
HAL Id: hal-02102026
https://hal-lara.archives-ouvertes.fr/hal-02102026

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proofs by annotations for a simple data-parallel language
Luc Bougé, David Cachera

To cite this version:
Luc Bougé, David Cachera. Proofs by annotations for a simple data-parallel language. [Research
Report] LIP RR-1995-08, Laboratoire de l’informatique du parallélisme. 1995, 2+19p. �hal-02102026�

https://hal-lara.archives-ouvertes.fr/hal-02102026
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Proofs by annotations for a simple

data�parallel language

Luc Boug�e� David Cachera March ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Proofs by annotations for a simple data�parallel language

Luc Boug�e� David Cachera

March ����

Abstract

We present a proof outline generation system for a simple data�parallel kernel language
called L� We show that proof outlines are equivalent to the sound and complete Hoare
logic de�ned for L in previous papers� Proof outlines for L are very similar to those for
usual scalar�like languages� In particular� they can be mechanically generated backwards
from the �nal post�assertion of the program� They appear thus as a valuable basis to
implement a validation assistance tool for data�parallel programming�

Keywords� Concurrent Programming� Specifying and Verifying and Reasoning about Programs�
Semantics of Programming Languages� Data�Parallel Languages� Proof System� Hoare Logic� Weak�
est Preconditions�

R�esum�e

Nous pr�esentons un syst�eme pour la g�en�eration de sch�emas de preuve par annotations
proof outlines pour un petit noyau de langage �a parall�elisme de donn�ees appel�e L�
Nous montrons que les sch�emas de preuve par annotations sont �equivalents �a la logique
de Hoare pour le langage L d�e�nie dans les articles pr�ec�edents� La manipulation des
annotations des programmes L est tr�es semblable �a celle des langages scalaires habituels
de type Pascal� En particulier� les annotations peuvent �etre g�en�er�ees automatiquement
�a partir de la post�condition du programme� Cette m�ethode constitue donc une base
formelle int�eressante pour l�impl�ementation d�outils d�aide �a la programmation data�
parall�ele�

Mots�cl�es� Programmation parall�ele� sp�eci�cation et validation de programmes� s�emantique des
langages de programmation� langages data�parall�eles� syst�eme de preuve� logique de Hoare� plus
faibles pr�econditions�

Proofs by annotations for a simple data�parallel language

Luc Boug�e�z� David Cachera�

April ��� ����

Abstract

We present a proof outline generation system for a simple data�parallel kernel language

called L� We show that proof outlines are equivalent to the sound and complete Hoare logic

de�ned for L in previous papers� Proof outlines for L are very similar to those for usual scalar�

like languages� In particular� they can be mechanically generated backwards from the �nal

post�assertion of the program� They appear thus as a valuable basis to implement a validation

assistance tool for data�parallel programming�

Contents

� A sound and complete proof system for a small data�parallel language �

��� The L language �

��� Denotational semantics of linear L�programs �

��� The �� proof system �

����� Assertion language �

����� Proof system �

��� Weakest preconditions calculus � 	

� A simple two�pass proof method �

��� First step
 syntactic labeling �

��� Second step
 proof outline ��

� A small example ��

� Equivalence of Proof Outlines and �
� ��

� Discussion ��

�LIP� ENS Lyon� �� All�ee d�Italie� F������ Lyon C�edex �	� France

zAuthors contact� Luc Boug�e �Luc�Bouge�lip�ens�lyon�fr

 This work has been partly supported by the French

CNRS Coordinated Research Program on Parallelism� Networks and Systems PRS

�

Introduction

Data�parallel languages have recently emerged as a major tool for large scale parallel programming�
An impressive e	ort is currently being put on developing e
cient compilers for High Performance
Fortran �HPF�� A data�parallel extension of C� primarily in
uenced by Thinking Machine�s C��
is currently under standardization� Our goal is to provide all these new developments with the
necessary semantic bases�

In previous papers� we have de�ned a simple� but representative� data�parallel kernel lan�
guage ���� and we have described a natural semantics for it� We have designed a sound proof
system based on an adaptation of Hoare logic ���� We have shown it gives rise to a Weakest
Precondition calculus ���� which can be used to prove its completeness for loop�free programs ����

Yet� a crucial step remains to be done for a practical application of these results� Quoting Apt
and Olderog�s seminal book ��� Section �����

Formal proofs are tedious to follow� We are not accustomed to following a line of
reasoning presented in small� formal steps ������

A possible strategy lies in the facts that �programs� are structured� The proof rules
follow the syntax of the program� so the structure of the program can be used to
structure the correctness proof� We can simply present the proof by giving a program
with assertions interleaved at appropriate places ������

This type of proof is more simple to study and analyse than the one we used so far�
Introduced by Gries and Owicki� it is called a Proof Outline�

The presentation of Apt and Olderog focuses on control�parallel programs� that is� sequential
processes composed with the k operator� In this paper� we show that the approach of Gries and
Owicki can be adapted as well to data�parallel L programs� giving birth to a notion of data�parallel
annotations�

For the sake of completeness� we brie
y recall in Section � the de�nition of the L language�
its logical two�part assertions� the associated Hoare logic and the Weakest Precondition calculus�
Section � describes the formation rules for the Data�Parallel Proof Outlines� In contrast with the
usual scalar case� they are generated in two passes� Pass � labels program instruction with their
respective extent of parallelism �to be called activity context below�� it works top�down� Pass �
generates the intermediate assertions starting from the �nal post�condition� it works bottom�up�
Section � describes an example� Section � proves our main result� which is the equivalence between
this notion of Data�Parallel Proof Outline and the Hoare logic for L�

� A sound and complete proof system for a small data�parallel language

An extensive presentation of the L language can be found in ���� For the sake of completeness� we
brie
y recall its denotational semantics as described in ����

��� The L language

In the data�parallel programming model� the basic objects are arrays with parallel access� Two kinds
of actions can be applied to these objects� component�wise operations� or global rearrangements � A
program is a sequential composition of such actions� Each action is associated with the set of array
indices at which it is applied� An index at which an action is applied is said to be active� Other

�

indices are said to be idle� The set of active indices is called the activity context or the extent of

parallelism� It can be seen as a boolean array where true denotes activity and false idleness�
The L language is designed as a common kernel of data�parallel languages like C� ���� Hy�

perC ��� or MPL ���� We do not consider the scalar part of these languages� mainly imported
from the C language� For the sake of simplicity� we consider a unique geometry of arrays� arrays
of dimension one� also called vectors � Then� all the variables of L are parallel� and all the objects
are vectors of scalars� with one component at each index� As a convention� the parallel objects are
denoted with uppercase letters� The component of parallel object X located at index u is denoted
by X j

u
� The legal expressions are usual pure expressions� i�e� expressions without side e	ects� The

value of a pure expression at index u only depends on the values of the variables components at
index u� The expressions are evaluated by applying operators component�wise to parallel values�
We do not detail the syntax and semantics of such expressions any further� We introduce a special
vector constant called This� The value of its component at each index u is the value u itself�
�u � Thisju � u� Note that This is a pure expression and that all constructs de�ned here are
deterministic� The L�instructions are the following�

Assignment� X ��E� At each active index u� component X ju is updated with the local value of
pure expression E�

Communication� get X from A into Y � At each active index u� pure expression A is evaluated to
an index v� then component Y j

u
is updated with the value of component X j

v
� We always

assume that v is a valid index�

Sequencing� S�T � On the termination of the last action of S� the execution of the actions of T
starts�

Conditioning� where B do S end� The active indices where pure boolean expression B evaluates
to false become idle during the execution of S� The other ones remain active� The initial
activity context is restored on the termination of S�

Iteration� loop B do S� The actions of S are repeatedly executed with the current extent of paral�
lelism� until pure boolean expression B evaluates to false at each currently active index� The
current extent of parallelism is not modi�ed�

In the following� we restrict ourselves to linear programs� i�e� programs without loops�

��� Denotational semantics of linear L�programs

We recall the semantics of L de�ned in ��� in the style of denotational semantics� by induction on
the syntax of L�

An environment � is a function from identi�ers to vector values� The set of environments is
denoted by Env� For convenience� we extend the environment functions to the parallel expressions�
��E� denotes the value obtained by evaluating parallel expression E in environment �� We do not
detail the internals of expressions any further� Note that ��This�j

u
� u by de�nition�

De�nition � �Pure expression� A parallel expression E is pure if for any index u� and any envi�

ronments � and ���

��X � ��X�ju � ���X�ju�� ���E�ju � ���E�ju��

�

Let � be an environment� X a vector variable and V a vector value� We denote by ��X � V �
the new environment �� where ���X� � V and ���Y � � ��Y � for all Y �� X �

A context c is a boolean vector� It speci�es the activity at each index� The set of contexts is
denoted by Ctx� We distinguish a particular context denoted by True where all components have
value true � For convenience� we de�ne the activity predicate Activec� Activec�u� � cj

u
�

A state is a pair made of an environment and a context� The set of states is denoted by State�
State � �Env � Ctx� � f�g where � denotes the unde�ned state�

The semantics ��S�� of a program S is a strict function from State to State� ��S����� � �� and
��S�� is extended to sets of states as usual�

Assignment� At each active index� the component of the parallel variable is updated with the new
value�

��X ��E����� c� � ���� c��

with �� � ��X � V � where V ju � ��E�ju if Activec�u�� and V ju � ��X�ju otherwise� The
activity context is preserved�

Communication� It acts very much as an assignment� except that the assigned value is the value
of another component�

��get X from A into Y ����� c� � ���� c�

with �� � ��Y � V � where V j
u
� ��X�j

��A�j
u

if Activec�u�� and V j
u
� ��Y �j

u
otherwise�

Sequencing� Sequential composition is functional composition�

��S�T ����� c� � ��T �����S����� c���

Conditioning� The denotation of a where construct is the denotation of its body with a new context�
The new context is the conjunction of the previous one with the value of the pure conditioning
expression B�

��where B do S����� c� � ���� c�

with ��S����� c� ��B�� � ���� c���

��� The �� proof system

����� Assertion language

We de�ne an assertion language for the correctness of L programs in the lines of ���� Such a
speci�cation is denoted by a formula fPg S fQg where S is the program text� and P and Q are
two logical assertions on the variables of S� This formula means that� if precondition P is satis�ed
in the initial state of program S� and if S terminates� then postcondition Q is satis�ed in the �nal
state� As we consider here only linear programs� S will always terminate� A proof system gives a
formal method to derive such speci�cation formulae by syntax�directed induction on programs�

We recall below the proof system described in ���� As in the usual sequential case� the assertion
language must be powerful enough to express properties on variable values� Moreover� it has to
handle the evolution of the activity context along the execution� An assertion shall thus be broken
up into two parts� fP�Cg� where P is a predicate on program variables� and C a pure boolean
vector expression� The intuition is that the current activity context is exactly the value of C in the
current state� as expressed in the de�nition below�

�

De�nition 	 �Satis�ability� Let ��� c� be a state� and fP�Cg an assertion� We say that ��� c�
satis�es the assertion fP�Cg� denoted by ��� c� j� fP�Cg� if � j� P and ��C� � c� The set of states

satisfying fP�Cg is denoted by ��fP�Cg��� When no confusion may arise� we identify fP�Cg and

��fP�Cg���

De�nition � �Assertion implication� Let fP�Cg and fQ�Dg be two assertions� We say that fP�Cg
implies fQ�Dg� and write fP�Cg � fQ�Dg� i�

�P � Q� and �P � �u � �Cj
u
� Dj

u
�

Our assertion language manipulates two kinds of variables� scalar variables and vector variables�
As a convention� scalar variables are denoted with a lowercase initial letter� and vector ones with an
uppercase one� We have a similar distinction on arithmetic and logical expressions� As usual� scalar
�resp� vector� expressions are recursively de�ned with usual arithmetic and logical connectives�
Basic scalar �resp� vector� expressions are scalar �resp�vector� variables and constants� Vector
expression can be subscripted� If the subscript expression is a scalar expression� then we have
a scalar expression� Otherwise� if the subscript expression is a vector expression� then we have
another vector expression� The meaning of a vector expression is obtained by component�wise
evaluation� We introduce a scalar conditional expression with a C�like notation c�e � f � Its value
is the value of expression e if c is true� and f otherwise� Similarly� the value of a conditional vector
expression� denoted by C�E � F � is a vector whose component at index u is Ej

u
if Cj

u
is true� and

F ju otherwise�
Predicates are usual �rst order formulae� They are recursively de�ned on boolean scalar expres�

sions with logical connectives and existential and universal quanti�ers on scalar variables � Note
that we do not consider quanti�cation on vector variables�

We introduce a substitution mechanism for vector variables� Let P be a predicate or any vector
expression� X a vector variable� and E a vector expression� P �E�X � denotes the predicate� or
expression� obtained by substituting all the occurrences of X in P with E� Note that all vector
variables are free by the de�nition of our assertion language� The usual Substitution Lemma ���
extends to this new setting�

Lemma � �Substitution lemma� For every predicate on vector variables P � vector expression E

and environment ��
� j� P �E�X � i� ��X � ��E�� j� P

We can de�ne the validity of a speci�cation of a L program with respect to its denotational seman�
tics�

De�nition
 �Speci�cation validity� Let S be a L program� fP�Cg and fQ�Dg two assertions�

We say that speci�cation fP�Cg S fQ�Dg is valid� denoted by j� fP�Cg S fQ�Dg� if for all states
��� c�

���� c� j� fP�Cg�� ���S����� c� j� fQ�Dg��

����	 Proof system

We recall on Figure � the proof system de�ned in ���� This system is a restricted proof system� in
the sense that a number of rules only manipulates a certain kind of speci�cation formulae� precisely
these formulae fP�Cg S fQ�Dg such that the boolean vector expression D describing the �nal
activity context may not be modi�ed by the program S� More formally� using the notations of ����
we de�ne the following sets of variables�

�

Assignment Rule
X �	 Var�D�

fQ��D�E � X��X �� Dg X ��E fQ�Dg

Communication Rule
Y �	 Var�D�

fQ��D�X jA � Y ��Y �� Dg get X from A into Y fQ�Dg

Sequencing Rule
fP�Cg S fR�Eg� fR�Eg T fQ�Dg

fP�Cg S�T fQ�Dg

Conditioning Rule
fP�C �Bg S fQ�Dg� Change�S�
Var�C� � �

fP�Cg where B do S end fQ�Cg

Consequence Rule
fP�Cg � fP �� C�g� fP �� C�g S fQ�� D�g� fQ�� D�g � fQ�Dg

fP�Cg S fQ�Dg

Substitution Rule
fP�Cg S fQ�Dg� Tmp �	 V ar�S��Var�Q�� Var�D�

fP �E�Tmp�� C�E�Tmp�g S fQ�Dg

Figure �� The �� proof system for linear�L

De�nition � Let E be an expression� Var�E� is the set of all variables appearing in E� Expression
E may only depend on the values of these variables� We extend this de�nition to a L�program S�

Var�S� is the set of all variables appearing in S�
Let S be a L�program� Change�S� is the set of program variables which appear on the left�

hand side of an assignment statement or as the target of a communication statement� Only these

variables may be modi�ed by executing S�

A su
cient condition to guarantee the absence of interference between S and D is thus Change�S�

Var�D� � ��

The proof system contains a particular rule� called the Substitution Rule� This rule is used to
handle conditioning constructs where the variables appearing in the conditioning expression may be
modi�ed by the body of the construct� More formally� if we consider the program where B do S end
with Var�B�
Change�S� �� �� the value ofB on exiting S may be di	erent from its value on entering
this body� This fact leads us to introduce hidden variables � i�e� variables that do not appear in
programs� context expressions or postconditions� These variables are used to store temporarily
the initial value of conditioning expressions and� as they do not appear in programs� these value
remains unchanged during the execution of the body� As hidden variables are in a way �new�
variables� there is no reason why they should appear in speci�cations� The role of the Substitution
Rule is namely to get rid of them eventually�

If a speci�cation formula fP�Cg S fQ�Dg is derivable in the proof system� then we write
�� fP�Cg S fQ�Dg�

Theorem � �Soundness of �� ��
� The ��
proof system is sound� If �� fP�Cg S fQ�Dg� then

j� fP�Cg S fQ�Dg�

�

Construct Conditions Weakest Precondition

Assignment X �	 V ar�D�
WP�X �� E� fQ�Dg�

� fQ��D�E � X��X ��Dg

Communication Y �	 V ar�D�
WP�get X from A into Y � fQ�Dg�

� fQ��D�X j
A
� Y ��Y �� Dg

Sequencing �
WP�S��S�� fQ�Dg�

� WP�S��WP�S�� fQ�Dg��

Conditioning ���

V ar�D�
 Change�S� � �

V ar�B�
 Change�S� � �

WP�S� fQ�D� Bg� � fP�Cg

WP�where B do S end� fQ�Dg�

� fP�Dg

Conditioning ���

V ar�D�
 Change�S� � �

Tmp �	 Var�S�� Var�Q� �Var�D�

WP�S� fQ�D � Tmpg� � fP�Cg

WP�where B do S end� fQ�Dg�

� fP �B�Tmp�� Dg

Figure �� De�nability properties of weakest preconditions for linear L�programs

��� Weakest preconditions calculus

A weakest preconditions calculus has been presented in ���� and has been used to prove the com�
pleteness of the �� proof system in ���� We brie
y recall here some useful de�nitions and results�

De�nition � �Weakest preconditions� Let E be a subset of State� S a linear L�program� We de�ne

the weakest preconditions as

WP�S� E� � fs 	 State j ��S���s� 	 Eg

Lemma 	 �Consequence Lemma� j� fP�Cg S fQ�Dg i� ��fP�Cg��
WP�S� fQ�Dg��

The weakest preconditions de�ned above are sets of states� As such� they cannot be explicitly
manipulated in the proof system� We have to prove that these particular sets of states can actually
be described by suitable assertions� This is the de�nability problem� De�nability results have been
proved in ���� They are listed up on Figure �� We add here a general result on WP that will help
us in the next section� if we use the De�nability Properties to construct the assertion de�ning a
weakest precondition� the variables appearing in this assertion already appear in the program� the
postcondition or the context expression� In other words� and more intuitively� computing a WP

doesn�t generate �new� variables� This fact is expressed in the following proposition�

�

Proposition � Let Z be a variable� S a program� Q an assertion and D a boolean expression such

that Var�D�
 Change�S� � �� If

Z �	 Var�S��Var�Q��Var�D��

then there exists some assertion fP�Cg such that

WP�S� fQ�Dg� � fP�Cg�

and

Z �	 Var�P � � Var�C��

Proof

This result is a consequence of the de�nability properties� and is established by induction on
the structure of S�

� If S � X ��E� WP�S� fQ�Dg� � fQ��D�E � X��X �� Dg� As Z �	 fXg � Var�E� �
Var�Q� �Var�D�� Z doesn�t appear in the weakest precondition�

� The case of communication is similar to that of assignment�

� If S � S��S�� then by induction hypothesis Z doesn�t appear in the assertion
WP�S�� fQ�Dg�� AsWP�S�� fQ�Dg� is used as postcondition for S�� a second use of the
induction hypothesis for S� shows that Z doesn�t appear in the assertionWP�S� fQ�Dg��

� If S � where B do T end� we have two cases to consider�

� If Var�B�
Change�S� � �� we apply the �rst de�nability property for conditioning�
Let us assume that WP�T� fQ�D � Bg� � fP�Cg� We have Z �	 Var�S�� so Z �	
Var�B�� The induction hypothesis thus yields Z �	 Var�P �� so Z doesn�t appear in
fP�Dg� which is the precondition for S�

� If Var�B�
Change�S� �� �� we apply the second de�nability property for condition�
ing� Let Tmp be a variable not in Var�T � � Var�Q� � Var�D�� and let fP�Cg be
WP�T� fQ�D� Tmpg�� If Z � Tmp� then� as WP�S� fQ�Dg� � fP �B�Tmp�� Dg�
Z is substituted by B in the weakest precondition� so it doesn�t appear in it any
more� If Z �� Tmp� then by induction hypothesis Z �	 Var�P � and Z �	 Var�B�� so
Z �	 Var�P �B�Tmp���

Proof of Proposition � is done�

As shown in ���� the use of WP calculus is the key to establish the completeness of the �� proof
system�

Theorem 	 �Completeness of �� ��
� Let fP�Cg S fQ�Dg be a speci�cation� If

j� fP�Cg S fQ�Dg

then

�� fP�Cg S fQ�Dg

�

� A simple two�pass proof method

We present here a simple proof method that allows� after a �rst step that slightly transforms the
program� to handle it as an usual scalar program� The �rst step consists in a labeling of the program
that expresses the depth of conditioning constructs� In other words� a subprogram labeled by i is
executed within the scope of i where constructs� This labeling follows the syntax of the program�
labels are increased on entering the body of a new conditioning construct� Context expressions are
saved here in a series of auxiliary variables� This allows us to alleviate any restriction on context
expressions of conditioning constructs�

The second step consists in a proof method similar to that used in the scalar case� It is presented
here in the form of a proof outline� As introduced by Gries and Owicki in ����� this form gives a
more convenient presentation of the proof� interleaving assertions and program constructs ����

In this section� we give the formal description of the two steps� and then prove the equivalence
between this proof method and the �� proof system�

��� First step� syntactic labeling

In this step� we associate to each subprogram of the considered program an integer label that counts
the number of nesting where constructs� Counting starts at for the entire program� Consider for
instance the program

where X�� do
X��X���
where X�� do

X��X���
end end

We want to get the following labeling�

��� where X�� do
��� X��X���
��� where X�� do

��� X��X��
end

end

In order to store context expressions� we distinguish particular auxiliary variables that do not
appear in programs�

De�nition � Variables fTmpi j i 	 Ng are such that for any program S� and for any index i�

Tmpi �	 Var�S�� This set is the set of auxiliary variables�

The conditioning construct can be seen as a stack mechanism� entering a where construct is the
same as pushing a value on a context stack� while exiting this construct corresponds to a �pop��
The label is namely the height of the stack� At a given point� the current context is corresponding
to the conjunction of all the stack�s values� Each auxiliary variable is used to store one cell of
the context stack� Thanks to this storage� the variables appearing in context expressions may be
modi�ed� We thus can alleviate restrictions on context expressions of conditioning constructs�

For a subprogram at depth i� the current context is the current value of Tmp�� � � ��Tmpi� To
get a clearer presentation of this fact� we add annotations of the form �Tmpi � B� to each where
construct� The previous example is recast into

�

��� where X�� do 	Tmp� � X �

��� X��X���
��� where X�� do 	Tmp� � X � �

��� X��X��
end

end

We now give a formal de�nition of program labeling� It is made by induction on the program�s
syntactic structure� and expressed by the rules listed below� ��S� � being the labeling of program
S�

�� X �� E � i� � �i� X �� E

�� get X from A into Y � i� � �i� get X from A into Y

�� S � T � i� � ��S� i� � ��T� i�

�� where B do S end � i� � �i� where B do �Tmpi�� � B�

��S� i! ��

end

��� Second step� proof outline

A proof outline is a visual and convenient way to present a proof with assertions interleaved in the
text of the program at appropriate places ���� The structure of the proof follows the structure of
the program� thus giving a more readable presentation�

As we use labeled programs� and auxiliary variables to store contexts� we know at each place in
the program the expression denoting the current context� We then can drop context expressions out
of assertions and proceed exactly the same way as in the scalar case� with backward substitutions�
The only di	erences are that expressions in substitutions are conditioned by a conjunction of
Tmpk and that the data�parallel where construct adds a new substitution� The rules for inserting
assertions in proof outlines are given below� Contiguity between two assertions refers to the use of
the consequence rule� If S is a labeled subprogram� we denote by S� a proof outline obtained from
S by insertion of assertions� and by Lab�S� the label associated to S�

Notice that� as labeling starts at for the entire program� Tmp� thus denotes the initial context
in which S is executed�

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�E � X�X �g �i� X �� E fQg

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�X jA � Y�Y �g �i� get X from A into Y fQg

fPg S� fRg fRg T � fQg �j � Lab�S��Tmpj �	 Var�R��Var�Q�

fPg S��fRg T � fQg

�

P � P � fP �g S� fQ�g Q� � Q �j � Lab�S��Tmpj �	 Var�Q�� Var�Q��

fPgfP �g S� fQ�gfQg

fPg S� fQg Lab�S� � i! � �j � i�Tmpj �	 Var�Q�

fP �B�Tmpi���g �i� where B do �Tmpi�� � B�
fPg
S�

fQg
endfQg

fPg S� fQg

fPg S�� fQg

where S�� is obtained from S� by deleting any assertion�

Let us explain intuitively the need of restrictions of the form ��j � i�Tmpj �	 Var�Q��� In
the rule for the conditioning construct� we substitute Tmpi�� by B� We thus need that Tmpi�� �	
Var�Q� to respect the conditions of the Substitution Rule� But� as the postcondition �Q� is the
same for S and for where B do S end� we need that condition to be satis�ed for every nesting depth
greater than Lab�S��

� A small example

We go back in this section to our previous example� We want to prove the two following speci�ca�
tions�

fX ju � ��Trueg
where X�� do

X��X�� �
where X�� do

X��X��
end

end
fX j

u
� ��Trueg

fX ju � ��Trueg
where X�� do

X��X�� �
where X�� do

X��X��
end

end
fX j

u
� ��Trueg

The proofs are simply done by establishing the following proof outline � the result of the �rst
step has already been given as example in the previous section�

First proof f�Tmp� �X � � �Tmp� �X � �X ! � � X� � ���Tmp� �X � �X ! � � X� ! � �
�Tmp� �X � �X ! � � X��j

u
� �g

��� where X�� do 	Tmp� � X �

��

f�Tmp� � Tmp� � �Tmp� � Tmp��X ! � � X� � ���Tmp� � Tmp��X ! � � X� ! � �
�Tmp� � Tmp��X ! � � X��j

u
� �g

��� X��X�� �

f�Tmp� � Tmp� �X � ��X ! � � X�ju � �g

��� where X�� do 	Tmp� � X � �

f�Tmp� � Tmp� � Tmp��X ! � � X�ju � �g

��� X��X��

fX ju � �g

end

fX j
u
� �g

end

fX j
u
� �g

If we denote by P the �rst assertion of this proof outline� we only have to prove that

X j
u
� � � Tmp� � True � P�

In other words� we prove that
X ju � �� P �True�Tmp��

The assertion P �True�Tmp�� is equivalent to

f�X � � �X � �X ! ��X� � ���X � �X ! ��X� ! ���X � �X ! ��X��j
u
� �g

Let us consider an index u such that X j
u
� �� Then� the boolean expression �X � �j

u
is true�

As X ! �ju � �� ��X � �X ! � � X� � ��ju is also true�
Conditional expression

�X � � �X � �X ! � � X� � ���X � �X ! � � X� ! � � �X � �X ! � � X��ju

thus simpli�es into �X � �X ! � � X� ! �ju� which in turn simpli�es into X ! �! �ju�
Assertion P �True�Tmp�� thus simpli�es into X ! � ! �j

u
� �� which is true�

Second proof� As no simpli�cation using the value of X occurs in the �rst proof outline� the
second is almost the same� we just replace the value � by the value �� Then� if we denote by P �

the assertion obtained by substituting � by � in P � we just have to check that

X j
u
� �� P ��True�Tmp��

��

Let us consider an index u such that X ju � �� Then� the boolean expression �X � �ju is true�
But this time� as X ! �j

u
� �� ��X � �X ! � � X� � ��j

u
is false�

Conditional expression

�X � � �X � �X ! � � X� � ���X � �X ! � � X� ! � � �X � �X ! � � X��ju

thus simpli�es into �X � �X ! � � X�j
u
� which in turn simpli�es into X ! �j

u
�

Assertion P ��True�Tmp�� thus simpli�es into X ! �j
u
� �� which is true�

� Equivalence of Proof Outlines and �
�

We now want to prove that the method de�ned above is equivalent to the �� proof system� More
precisely� we want to prove the following theorem�

Theorem � Let fPg � �S fQg be a formula such that for each j � � Tmpj �	 Var�Q��

fPg S� fQgis a proof outline for S

m

�� fP�Tmp�g S fQ�Tmp�g

We actually prove the more general following fact�

Proposition 	 Let S be a subprogram labeled by i� and P and Q assertions such that �j � i�Tmpj �	
Var�Q�� Then

fPg S� fQg

is a proof outline for S if and only if

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig

We begin with the easiest part of the proof� if there exists a proof outline� then the desired
speci�cation is derivable in ���

Proof

Let S be a subprogram labeled with i� and fPg S� fQg a proof outline for S� The proof is
by induction on the length of the construction made to obtain the proof outline� We have six
cases to consider� corresponding respectively to each derivation rule for proof outlines�

� If the last rule applied was

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�E � X�X �g �i� X �� E fQg
�

then� since X �	 fTmpi j i 	 Ng� we have �
� fP�Tmp� � � � ��Tmpig S fQ�Tmp� � � � ��

Tmpig�

� The second case� dealing with the communication statement� is handled exactly the same
way�

��

� If the last rule applied was

P � P � fP �g S� fQ�g Q� � Q �j � Lab�S��Tmpj �	 Var�Q� �Var�Q��

fPgfP �g S� fQ�gfQg
�

then by induction hypothesis we have �� fP ��Tmp� � � � �� Tmpig S fQ��Tmp� � � � � �
Tmpig� so the consequence rule of �� applies and gives the desired result�

� If the last rule applied was the rule for sequential composition� then there exist S� and S�
such that S � S��S�� and an assertionR such that we have the proof outlines fPg S�

� fRg
and fRg S�

� fQg� Furthermore� we know that S� and S� are labeled by the same value i�
By the rule for sequential composition in proof outlines� we have �j � i�Tmpj �	 Var R�
By induction hypothesis� we thus have

�� fP�Tmp� � � � �� Tmpig S
�
� fR�Tmp� � � � �� Tmpig

and
�� fR�Tmp� � � � �� Tmpig S

�
� fQ�Tmp� � � � �� Tmpig�

Then� the Sequencing Rule of �� applies and yields

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

� If the last used rule was

fP �g T � fQg Lab�T � � i! � �j � i�Tmpj �	 Var�Q�

fP ��B�Tmpi���g �i� where B do �Tmpi�� � B�
T �

endfQg

with P � P ��B�Tmpi���� We have �j � i! ��Tmpj �	 Var�Q�� so by induction hypoth�
esis

�� fP ��Tmp� � � � �� Tmpi � Tmpi��g T fQ�Tmp� � � � �� Tmpi � Tmpi��g

As fP � � Tmpi�� � B�Tmp� � � � �� Tmpi � Bg � fP ��Tmp� � � � �� Tmpi � Tmpi��g�
the Consequence Rule yields

�� fP � � Tmpi�� � B�Tmp� � � � �� Tmpi �Bg T fQ�Tmp� � � � �� Tmpi � Tmpi��g�

The where Rule applies and yields

�� fP � � Tmpi�� � B�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

Finally� using the Substitution Rule with B�Tmpi�� yields

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

� The last case �elimination of assertions in the proof outline	 is straightforward�

The proof of the �rst part of Proposition
 is done�

We now want to prove second part of Proposition �� The proof uses the weakest preconditions
and needs the following auxiliary result�

��

Proposition � Let Q be an assertion such that Tmpi�� �	 Var�Q�� If

WP�S� fQ�Tmp� � � � �� Tmpi��g� � fP�Tmp� � � � �� Tmpi��g�

then

WP�where B do S end� fQ�Tmp� � � � �� Tmpig� � fP �B�Tmpi����Tmp� � � � �� Tmpig�

Proof

Let ��� c� 	 WP�where B do S end� fQ�Tmp� � � � � � Tmpig�� Let ���� c� be
��where B do S end����� c�� We have ��S����� c � ��B�� � ���� c � ��B��� and ���� c� j�
fQ�Tmp� � � � � � Tmpig by the de�nition of WP � Let �� � ��Tmpi�� � ��B��� and
��
� � ���Tmpi�� � ��B��� Since Tmpi�� is an auxiliary variable� we have Tmpi�� �	 Var�S��

and

��S������ c� ��B�� � ���
�� c� ��B���

and� as Tmpi�� �	 Var�Q��

���
�� c� j� fQ�Tmp� � � � �� Tmpig�

Furthermore� ��
��Tmpi��� � ��B�� so

���
�� c � ��B�� j� fQ�Tmp� � � � �� Tmpi��g�

We can deduce that ���� c� ��B�� j� fP�Tmp� � � � �� Tmpi��g� Thus

� j� P �B�Tmp i����

As Tmpi is an auxiliary variable� we have �i�Tmpi �	 Var�S�� so ���Tmp� � � � �� Tmpi� � c

implies
��Tmp� � � � �� Tmpi� � c�

Conversely� let ��� c� 	
��
fP �B�Tmpi����Tmp� � � � �� Tmpig

��
� and �� � ��Tmpi�� � ��B���

We have
��where B do S end����� c� � ���� c��

with ��S����� c� ��B�� � ���� c� ��B���

If ��
� � ���Tmpi�� � ��B��� we also have

��where B do S end������ c� � ���
�� c��

with ��S������ c� ��B�� � ���
�� c� ��B���

As ��� c� 	
��
fP �B�Tmpi����Tmp� � � � �� Tmpig

��
� �� j� P � and as Tmpi�� �	 Var�B�� we

have ���Tmp� � � � �� Tmpi��� � c � ��B�� By hypothesis� we have thus

���
�� c � ��B�� j� fQ�Tmp� � � � �� Tmpi��g�

As Tmpi�� �	 Var�Q�� we conclude that

�� j� Q

Furthermore� �i�Tmpi �	 Var�S�� so

���Tmp� � � � �� Tmpi� � ��Tmp� � � � �� Tmpi� � c�

This concludes the proof of proposition ��

��

We can now prove the second part of Proposition ��

Proof

Let us assume that

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

We want to �nd a proof outline of the form

fPg S� fQg�

We construct this outline by induction on the structure of S�

� If S � X ��E� by the soundness of the proof system� we have

j� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

By the de�nition of WP � we have

fP�Tmp� � � � �� Tmpig �WP�S� fQ�Tmp� � � � �� Tmpig�

where WP�S� fQ�Tmp�� � � ��Tmpig� � fQ�Tmp�� � � ��Tmpi�E � X�X ��Tmp�� � � ��
Tmpig� Then

fPg
fQ�Tmp� � � � �� Tmpi�E � X�X �g

S
fQg

is a proof outline for S�

� The case of communication statement is handled the same way�

� If S � S��S�� Let

fP��Tmp� � � � �� Tmpig � WP�S�� fQ�Tmp� � � � �� Tmpig�

and
fP��Tmp� � � � �� Tmpig � WP�S�� fP��Tmp� � � � �� Tmpig��

As �j � i�Tmpj �	 Var�S��Var�Q�� Lemma � guarantees that �j � i�Tmpj �	 Var�P���
The premises of the rule for sequential composition are thus satis�ed� By the soundness
of ��� we have j� fP�Tmp�� � � ��Tmpig S fQ�Tmp�� � � ��Tmpig� so by the de�nition
of WP �

P � P��

Then
fPg
fP�g

S�
fP�g

S�
fQg

is a proof outline for S�

��

� Consider now the case when S � where B do T end� The weakest preconditions calculus
enables us to construct a proof

�� fP ��Tmp� � � � �� Tmpi��g T fQ�Tmp� � � � �� Tmpi��g�

where
fP ��Tmp� � � � � � Tmpi��g � WP�T� fQ�Tmp� � � � �� Tmpi��g��

By induction hypothesis�
fP �g

T �

fQg

is a proof outline for T �

But Proposition � yields

WP�S� fQ�Tmp� � � � �� Tmpig� � fP ��B�Tmpi����Tmp� � � � �� Tmpig�

Then� by the soundness of the proof system� we have

j� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

We conclude that P � P ��B�Tmpi��� and that

fPg
fP ��B�Tmpi���g

where B do �Tmpi�� � B�
fP �g
T �

fQg
end

fQg

is a proof outline for S�

� Discussion

We have de�ned a notion of Proof Outline for a simple data�parallel kernel language� Due to
the two�part nature of the program assertions� it works in two passes� Pass � labels labels each
instruction with its respective extent of parallelism top�down� Pass � generates the intermediate
annotations bottom�up� starting from the �nal post�condition�

Pass � amounts to a simple rewriting� It could easily be handled by some advanced text
editor� The rewriting process is slightly more complex due to the possible con
ict between the
vector boolean expressions denoting the current extent of parallelism and the assignments� Fresh
temporary variables Tmpi have to be introduced to save the activity contexts� Pass � is very
similar to a Proof Annotation generating system for usual� scalar Pascal�like languages� The only
di	erence lies in the slightly more complex substitution mechanism�

This similarity con�rms that validating data�parallel programs is of the same level of complexity
as validating scalar programs� This is in strong contrast with control�parallel CSP�like programs�

��

In this respect� the data�parallel programming model appears as a suitable basis for large�scale
parallel software engineering�

A number of additional remarks can be made�

� Our equivalence result could probably be adapted to other shapes of assertions� It could be
interesting to consider for instance the one�part assertions of Le Guyadec and Virot ��� where
the current extent of parallelism is kept as the value of a special � symbol�

� Our two�pass annotation method could easily be carried out mechanically and integrated in
some design"validation assistance tool� The main di
culty lies in keeping the assertions sim�
ple enough to be understood �and corrected#� by a human reader� The complex substitution
mechanism generates nested conditional expressions which should be simpli�ed on the
y by
some additional tool�

� Consider a conditioned statement �i� where B do S� If the conditioned body S does not
interfere with the expression denoting the current extent of parallelism� there is no need to
introduce any auxiliary Tmpi�� variable� One can as well use the conditioning expression
B directly� This will probably result in simpler assertions� Such an optimization should
de�nitely be considered in designing any real assistance tool�

� Proof outlines can also be used for automatic program documentation� An interesting appli�
cation would be to generate annotations at certain �hot spots� in the program only� focusing
on a set of crucial program variables� This could probably serve as a basis for an interactive
tool where the user could build at the same time both the program and a �partial� proof of it�

References

��� K�R� Apt and E��R� Olderog� Veri�cation of Sequential and Concurrent Programs� Text and
Monographs in Computer Science� Springer Verlag� ��� �

��� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� On the expressivity of a weakest precon�
ditions calculus for a simple data�parallel programming language� In ConPar���	VAPP VI�
Linz� Austria� September �����

��� L� Boug�e and D� Cachera� On the completeness of a proof system for a simple data�parallel
programming language� Research Report ��$��� LIP ENS Lyon� France� December �����

��� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� A proof system for a simple data�parallel
programming language� In C� Girault� editor� Proc� of Applications in Parallel and Distributed

Computing� Caracas� Venezuela� April ����� IFIP WG � ��� North�Holland�

��� L� Boug�e and J��L� Levaire� Control structures for data�parallel SIMD languages� semantics
and implementation� Future Generation Computing Systems� �����$���� �����

��� Y� Le Guyadec� B� Virot� Axiomatic semantics of conditioning constructs and non�local control
transfers in data�parallel languages� Research Report ��$��� LIFO� Orl�eans� France� �����

��� MasPar Computer Corporation� Sunnyvale CA� Maspar Parallel Application Language Refer�

ence Manual� ��� �

��

��� N� Paris� HyperC speci�cation document� Technical Report ��$�� HyperParallel Technologies�
�����

��� Thinking Machine Corporation� Cambridge MA� C� programming guide� ��� �

��

