure B � struct abstype t � � with decls end

By application of the �self� rule� we obtain the following signatures for A and B�
A � sig type t � �struct abstype t � � with decls end��t � ���end

B � sig type t � �struct abstype t � � with decls end��t � ���end

Hence A�t � B�t which violate type abstraction�

To avoid this problem� all module�language constructs whose evaluation can generate new types
�by evaluating an abstype or datatype de�nition� must not occur in type projections��

We agree with this statement� but go further� all module�language constructs whose evaluation can generate
new types must not occur in type projections nor even in module expressions� Indeed� we think that the
signature constraint operation that applies to module expressions � �m � M � denotes the module m whose
type is constrained to be M � has nothing to do with the module language� but rather should be part of
the de�nition mechanism� Type abstraction has to be expressed when de�ning a module� not when de�ning
a type�� Thus� instead of declaring a module A as

structure A � struct abstype t � string end �	 in SML 	�

or as

module A � �struct type t � string end � sig type t end� �	 in Leroy
s system 	�

we would rather declare it in the following way�

module A � sig type t end � struct type t � string end

In the �rst two cases� de�nitions are considered as transparent in the sense that A can be replaced by its
de�nition� whereas in the third case� the de�nition of A is opaque� and export the signature sig type t end

as the only information about A� the de�nition of A can be thrown away� only its declared signature matters�
Hence� abstraction is no longer achieved through type generativity �the generation of a unique new type at
its declaration� but through type abstraction at module de�nition time� In fact� this point of view is quite
not new� thus� in Modula�
Wir���� there is only one way to de�ne a new type � then one speci�es in an
interface �le whether the de�nition has to be exported�

Let us sum up our proposal� We assume given a base language distinguishing types and values� We build
a manifest types calculus on this language� This syntax is very close to that of
Ler
��� Changes are �

�As for concrete type de�nitions� we think the focus is on the de�nition of a recursive type� not on generativity�

�

� no syntactic notion of access path�

� no way to explicitly constrain a module with a signature�

� when de�ning a module� one must give the signature the de�ned module should export �though an
e�ective implementation could infer the principal type of the module� and take it as the default signature
if the user gives none��

It should be noticed that the resulting system is more expressive than that of
Ler
��� since it allows modules
to be local to an expression� However� module expressions remain second�class values� thus avoiding the
di�culties inherent to module systems where modules are �rst�class values �see
Ler
�� HL
���� These local
modules might be useful to account for Haskell type classes
Jon
�� H�
��� or Alcool abstract types
Rou
��
Rou
���

The remaining of this paper is organized as follows� In section �� we present formally our system and
prove the subject reduction property for two notions of reduction� We also prove the strong normalization
theorem� any reduction strategy for reducing a modular program leads to a �monolithic� program� where
no module expression appears� In section �� we deal with the problem of type inference� and give therefore
a deterministic inference system computing the principal type of a module expression� hence� every module
enjoys a principal type� We show that the only remaining point� namely the comparison of type expressions� is
decidable through a suitable notion of normalization of base�language type expressions� Finally� in section ��
we discuss a possible weakness of our module system with respect to module comparison� and give possible
solutions�

� A calculus enjoying the subject reduction property

We now formalize the previous remarks in a formal calculus derived from
Ler
�� Ler
��� It is to be noticed
that our calculus does not account for concrete types de�nitions nor for recursive type de�nition of ML�
however� they can be accounted via the use of a �xpoint operator�

��� Syntax

We follow syntactic conventions from
Ler
��� v� t� x are names �for value� type� and module components
of structures�� and vi� ti� xi are identi�ers �for values� types and modules�� Identi�ers are composed of a
name plus a stamp part �say an integer�� To avoid name clashes� renamings can change the stamp parts of
identi�ers but the name parts must be preserved to support access by name to structure components�

Values �
e ��� vi identi�er

j m�v access to a value �eld of a structure
j � � � base�language�dependent expressions

Types �
� ��� ti identi�er

j m�v access to a type �eld of a structure
j int j � � � j � � � base�language�dependent type expressions

Module expressions �
m ��� xi identi�er

j m�x module �eld of a structure
j struct s end structure construction
j functor�xi � M�m functor
j m��m�� application of a module

Structure body �
s ��� � j d � s

�

Structure component �
d ��� val vi � e value de�nition

j type t � � type de�nition
j module xi � M � m module de�nition

Module type �
M ��� sig S end signature type

j functor�xi � M��M� functor type

Signature body �
S ��� � j D � S

Signature component �
D ��� val vi � � value declaration

j type ti abstract type declaration
j type ti � � manifest type declaration
j module xi � M module declaration

Environments �
E ��� S

Finally� as we want to study of the reductions of the module calculus� we have to distinguish ��reductions
at the level of the base�language calculus and at the level of the module calculus� In order not to confuse
both of them� we call ��reduction the ��reduction at the level of module system� That is� ��reduction is the
smallest context�stable relation on the syntax such that �functor�xi � M�m���m���� m�fxi � m�g� We
de�ne ��equivalence as the smallest equivalence relation including the ��reduction�

��� Typing rules

We de�ne the following judgments �gures � and � �we omit well�formedness conditions for module types and
we assume base�language dependent rules de�ning typing judgments E � e � � and E � � � type��

E � M modtype module type M is well�formed
E � m � M module expression m has type M
E � M� �� M� module type M� is a subtype of M�

E � m � m� � M considered as modules of type M � m and m� are de�ning compatible types

Compared to the systems of
HL
�� Ler
�� Ler
��� the main novelty of our system is the comparison of
modules under a given module type� For instance� under the type sig type ti end� the module expressions

struct type ti � int� type uj � int end

struct type ti � int� type uj � float end

are equal� but under the type sig type ti� type uj end� they are not�
We write BV �S� �resp� BV �E�� the set of identi�ers bound by a signature body S �resp� a typing

environment E�� As in
Ler
�� Ler
��� one of the rule for typing module makes use of the strengthening
M�m of a module type M by a module expression m� this rule is a way to express the �self� rule saying
that every type is manifestly equal to itself� The strengthening operation is de�ned as follows�

�sig S end��m � sig S�m end

�functor�xi � M��M���m � functor�xi � M���M��m�xi��

��m � �

�D�S��m � D�m� �S�m�

�

Module expressions �E � m � M � and structures �E � s � S��

E�xi � M �E� � xi � M
E � m � sig S�� module xi � M �S� end

E � m�x � Mfni � m�n j ni � BV �S��g

E �M modtype xi �� BV �E� E� module xi � M � m � M �

E � functor�xi � M�m � functor�xi � M�M �

E � m� � functor�xi � M�M � E � m� � M

E � m��m�� � M �fxi � m�g

E � m � M � E �M � �� M

E � m � M

E � m � M

E � m � M�m

E � s � S

E � �struct s end� � �sig S end�
E � � � �

E � e � � vi �� BV �E� E� val vi � � � s � S

E � �val vi � ei� s� � �val vi � � �S�

E � � type ti �� BV �E� E� type ti � � � s � S

E � �type ti � � � s� � �type ti � � �S�

E � m � M xi �� BV �E� E� module xi � M � s � S

E � �module xi � M � m� s� � �module xi � M �S�

Module types subtyping E �M� �� M��

E �M� �� M� E� module xi � M� �M �
� �� M �

�

E � functor�xi � M��M �
� �� functor�xi � M��M �

�

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � � ng E�D�� � � � �Dn � D��i� �� D�
i

E � sig D�� � � � �Dn end �� sig D�
�� � � � �D

�
m end

E � � � � �

E � val vi � � �� val vi � � �
E �M �� M �

E � module xi � M �� module xi � M �

E � type ti � � �� type ti E � type ti �� type ti

E � � � � �

E � type ti � � �� type ti � � �
E � ti � �

E � type ti �� type ti � �

Figure �� Typing rules

�

Type equivalence � �E � � � � ��

E � m�t type E � m��t type

m and m� have the same head variable c
for all mi� m

�
i argument of c in m� m� with type Mi� E � mi � m�

i � Mi

E � m�t � m��t

E � m � sig S�� type ti�� �S� end

E � m�t � �fni � m�n j ni � BV �S��g
E�� type ti�� �E� � ti � �

�base�language dependent rules� congruence� re�exivity� symmetry and transitivity rules omitted�
Module equivalence � �E � m � m� � M �

E � m � sig D�� � � � �Dn end

E � m� � sig D�� � � � �Dn end

�i � f�� � � � � ng Di � type tj�� � �� E � m�t � m��t
Di � module xi � M � E � m�x � m��x � Mfn� ni � BV �sig D�� � � � �Dn end�g

E � m � m� � sig D�� � � � �Dn end

E � m � functor�xi � M��M� E � m� � functor�xi � M��M� E� module xi � M� � m�xi� � m��xi� � M�

E � m � m� � functor�xi � M��M�

Figure �� Typing rules

�val vi�� ��m � val vi��

�type ti��m � type ti�m�t

�type ti�� ��m � type ti��

�module xi � M ��m � module xi � �M�m�x�

��� Module reductions

We now focus on reductions in the module language� We give our results �rst� then explain brie�y at the
end of this subsection how to prove them�

Theorem � �subject reduction for ��reduction� If E � m � M � and m�� m
�� then E � m� � M �

Theorem � �Con�uence of ��reduction� The ��reduction is con�uent

Theorem � �Strong normalization for ��reduction� The ��reduction is strongly normalizing�

However� ��reduction in itself is not very interesting� Indeed� module expressions are very often in ��
normal form� Instead� we can study what happens when we replace a module by its de�nition� that is� what
happens when we add to ��reduction the 	�reduction de�ned as the smallest context�stable relation such
that

struct S�� type ti � � �S� end�t ��

�fni � struct S�� type ti � � �S� end�n j ni � BV �S��g
struct S�� val vi � e�S� end�t ��

efni � struct S�� val vi � e�S� end�n j ni � BV �S��g
struct S�� module xi � M � m�S� end�t ��

mfni � struct S�� module xi � M � m�S� end�n j ni � BV �S��g

A functional program being of the form struct s end�result in an empty environment� �	�reducing it
is an easy way to transform it into a single base�language expression where no module construct appear�
provided that the reduction process terminates�

Then we have the following results�

�

Theorem 	 �Subject reduction for �	 reduction� If E � m � M � and m��� m
�� then E � m� � M �

Theorem
 �Con�uence of �	�reduction� The �	�reduction is con�uent

Theorem � �Strong normalization for �	�reduction� The �	�reduction is strongly normalizing�

Theorem � means we can transform every modular program into one involving only base�language con�
structs� In the following section� we address the question to know whether the modular program and the
base�language program have the same semantics� This result is a kind of �conservativity� property� Indeed�
in a proof language� this result imply that every inhabited type in the empty environment for the module
language is inhabited in the base language� that is that every proposition provable within the module system
is provable in the base proof language�

For both reduction notions� con�uence properties are proved with the standard Tait and Martin�L�of	s
method
Tak
���

Subject reduction for � and 	 is proved the usual way �substitution property and study of possible types
of a functor�

In this proof� we have in particular to prove the following proposition�

Proposition � If E � M modtype and E � �functor�xi � M ��m��xi� � M then E � �functor�xi �
M ��m��xi� � m � M

This proposition implies that two ��equivalent modules for a given type are equal for this type�

In a �rst attempt� we put this property as a rule of our system� as is done in
HL
��� but this rendered
the proof of type normalization untractable in section � �in the system of
HL
��� type inference is anyway
undecidable��

As for theorems � and �� strong normalization is proved �rst for a typing system �w that is weaker
than �� obtained by requiring that signatures in a subtype relation have the same number of component
�m � n in the subtyping rule for signatures�� Thus� sig type t � � type u � � � end is a subtype of
sig type t type u � � � end but not of sig type t end�

We can do for �w a proof similar to
Coq��� for the Calculus of Constructions �in fact� we only need the
part of the proof concerning dependent types�� we de�ne a notion of full premodel for our calculus �that is�
an in�nite set of constants such that for every module type build upon this set there is a constant of that
type in the set�� and interpret the terms of our calculus in a way such that every interpretation of a module
type is strongly normalizing� and the interpretation of a module type is the set of module expressions of this
type�

The case of � is then handled by the study of explicit coercions� These two proofs are not detailed
because of their lengths�

��� Denotational semantics

Following
Ler
��� the denotational semantics of the calculus �for the functional fragment of the base lan�
guage� is obtained by erasing all type information� mapping structures to records and functors to functions�
We easily have the following result�

Theorem � The �	�reduction preserves the denotational semantics� More precisely� if e is a well�typed
expression of the base language involving module expressions� then the semantics of e is not wrong� and if e
�	�reduces to e� then e and e� have the same semantics�

Proof� Since �	 is strongly normalizing� we can prove this statement by induction on the maximal length
of a �	�reduction path starting from e� The proof is then straightforward�

As a corollary� the above transformation of a modular program into a monolithic one preserves its
semantics�

�

Typing�

E�xi � M �E� �A xi � M
E �A m � sig S�� module xi�M �S� end

E �A m�x � Mfni � m�n j ni � BV �S��g

E �A s � S

E �A �struct s end� � �sig S end�

E �M modtype xi �� BV �E� E� module xi�M �A m � M �

E �A functor�xi � M�m � functor�xi � M�M ��m

E �A m� � functor�xi�M�M � E �A m� � M �� E �A M ���m� �� M

E �A m��m�� � M �fxi � m�g

E �A � � �

E �A e � � vi �� BV �E� E� val vi�� �A s � S

E �A �val vi � ei� s� � �val vi�� �S�

E � � type ti �� BV �E� E� type ti � � �A s � S

E �A �type ti � � � s� � �type ti � � �S�

E �A m � M � E �A M ��m �� M xi �� BV �E� E� module xi�M �A s � S

E �A �module xi�M � m� s� � �module xi�M �S�

Subtyping�

E �A M� �� M� E� module xi � M� �A M �
� �� M �

�

E �A functor�xi � M��M �
� �� functor�xi � M��M �

�

� � f�� � � � �mg � f�� � � � � ng �i � f�� � � � � ng E�D�� � � � �Dn �A D��i� �� D�
i

E �A sig D�� � � � �Dn end �� sig D�
�� � � � �D

�
m end

E �A � � � �

E �A val vi � � �� val vi � � �
E �A M �� M �

E �A module xi � M �� module xi � M �

E �A type ti � � �� type ti E �A type ti �� type ti

E �A � � � �

E �A type ti � � �� type ti � � �
E �A ti � �

E �A type ti �� type ti � �

Figure �� Type inference system

� Type inference

In order to obtain a type inference algorithm� we provide in �gures � and � an inference system which runs
in a deterministic way for a given module expression except for type comparison � �where two main rules
plus re�exivity� symmetry� transitivity and context stability may �lter the same type expressions�� We show
here that this system gives the most general type of a given module expression� The only remaining point
to have a type inference algorithm is to get a procedure to decide if two types of the base�language are in
the � comparison relation�

This system is obtained from the one given �gures � and � in the usual way by moving subsumption and
strengthening rules in the application rule� and a notion of
�reduction of a type is added in order to orient
the equality between a �eld of structure and the corresponding declaration in its signature�

Compared to the type inference system for the system of
Ler
��� our system has only one straightforwards
case for application whereas the syntactic restriction on access paths leads to the de�nition of the notion of
least subtype of a type where a given module variable does not appear� This notion is rather complex� and
above all is not always de�ned� therefore this system does not have the principal type property �
Ler
����

�

Types equivalence� �E �A � � � ��

E �A � �� �
�

E �A � � � �

E � m�t type E � m��t type

m and m� have the same head variable c
for all mi� m

�
i argument of c in m� m� with type Mi� E � mi � m�

i � Mi

E � m�t � m��t

�re�exivity� symmetry and transitivity omitted�
Reduction�

E�� type ti � � �E� �A ti �� �
E �A m � sig S�� type ti � � �S� end

E �A m�t�� �fni � m�n j ni � BV �S��g

�context rules for base�language types omitted�
Module equivalence� �E �A m � m� � M �

E �A m � N E �A N�m �� sig D�� � � � �Dn end

E � m� � N � E �A N ��m� �� sig D�� � � � �Dn end

�i � f�� � � � � ng Di � type tj�� � �� E �A m�t � m��t
Di � module xi � M � E �A m�x � m��x � Mfn� ni � BV �sig D�� � � � �Dn end�g

E �A m � m� � sig D�� � � � �Dn end

E �A m � M E �A M�m �� functor�xi � M��M�

E �A m� � M � E �A M ��m� �� functor�xi � M��M�

E� module xi � M� �A m�xi� � m��xi� � M�

E �A m � m� � functor�xi � M��M�

Figure �� Type inference system

��� Soundness and completeness

Theorem
 �Soundness� If E �A m � M then E � m � M �and thus E � m � M�m� � if E �A M �� M �

then E �M �� M � � if E �A � � � � then E � � � � ��

Proof� Induction on the derivation�

Theorem � �Completeness� If E � m � M � then there exists a unique M � such that E �A m � M � and
E �A M ��m �� M � Thus M ��m is the principal type of m� If E � M �� M � then E �A M �� M � � if
E � � � � � then E �A � � � ��

Proof� Induction on the derivation

��� Type normalization

In order to compare two types� we shall give a notion of type normalization in our system in order to have for
each type a canonical form� The �rst notion coming in mind is
�normalization� However� it is not enough�
thus in environment

E�xh � functor�xi � sig type ti end�sig type uj end

the expressions

xh��functor�xi � sig end�struct type ti � int end��struct end���u

and

xh�struct type ti � int end��u

are in
�normal form� and syntactically distinct though they are equivalent as

E �A �functor�xi � sig end�struct type ti � int end��struct end�

� struct type ti � int end

� sig type ti end

However� we shall see that we can always proceed in this way to compare types� that is� by
�normalizing
them� then comparing module expressions that are arguments of the head variable �in
Ler
�� Ler
��� it
seems that types are compared through the same normalization process but
�normal access paths obtained
are compared syntactically� hence� if t is an abstract type of a functor x� x�y��t is di�erent from x�z��t even
if the de�nition of z is y��

Then� we may wonder whether this process always terminates� In order to answer this question� we �rst
give the following de�nition�

De�nition � �Normalizing types and normalizing modules for a given module type� In an envi�
ronment E� we say a module m is normalizing for module type M if E � m � M � and one of the following
case is veri�ed�

� M � sig D�� � � � �Dn end� for all i such that Di � type tj�� � �� m�t is normalizing and for all i such
that Di � module xj � N � m�x is normalizing for type Nfnh � m�n j nh � BV �D�� � � � � Di���g�

� M � functor�xi � M��M�� and m�xi� is normalizing for type M� in E� module xi � M��

A type � is said to be normalizing if and only if it has a
�normal form� and the arguments of the head
variables of the access path of its normal form are normalizing �for types expected by the head variables��

We have the following result�

Theorem �� �Type normalization� If E �A m � M then m is normalizing for M � if E �A � type then
� is normalizing�

Proof� The proof can be done by de�ning a reducibility notion as in
GLT�
� for the simply�typed lambda�
calculus� We de�ne the notion of reducible type and reducible module expression for a given type as follows�

� reducible types are normalizing types�

� m is reducible for sig S end if for every type ti�� � � in S� m�t is reducible and for every module xi � M
in s� m�x is reducible for Mfni � m�n j ni � BV �s�g�

� m is reducible for functor�xi � M��M� if for every m� reducible for M�� m�m�� is reducible for
M�fxi � m�g�

The reader may check that this de�nition is well�founded �by induction on the size of module types for a
suitable notion of size�� One can then prove the two following lemmas�

Lemma � If E � m � M then m is reducible of type M

Lemma � Every reducible term is normalizing

Then we have to check that normalization is a way to compare base�language types�

Lemma � For all types � and � � such that E �A � � � ��
�normal forms of � and � � have the same head
variables� and �eld selections and arguments applied to these variables are equal �for the expected types for
the head variables��

Proof� By induction on the derivation of the equality�

��

��� Termination

We have seen that we have a way to compare well�formed type� We now only have to see that we have a
typing algorithm� that is the algorithm stops even if the given module is ill�typed�

Theorem �� The �A gives a type inference algorithm� terminating on every module expression� Therefore�
type inference for the module system is decidable�

Proof� Theorem
 says the inference system terminates on every well�typed module expression� Hence�
the subtyping inference system terminates on every couple of well�formed module types �since the sum of
their size decreases� until we have to infer the type of well�typed module expressions�� Then� typing rules
terminates� since the size of module expressions we want to infer the type of are decreasing and the subtyping
test needed for the application rule is only performed between well�formed module types�

� Discussion

Now we would like to discuss strengths and weaknesses of our proposal� and especially of one key notion�
module equality�

In order to eliminate the somewhat arti�cial distinction between module types and access paths� we had
to slightly complicate the comparison of base�language types� and we needed to add the notion of module
equality for a given type� On the one hand� we believe this comparison is now more intuitive� Moreover
our module comparison provides a simple semantics to manifest modules in signatures � that would be an
equivalent of substructures sharing in SML� � in terms of a syntactic sugar�

sig

module x � sig

type t

val compare � t �� t �� bool

end

� StringOrd

end

would expands to

sig

module x � sig

type t � StringOrd�t

val compare � t �� t �� bool

end

end

On the other hand� generating abstract types is now more di�cult� in the sense that a functor cannot
generate an abstract type by itself�

Let us study this problem on an example� implementing �nite sets over types equiped with comparison
functions� This can be done by a functor SORT of the following type�

SET�functor�Ordered type � sig type t val compare � t� t� bool end�sig type set � � � end

Now consider implementing �nite sets of strings� Which comparison function do we choose� We may
want the ASCII lexicographic comparison function� or instead to sort according to the lexicographic ordering
based on the natural ordering on the French alphabet lexicographic ordering �where ��e� is smaller than �f��
whereas it is greater than �f� in ASCII�� Then� we would have two modules StringOrd� and StringOrd� of
signature sig type t � string� val compare � t� t� bool end� where the compare functions are di�erent�
If we naively de�ne

�The right semantics for this notion seems to be still unclear

��

module StringSet� � SET�StringOrd��

module StringSet� � SET�StringOrd��

where the notation module x � m is a syntactic sugar for module x � M � m where M is the principal
type inferred for M � then

E � StringSet��set� StringSet��set

since
E � StringOrd��t� StringOrd��t

hence

E � StringOrd�� StringOrd� � sig type t � string� val compare � t� t� bool end

�
Notice that this problem is semantic in nature� since the manipulation of StringSet��set and

StringSet��set is highly dependent upon the compare functions� letting them be equal can give strange
results but no type error can occur� Nonetheless some safety brought by abstract data types is lost� The
same problem arises in Jones	s proposal for modular programming
Jon
�� with parameterized signatures
since in this framework� a type can only be parameterized by other types� There are at least two ways
towards a solution�

� Force the programmer to always give an explicit signature when de�ning a module�

� Extend the system of abstract manifest types to abstract manifest values and make the comparison
of module checking that values components are the same� The comparison of values should be done
through a decidable equivalence relation included in the semantic equivalence �which is itself generally
undecidable�� for instance through ��equivalence or � in normalizing languages such as system F or
the Calculus of Constructions � ��equivalence� Such an extension would solve this problem as it would
guarantee that if m and m� are the same for sig val v � � end� then m�v and m��v have the same
semantics� A comparison over values may seem unusual to an ML programmer� but it is usual in type
systems where types may depend on values� Anyway� adding it would make the module comparison
more restrictive� but closer to intuition since equal modules would have equal denotational semantics�
more precisely� they would have to be intentionally equal�

The �rst solution however cannot solve the problem in case of local modules� Moreover� it relies on the
discipline of the module user� not on that of the module provider� The second one is better since this kind
of unexpected use of a module is no longer legal�

� Conclusion

Our module system is close to those of
Ler
�� HL
��� However� to our knowledge� it is the �rst SML�like
module system whose subject reduction property is proven� This allows the theoretical study of reductions�
leading to the strong normalization proofs� Also� we establish a kind of �conservativity� theorem� a modular
functional program can be expanded to a monolithic non�modular one�

In the system of
HL
��� type inference is undecidable� In that of
Ler
�� syntactic restrictions on access
paths make some modules lack a principal type and complicate type inference
Ler
��� On the contrary� in
our system every module expression enjoys a principal type� and type inference is decidable�

We think the replacement of type generativity by abstraction at de�nition gives a less operational account
for type abstraction� which seems to be preserved� We conjecture that the representation independence proof
of
Ler
�� is adaptable to our system� It would give a more formal result to this respect�

We think our system helps in understanding modules from a type�theoretical point of view� The study
of module reductions in the system itself helps bringing the study of module systems back to the study of
typed lambda�calculi� Moreover� it seems to provide a �rm basis for its use in proofs systems�

In this respect� we are currently working on its adaptation to the Calculus of Constructions
CH���
CCF�
��� which should be quite easy �despite the fact there is no distinction between types and terms�

��

in order to have a modular proof language well�suited to proving modular programs� Since the Calculus
of Construction is both a programming language and a proof language� this would have the advantage to
provide a uni�ed framework� simpler than the Extended ML approach
San
�� KSTar� because of the inherent
complexity of the semantic of the SML module system� We also believe our system may help in designing a
safe and powerful module system for Elf�

In the same direction� it would be interesting to compare our module system with Bourbaki	s mathemat�
ical notion of theory
Bou���� which is for instance implemented in the IMPS
FGT
�� prover�

References

Bou��� Nicolas Bourbaki� El	ements de Math	ematique� Th	eorie des Ensembles� chapter IV� Hermann�
Paris� �
���

Car�
� L� Cardelli� Typeful programming� In E� J Neuhold and M� Paul� editors� Formal description of
programming concepts� pages ���!���� Springer�Verlag� �
�
�

CCF�
�� C� Cornes� J� Courant� J��C� Filli"atre� G� Huet� P� Manoury� C� Mu#noz� C� Murthy� C� Parent�
C� Paulin�Mohring� A� Sa�$bi� and B� Werner� The Coq Proof Assistant Reference Manual Version
����� Technical Report ����� INRIA� July �

��

CH��� T� Coquand and G� Huet� The calculus of constructions� Inf� Comp�� ���
�!���� �
���

CL
�� L� Cardelli and X� Leroy� Abstract types and the dot notation� In M� Broy and C� B� Jones�
editors� Proceedings IFIP TC
 working conference on programming concepts and methods� North
Holland� �

��

Coq��� Thierry Coquand� A meta�mathematical investigation of a Calculus of Constructions� Private
Communication� �
���

FGT
�� William M� Farmer� Joshua D� Guttman� and F� Javier Thayer� The IMPS User�s Manual� The
MITRE Corporation� �rst edition� version � edition� �

��

GLT�
� Jean�Yves Girard� Yves Lafont� and Paul Taylor� Proofs and Types� volume � of Cambridge Tracts
in Theoretical Computer Science� Cambridge University Press� �
�
�

H�
�� P� Hudak et al� Report on the Programming Language Haskell� A no�strict purely Functional
Language� ACM Sigplan Notices� ������ May �

��

HL
�� R� Harper and M� Lillibridge� A type�theoretic approach to higher�order modules with sharing�
In
�st Symposium on Principles of Programming Languages� pages ���!���� ACM Press� �

��

HMT��� R� Harper� R� Milner� and M� Tofte� A type discipline for program modules� In TAPSOFT
��
volume ��� of LNCS� pages ���!��
� Springer�Verlag� �
���

HMT
�� R� Harper� R� Milner� and M� Tofte� The de�nition of Standard ML� The MIT Press� �

��

HP
�� Robert Harper and Frank Pfenning� A module system for a programming language based on the
LF logical framework� Technical Report CMU�CS�
���
�� Carnegie Mellon University� Pittsburgh�
Pennsylvania� september �

��

Jon
�� Mark� P� Jones� An Introduction to Gofer� Available by www at http� www�cs�chalmers�se� �

��

Jon
�� Mark P� Jones� Using parameterized signatures to express modular structures� In
�rd Symposium
on Principles of Programming Languages� ACM Press� �

�� To appear�

KSTar� S� Kahrs� D� Sannella� and A� Tarlecki� The de�nition of Extended ML� a gentle introduction�
Theoretical Computer Science� To appear�

��

Ler
�� Xavier Leroy� Manifest types� modules� and separate compilation� In
�st symp� Principles of
Progr� Lang�� pages ��
!���� ACM Press� �

��

Ler
�� Xavier Leroy� Applicative functors and fully transparent higher�order modules� In

nd Sympo�
sium on Principles of Programming Languages� pages ���!���� ACM Press� �

��

Ler
�� Xavier Leroy� �

�� Private Communication�

MP��� J� C� Mitchell and G� D� Plotkin� Abstract types have existential type� ACM Trans� Prog� Lang�
Syst�� ���������!���� �
���

Pie
�� Benjamin C� Pierce� Bounded quanti�cation is undecidable� In ��th Symposium on Principles of
Programming Languages� pages ���!���� ACM Press� �

��

Rou
�� Fran%cois Rouaix� Alcool ��� Typage de la surcharge dans un langage fonctionnel� Th�ese� Universit�e
Paris VII� �

��

Rou
�� Fran%cois Rouaix� The Alcool
� report� Technical report� INRIA� �

�� Included in the distribu�
tion available at ftp�inria�fr�

San
�� Don Sannella� Formal program development in Extended ML for the working programmer� In
Proc� �rd BCS�FACS Workshop on Re�nement� pages

!���� Springer Workshops in Computing�
�

��

Tak
�� M� Takahashi� Parallel reductions in ��calculus� Technical report� Department of Information
Science� Tokyo Institute of Technology� �

�� Internal report�

Wir��� N� Wirth� Programming in Modula�
� Texts and Monographs in Computer Science� Springer�
Verlag� �
���

��

