Luc Boug
email: luc.bouge@lip.ens-lyon.fr

David Cachera March

Proofs by annotations for a simple data-parallel language

Keywords: Concurrent Programming, Specifying and Verifying and Reasoning about Programs, Semantics of Programming Languages, Data-Parallel Languages, Proof System, Hoare Logic, Weakest Preconditions Programmation parall ele, sp eci cation et validation de programmes, s emantique des langages de programmation, langages data-parall eles, syst eme semantics of linear L-programs 1.3.2 Proof system 1.4 Weakest preconditions calculus A simple two-pass proof method 2.1 First step: syntactic labeling A small example 4 Equivalence of Proof Outlines and `

We present a proof outline generation system for a simple data-parallel kernel language called L. W e show that proof outlines are equivalent to the sound and complete Hoare logic de ned for L in previous papers. Proof outlines for L are very similar to those for usual scalar-like languages. In particular, they can be mechanically generated backwards from the nal post-assertion of the program. They appear thus as a valuable basis to implement a v alidation assistance tool for data-parallel programming.

Introduction

Data-parallel languages have recently emerged as a major tool for large scale parallel programming.

An impressive e ort is currently being put on developing e cient compilers for High Performance Fortran (HPF). A data-parallel extension of C, primarily in uenced by Thinking Machine's C*, is currently under standardization. Our goal is to provide all these new developments with the necessary semantic bases.

In previous papers, we h a ve de ned a simple, but representative, data-parallel kernel language 5], and we h a ve described a natural semantics for it. We h a ve designed a sound proof system based on an adaptation of Hoare logic 4]. We h a ve shown it gives rise to a Weakest Precondition calculus 2], which can be used to prove its completeness for loop-free programs 3].

Yet, a crucial step remains to be done for a practical application of these results. Quoting Apt and Olderog's seminal book 1, Section 3.4]:

Formal proofs are tedious to follow. We are not accustomed to following a line of reasoning presented in small, formal steps ...].

A possible strategy lies in the facts that programs] are structured. The proof rules follow the syntax of the program, so the structure of the program can be used to structure the correctness proof. We can simply present the proof by giving a program with assertions interleaved at appropriate places ...].

This type of proof is more simple to study and analyse than the one we used so far. Introduced by Gries and Owicki, it is called a Proof Outline. The presentation of Apt and Olderog focuses on control-parallel programs, that is, sequential processes composed with the k operator. In this paper, we s h o w that the approach of Gries and Owicki can be adapted as well to data-parallel L programs, giving birth to a notion of data-parallel annotations.

For the sake of completeness, we brie y recall in Section 1 the de nition of the L language, its logical two-part assertions, the associated Hoare logic and the Weakest Precondition calculus. Section 2 describes the formation rules for the Data-Parallel Proof Outlines. In contrast with the usual scalar case, they are generated in two passes. Pass 1 labels program instruction with their respective extent of parallelism (to be called activity context below) it works top-down. Pass 2 generates the intermediate assertions starting from the nal post-condition it works bottom-up. Section 3 describes an example. Section 4 proves our main result, which is the equivalence between this notion of Data-Parallel Proof Outline and the Hoare logic for L.

1 A sound and complete proof system for a small data-parallel language An extensive presentation of the L language can be found in 5]. For the sake of completeness, we brie y recall its denotational semantics as described in 2].

The L language

In the data-parallel programming model, the basic objects are arrays with parallel access. Two kinds of actions can be applied to these objects: component-wise operations, or global rearrangements. A program is a sequential composition of such actions. Each action is associated with the set of array indices at which it is applied. An index at which an action is applied is said to be active. Other indices are said to be idle. The set of active indices is called the activity context or the extent of parallelism. It can be seen as a boolean array w h e r e true denotes activity and false idleness.

The L language is designed as a common kernel of data-parallel languages like C 9], Hy-perC 8] o r MPL 7]. We do not consider the scalar part of these languages, mainly imported from the C language. For the sake of simplicity, w e consider a unique geometry of arrays: arrays of dimension one, also called vectors. Then, all the variables of L are parallel, and all the objects are vectors of scalars, with one component a t e a c h index. As a convention, the parallel objects are denoted with uppercase letters. The component of parallel object X located at index u is denoted by Xj u . The legal expressions are usual pure expressions, i.e. expressions without side e ects. The value of a pure expression at index u only depends on the values of the variables components at index u. The expressions are evaluated by applying operators component-wise to parallel values.

We do not detail the syntax and semantics of such expressions any further. We i n troduce a special vector constant called Th i s . The value of its component a t e a c h index u is the value u itself: 8u : Thisj u = u. Note that Th i sis a pure expression and that all constructs de ned here are deterministic. The L-instructions are the following.

Assignment: X:=E. A t e a c h active index u, component Xj u is updated with the local value of pure expression E. Communication: get X from A into Y . A t e a c h a c t i v e index u, pure expression A is evaluated to an index v, then component Y j u is updated with the value of component Xj v . W e always assume that v is a valid index. Sequencing: S T. On the termination of the last action of S, the execution of the actions of T starts.

Conditioning: where B do S end. The active indices where pure boolean expression B evaluates to false become idle during the execution of S. The other ones remain active. The initial activity c o n text is restored on the termination of S. Iteration: loop B do S. The actions of S are repeatedly executed with the current extent of parallelism, until pure boolean expression B evaluates to false at each currently active index. The current extent of parallelism is not modi ed. In the following, we restrict ourselves to linear programs, i.e. programs without loops.

Denotational semantics of linear L-programs

We recall the semantics of L de ned in 2] in the style of denotational semantics, by induction on the syntax of L.

An environment is a function from identi ers to vector values. The set of environments is denoted by Env. F or convenience, we extend the environment functions to the parallel expressions: (E) denotes the value obtained by e v aluating parallel expression E in environment . W e do not detail the internals of expressions any further. Note that (This)j u = u by de nition.

De nition 1 (Pure expression) A p arallel expression E is pure if for any index u, and any environments and 0 , (8X : (X)j u = 0 (X)j u)) ((E)j u = 0 (E)j u):

Let be an environment, X a v ector variable and V a v ector value. We denote by X V] the new environment 0 where 0 (X) = V and 0 (Y) = (Y) for all Y 6 = X.

A context c is a boolean vector. It speci es the activity a t e a c h index. The set of contexts is denoted by Ctx. W e distinguish a particular context denoted by True where all components have value true. F or convenience, we de ne the activity predicate Active c : Active c (u) cj u .

A state is a pair made of an environment and a context. The set of states is denoted by State: State = (Env Ctx) f ? g where ? denotes the unde ned state.

The semantics S]] of a program S is a strict function from Stateto State. S]](?) = ?, a n d S]] is extended to sets of states as usual.

Assignment: At e a c h a c t i v e index, the component of the parallel variable is updated with the new value.

X:=E]](c) = (0 c) with 0 = X V] where V j u = (E)j u if Active c (u), and V j u = (X)j u otherwise. The activity c o n text is preserved. Communication: It acts very much a s a n a s s i g n m e n t, except that the assigned value is the value of another component.

get X from A into Y]](c) = (0 c) with 0 = Y V] where V j u = (X)j (A)j u if Active c (u), and V j u = (Y)j u otherwise. Sequencing: Sequential composition is functional composition.

S T]](c) = T]](S]](c)):

Conditioning: The denotation of a where construct is the denotation of its body with a new context.

The new context is the conjunction of the previous one with the value of the pure conditioning expression B. where B do S]](c) = (0 c) with S]](c ^ (B)) = (0 c 0). 1.3 The ` proof system 1.3.1 Assertion language We de ne an assertion language for the correctness of L programs in the lines of 1]. Such a speci cation is denoted by a formula fP g S fQg where S is the program text, and P and Q are two logical assertions on the variables of S. This formula means that, if precondition P is satis ed in the initial state of program S, and if S terminates, then postcondition Q is satis ed in the nal state. As we consider here only linear programs, S will always terminate. A proof system gives a formal method to derive such speci cation formulae by s y n tax-directed induction on programs.

We recall below the proof system described in 2]. As in the usual sequential case, the assertion language must be powerful enough to express properties on variable values. Moreover, it has to handle the evolution of the activity c o n text along the execution. An assertion shall thus be broken up into two parts: fP Cg, where P is a predicate on program variables, and C a pure boolean vector expression. The intuition is that the current activity c o n text is exactly the value of C in the current state, as expressed in the de nition below.

De nition 2 (Satis ability) Let (c) be a state, and fP Cg an assertion. We say that (c) satis es the assertion fP Cg, denoted b y (c) j= fP Cg, i f j= P and (C) = c. The set of states satisfying fP Cg is denoted b y fP Cg]]. W h e n n o c onfusion may arise, we identify fP Cg and fP Cg]]. De nition 3 (Assertion implication) Let fP Cg and fQ Dg be two assertions. We say that fP Cg implies fQ Dg, and write fP Cg) f Q Dg, i (P) Q) and (P) 8 u : (Cj u = Dj u)

Our assertion language manipulates two kinds of variables, scalar variables and vector variables. As a convention, scalar variables are denoted with a lowercase initial letter, and vector ones with an uppercase one. We h a ve a similar distinction on arithmetic and logical expressions. As usual, scalar (resp. vector) expressions are recursively de ned with usual arithmetic and logical connectives. Basic scalar (resp. vector) expressions are scalar (resp.vector) variables and constants. Vector expression can be subscripted. If the subscript expression is a scalar expression, then we h a ve a scalar expression. Otherwise, if the subscript expression is a vector expression, then we h a ve another vector expression. The meaning of a vector expression is obtained by component-wise evaluation. We i n troduce a scalar conditional expression with a C-like notation c?e : f. I t s v alue is the value of expression e if c is true, and f otherwise. Similarly, the value of a conditional vector expression, denoted by C?E : F, i s a v ector whose component a t i n d e x u is Ej u if Cj u is true, and Fj u otherwise.

Predicates are usual rst order formulae. They are recursively de ned on boolean scalar expressions with logical connectives and existential and universal quanti ers on scalar variables. N o t e that we do not consider quanti cation on vector variables.

We i n troduce a substitution mechanism for vector variables. Let P be a predicate or any v ector expression, X a v ector variable, and E a v ector expression. P E=X] denotes the predicate, or expression, obtained by substituting all the occurrences of X in P with E. Note that all vector variables are free by the de nition of our assertion language. The usual Substitution Lemma 1] extends to this new setting.

Lemma 1 (Substitution lemma) For every predicate on vector variables P, v e ctor expression E Figure 1: The ` proof system for linear-L De nition 5 Let E be an expression. Var(E) is the set of all variables appearing in E. E x p r ession E may only depend on the values of these variables. We extend this de nition to a L-program S: Var(S) is the set of all variables appearing in S.

Let S be a L-program. Change(S) is the set of program variables which appear on the lefthand side of an assignment statement or as the target of a communication statement. Only these variables may be m o di ed b y e x e cuting S.

A su cient condition to guarantee the absence of interference between S and D is thus Change(S)\ Var(D) = .

The proof system contains a particular rule, called the Substitution Rule. This rule is used to handle conditioning constructs where the variables appearing in the conditioning expression may b e modi ed by the body of the construct. More formally, i f w e consider the program where B do S end with Var(B)\Change(S) 6 = , the value of B on exiting S may be di erent f r o m i t s v alue on entering this body. This fact leads us to introduce hidden variables, i.e. variables that do not appear in programs, context expressions or postconditions. These variables are used to store temporarily the initial value of conditioning expressions and, as they do not appear in programs, these value remains unchanged during the execution of the body. As hidden variables are in a way \new" variables, there is no reason why they should appear in speci cations. The role of the Substitution Rule is namely to get rid of them eventually.

If a speci cation formula fP Cg S fQ Dg is derivable in the proof system, then we write ` fP Cg S fQ Dg. Theorem 1 (Soundness of ` 3]) The ` proof system is sound: If ` fP Cg S fQ Dg, then j= fP Cg S fQ Dg.

Weakest preconditions calculus

A w eakest preconditions calculus has been presented in 2], and has been used to prove the completeness of the ` proof system in 3]. We brie y recall here some useful de nitions and results. The weakest preconditions de ned above are sets of states. As such, they cannot be explicitly manipulated in the proof system. We h a ve to prove that these particular sets of states can actually be described by suitable assertions. This is the de nability problem. De nability results have been proved in 2]. They are listed up on Figure 2. We add here a general result on WP that will help us in the next section: if we use the De nability Properties to construct the assertion de ning a weakest precondition, the variables appearing in this assertion already appear in the program, the postcondition or the context expression. In other words, and more intuitively, computing a WP doesn't generate \new" variables. This fact is expressed in the following proposition. The case of communication is similar to that of assignment.

If S S 1 S 2 , then by induction hypothesis Z doesn't appear in the assertion WP(S 2 fQ Dg). A s WP(S 2 fQ Dg) is used as postcondition for S 1 , a second use of the induction hypothesis for S 1 shows that Z doesn't appear in the assertion WP Proof of Proposition 1 is done.

As shown in 3], the use of WP calculus is the key to establish the completeness of the ` proof system.

Theorem 2 (Completeness of ` 3]) Let fP Cg S fQ Dg be a s p eci cation. If We present here a simple proof method that allows, after a rst step that slightly transforms the program, to handle it as an usual scalar program. The rst step consists in a labeling of the program that expresses the depth of conditioning constructs. In other words, a subprogram labeled by i is executed within the scope of i where constructs. This labeling follows the syntax of the program: labels are increased on entering the body of a new conditioning construct. Context expressions are saved here in a series of auxiliary variables. This allows us to alleviate any restriction on context expressions of conditioning constructs.

The second step consists in a proof method similar to that used in the scalar case. It is presented here in the form of a proof outline. A s i n troduced by Gries and Owicki in 1976, this form gives a more convenient presentation of the proof, interleaving assertions and program constructs 1].

In this section, we g i v e the formal description of the two steps, and then prove the equivalence between this proof method and the ` proof system. In order to store context expressions, we distinguish particular auxiliary variables that do not appear in programs. De nition 7 Variables fTmp i j i 2 Ng are such that for any program S, and for any index i, Tmp i = 2 Var(S). This set is the set of auxiliary variables. The conditioning construct can be seen as a stack m e c hanism: entering a where construct is the same as pushing a value on a context stack, while exiting this construct corresponds to a \pop". The label is namely the height of the stack. At a given point, the current context is corresponding to the conjunction of all the stack's values. Each auxiliary variable is used to store one cell of the context stack. Thanks to this storage, the variables appearing in context expressions may b e modi ed. We t h us can alleviate restrictions on context expressions of conditioning constructs.

First step: syntactic labeling

For a subprogram at depth i, the current c o n text is the current v alue of Tmp 0 ^: : : ^Tmp i . T o get a clearer presentation of this fact, we add annotations of the form Tmp i B] t o e a c h where construct. The previous example is recast into (0) where X>0 d o Tmp 1 X > 0]

(1) X:=X+1

(1) where X>2 d o Tmp 2 X > 2]

(2) X:=X+1 end end We n o w give a formal de nition of program labeling. It is made by induction on the program's syntactic structure, and expressed by the rules listed below, '(S 0) being the labeling of program S. As we use labeled programs, and auxiliary variables to store contexts, we know at each place in the program the expression denoting the current c o n text. We then can drop context expressions out of assertions and proceed exactly the same way as in the scalar case, with backward substitutions. The only di erences are that expressions in substitutions are conditioned by a conjunction of Tmp k and that the data-parallel where construct adds a new substitution. The rules for inserting assertions in proof outlines are given below. Contiguity b e t ween two assertions refers to the use of the consequence rule. If S is a labeled subprogram, we d e n o t e b y S a proof outline obtained from S by insertion of assertions, and by Lab(S) the label associated to S.

'(X

:= E i) = (i) X := E '(get X from A into Y i) = (i) get X from A into Y '(S T i) = '(S i
Notice that, as labeling starts at 0 for the entire program, Tmp 0 thus denotes the initial context in which S is executed.

8j > i Tmp j = 2 Var(Q) fQ V i k=0 Tmp k ?E : X=X]g (i) X : = E fQg 8j > i Tmp j = 2 Var(Q) fQ V i k=0 Tmp k ?Xj A : Y=Y]g (i) get X from A into Y fQg fP g S fRg fRg T fQg 8j > Lab(S) Tmp j = 2 Var(R) Var(Q) fP g S fRg T fQg 10 P) P 0 fP 0 g S fQ 0 g Q 0) Q 8j > Lab(S) Tmp j = 2 Var(Q) Var(Q 0)
fP gfP 0 g S fQ 0 gfQg fP g S fQg Lab(S) = i + 18j > i Tmp j 6 2 Var(Q) fP B=Tmp i+1]g (i) where B do Tmp i+1 B] fP g S fQg endfQg fP g S fQg fP g S fQg where S is obtained from S by deleting any assertion.

Let us explain intuitively the need of restrictions of the form \8j > i Tmp j = 2 Var(Q)". In the rule for the conditioning construct, we substitute Tmp i+1 by B. W e t h us need that Tmp i+1 = 2 Var(Q) to respect the conditions of the Substitution Rule. But, as the postcondition (Q) is the same for S and for where B do S end, w e need that condition to be satis ed for every nesting depth greater than Lab(S).

A small example

We go back in this section to our previous example. We w ant t o p r o ve the two following speci cations. The proofs are simply done by establishing the following proof outline | the result of the rst step has already been given as example in the previous section.

First proof f(Tmp 0 ^X > 0 ^(Tmp 0 ^X > 0?X + 1 : X) > 2?(Tmp 0 ^X > 0?X + 1 : X) + 1 :

(Tmp 0 ^X > 0?X + 1 : X))j u = 4 g (0) where X>0 d o Tmp 1 X > 0]

f(Tmp 0 ^Tmp 1 ^(Tmp 0 ^Tmp 1 ?X + 1 : X) > 2?(Tmp 0 ^Tmp 1 ?X + 1 : X) + 1 : (Tmp 0 ^Tmp 1 ?X + 1 : X))j u = 4 g (1) X:=X+1 f(Tmp 0 ^Tmp 1 ^X > 2?X + 1 : X)j u = 4 g (1) where X>2 d o Tmp 2 X > 2] f(Tmp 0 ^Tmp 1 ^Tmp 2 ?X + 1 : X)j u = 4 g (2) X:=X+1 fXj u = 4 g end fXj u = 4 g end fXj u = 4 g If we denote by P the rst assertion of this proof outline, we only have t o p r o ve that Xj u = 2 ^Tmp 0 = True) P:

In other words, we p r o ve that Xj u = 2) P True=Tmp 0] The assertion P True=Tmp 0] is equivalent t o f(X > 0 ^(X > 0?X + 1 : X) > 2?(X > 0?X + 1 : X) + 1 : (X > 0?X + 1 : X))j u = 4 g Let us consider an index u such that Xj u = 2. Then, the boolean expression (X > 0)j u is true. As X + 1 j u > 2, ((X > 0?X + 1 : X) > 2)j u is also true.

Conditional expression

(X > 0 ^(X > 0?X + 1 : X) > 2?(X > 0?X + 1 : X) + 1 : (X > 0?X + 1 : X))j u thus simpli es into (X > 0?X + 1 : X) + 1 j u , which in turn simpli es into X + 1 + 1 j u .

Assertion P True=Tmp 0] t h us simpli es into X + 1 + 1 j u = 4, which is true.

Second proof. As no simpli cation using the value of X occurs in the rst proof outline, the second is almost the same: we just replace the value 4 by the value 2. Then, if we denote by P 0 the assertion obtained by substituting 4 by 2 i n P, w e just have t o c heck that Xj u = 1) P 0 True=Tmp 0]

Let us consider an index u such that Xj u = 1. Then, the boolean expression (X > 0)j u is true. But this time, as X + 1 j u = 2 , ((X > 0?X + 1 : X) > 2)j u is false.

Conditional expression (X > 0 ^(X > 0?X + 1 : X) > 2?(X > 0?X + 1 : X) + 1 : (X > 0?X + 1 : X))j u thus simpli es into (X > 0?X + 1 : X)j u , which in turn simpli es into X + 1 j u .

Assertion P 0 True=Tmp 0] t h us simpli es into X + 1 j u = 2, which i s t r u e .

4 Equivalence of Proof Outlines and `

We n o w w ant to prove that the method de ned above i s e q u i v alent t o t h e ` proof system. More precisely, w e w ant t o p r o ve the following theorem.

Theorem 3 Let fP g (0)S fQg be a formula such that for each j > 0, Tmp j 6 2 Var(Q).

fP g S fQgi s a p r oof outline for S m ` fP Tmp 0 g S fQ Tmp 0 g

We actually prove the more general following fact.

Proposition 2 Let S be a subprogram labeled b y i, a n d P and Q assertions such that 8j > i Tmp j = 2 Var(Q). Then fP g S fQg i s a p r oof outline for S if and only if ` fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g We begin with the easiest part of the proof: if there exists a proof outline, then the desired speci cation is derivable in ` .

Proof

Let S be a subprogram labeled with i, a n d fP g S fQg a proof outline for S. The proof is by induction on the length of the construction made to obtain the proof outline. We h a ve s i x cases to consider, corresponding respectively to each d e r i v ation rule for proof outlines.

If the last rule applied was

8j > i Tmp j = 2 Var(Q) fQ V i
k=0 Tmp k ?E : X=X]g (i) X : = E fQg then, since X 6 2 f Tmp i j i 2 Ng, w e h a ve ` fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : Tmp i g.

The second case, dealing with the communication statement, is handled exactly the same way.

If the last rule applied was P) P 0 fP 0 g S fQ 0 g Q 0) Q 8j > Lab(S) Tmp j = 2 Var(Q) Var(Q 0) fP gfP 0 g S fQ 0 gfQg then by induction hypothesis we h a ve ` fP 0 Tmp 0 ^: : : ^Tmp i g S fQ 0 Tmp 0 ^: : : Tmp i g, so the consequence rule of ` applies and gives the desired result.

If the last rule applied was the rule for sequential composition, then there exist S 1 and S 2 such that S = S 1 S 2 , and an assertion R such that we h a ve the proof outlines fP g S 1 fRg and fRg S 2 fQg. F urthermore, we k n o w that S 1 and S 2 are labeled by the same value i. By the rule for sequential composition in proof outlines, we h a ve 8j > i Tmp j = 2 Var R.

By induction hypothesis, we t h us have ` fP Tmp 0 ^: : : ^Tmp i g S 1 fR Tmp 0 ^: : : ^Tmp i g and ` fR Tmp 0 ^: : : ^Tmp i g S 2 fQ Tmp 0 ^: : : ^Tmp i g:

Then, the Sequencing Rule of ` applies and yields ` fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g:

If the last used rule was fP 0 g T fQg Lab(T) = i + 18j > i Tmp j 6 2 Var(Q) fP 0 B=Tmp i+1]g (i) where B do Tmp i+1 B] T endfQg with P = P 0 B=Tmp i+1]. W e h a ve 8j > i + 1 Tmp j 6 2 Var(Q), s o b y induction hypothesis ` fP 0 Tmp 0 ^: : : ^Tmp i ^Tmp i+1 g T fQ Tmp 0 ^: : : ^Tmp i ^Tmp i+1 g As fP 0 ^Tmp i+1 = B Tmp 0 ^: : : ^Tmp i ^Bg) f P 0 Tmp 0 ^: : : ^Tmp i ^Tmp i+1 g, the Consequence Rule yields ` fP 0 ^Tmp i+1 = B Tmp 0 ^: : : ^Tmp i ^Bg T fQ Tmp 0 ^: : : ^Tmp i ^Tmp i+1 g:

The where Rule applies and yields ` fP 0 ^Tmp i+1 = B Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g: Finally, using the Substitution Rule with B=Tmp i+1 yields ` fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g:

The last case (elimination of assertions in the proof outline) is straightforward. The proof of the rst part of Proposition 2 is done.

We n o w w ant t o p r o ve second part of Proposition 2. The proof uses the weakest preconditions and needs the following auxiliary result.

We can now prove the second part of Proposition 2.

Proof

Let us assume that ` fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g:

We w ant to nd a proof outline of the form fP g S fQg: We construct this outline by induction on the structure of S.

If S X:=E: b y the soundness of the proof system, we h a ve j= fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g:

By the de nition of WP, w e h a ve fP Tmp 0 ^: : : ^Tmp i g) WP(S fQ Tmp 0 ^: : : ^Tmp i g) where WP(S fQ Tmp 0 ^: : : ^Tmp i g) = fQ Tmp 0 ^: : : ^Tmp i ?E : X=X] Tmp 0 ^: : : Tmp i g. Then fP g fQ Tmp 0 ^: : : ^Tmp i ?E : X=X]g S fQg is a proof outline for S.

The case of communication statement is handled the same way.

If S S 1 S 2 . L e t fP 2 Tmp 0 ^: : : ^Tmp i g = WP(S 2 fQ Tmp 0 ^: : : ^Tmp i g) and fP 1 Tmp 0 ^: : : ^Tmp i g = WP(S 1 fP 2 Tmp 0 ^: : : ^Tmp i g): As 8j > i Tmp j = 2 Var(S) Var(Q), Lemma 1 guarantees that 8j > i Tmp j = 2 Var(P 2). The premises of the rule for sequential composition are thus satis ed. By the soundness of ` , w e h a ve j= fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g, s o b y the de nition of WP, P) P 1 : Then fP g fP 1 g S 1 fP 2 g S 2 fQg is a proof outline for S.

Consider now the case when S where B do T end. The weakest preconditions calculus enables us to construct a proof ` fP 0 Tmp 0 ^: : : ^Tmp i+1 g T fQ Tmp 0 ^: : : ^Tmp i+1 g where fP 0 Tmp 0 ^: : : ^Tmp i+1 g = WP(T fQ Tmp 0 ^: : : ^Tmp i+1 g):

By induction hypothesis, fP 0 g T fQg is a proof outline for T.

But Proposition 3 yields WP(S fQ Tmp 0 ^: : : ^Tmp i g) = fP 0 B=Tmp i+1] Tmp 0 ^: : : ^Tmp i g:

Then, by the soundness of the proof system, we h a ve j= fP Tmp 0 ^: : : ^Tmp i g S fQ Tmp 0 ^: : : ^Tmp i g: We conclude that P) P 0 B=Tmp i+1] and that

Discussion

We h a ve de ned a notion of Proof Outline for a simple data-parallel kernel language. Due to the two-part nature of the program assertions, it works in two passes. Pass 1 labels labels each instruction with its respective e x t e n t of parallelism top-down Pass 2 generates the intermediate annotations bottom-up, starting from the nal post-condition. Pass 1 amounts to a simple rewriting. It could easily be handled by some advanced text editor. The rewriting process is slightly more complex due to the possible con ict between the vector boolean expressions denoting the current extent of parallelism and the assignments. Fresh temporary variables Tmp i have t o b e i n troduced to save the activity contexts. Pass 2 is very similar to a Proof Annotation generating system for usual, scalar Pascal-like languages. The only di erence lies in the slightly more complex substitution mechanism. This similarity con rms that validating data-parallel programs is of the same level of complexity as validating scalar programs. This is in strong contrast with control-parallel CSP-like programs.

In this respect, the data-parallel programming model appears as a suitable basis for large-scale parallel software engineering.

A n umber of additional remarks can be made. Our equivalence result could probably be adapted to other shapes of assertions. It could be interesting to consider for instance the one-part assertions of Le Guyadec and Virot 6] where the current extent of parallelism is kept as the value of a special] symbol.

Our two-pass annotation method could easily be carried out mechanically and integrated in some design/validation assistance tool. The main di culty l i e s i n k eeping the assertions simple enough to be understood (and corrected!) by a h uman reader. The complex substitution mechanism generates nested conditional expressions which should be simpli ed on the y by some additional tool.

Consider a conditioned statement (i) where B do S. If the conditioned body S does not interfere with the expression denoting the current e x t e n t of parallelism, there is no need to introduce any auxiliary Tmp i+1 variable. One can as well use the conditioning expression B directly. This will probably result in simpler assertions. Such an optimization should de nitely be considered in designing any real assistance tool.

Proof outlines can also be used for automatic program documentation. An interesting application would be to generate annotations at certain \hot spots" in the program only, focusing on a set of crucial program variables. This could probably serve as a basis for an interactive tool where the user could build at the same time both the program and a (partial) proof of it.

Figure 2 :

 2 Figure 2: De nability properties of weakest preconditions for linear L-programs

Proposition 1

 1 Let Z be a variable, S a p r ogram, Q an assertion and D a b oolean expression such that Var(D) \ Change(S) = . I f Z = 2 Var(S) Var(Q) Var(D) then there exists some assertion fP Cg such that WP(S fQ Dg) = fP Cg and Z = 2 Var(P) Var(C): Proof This result is a consequence of the de nability properties, and is established by induction on the structure of S. If S X:=E, WP(S fQ Dg) = fQ (D?E : X)=X] D g: As Z = 2 f Xg Var(E) Var(Q) Var(D), Z doesn't appear in the weakest precondition.

 j= fP Cg S fQ Dg then ` fP Cg S fQ Dg 2 A simple two-pass proof method

 Let S be a L program, fP Cg and fQ Dg two assertions. We say that speci cation fP Cg S fQ Dg is valid, denoted b y j= fP Cg S fQ Dg, if for all states : Y)=Y] D g get X from A into Y fQ Dg

	Assignment Rule	X = 2 Var(D) fQ (D?E : X)=X] D g X:=E fQ Dg
	Communication Rule			Y = 2 Var(D)
	Sequencing Rule	fP Cg S fR Eg fR Eg T fQ Dg fP Cg S T fQ Dg
	Conditioning Rule	fP C ^Bg S fQ Dg Change(S) \ Var(C) = fP Cg where B do S end fQ Cg
	Consequence Rule	fP Cg) f P 0 C 0 g fP 0 C 0 g S fQ 0 D 0 g fQ 0 D 0 g) f Q Dg fP Cg S fQ Dg
	Substitution Rule	fP Cg S fQ Dg Tmp = 2 V a r (S) Var(Q) Var(D) fP E=Tmp] C E=Tmp]g S fQ Dg
	and environment ,	j= P E=X] i	X	(E)] j= P
	(c)	((c) j= fP Cg)) (S]](c) j= fQ Dg):
	1.3.2 Proof system			
	We recall on Figure 1 the proof system de ned in 3]. This system is a restricted proof system, in the sense that a number of rules only manipulates a certain kind of speci cation formulae, precisely these formulae fP Cg S fQ Dg such that the boolean vector expression D describing the nal activity context may not be modi ed by the program S. More formally, using the notations of 1], we de ne the following sets of variables.

We can de ne the validity of a speci cation of a L program with respect to its denotational semantics.

De nition 4 (Speci cation validity) fQ (D?Xj A

 Consequence Lemma) j= fP Cg S fQ Dg i fP Cg]] WP(S fQ Dg).

	De nition 6 (Weakest preconditions) Let E be a subset of State, S a l i n e ar L-program. We de ne the weakest preconditions as
	WP(S E) = fs 2 State j S]](s) 2 E g
	Lemma 2 (

 (S fQ Dg). If S where B do T end, w e h a ve t wo cases to consider.

	{ If Var(B)\Change(S) 6 = , w e apply the second de nability property for condition-ing. Let Tmp be a variable not in Var(T) Var(Q) Var(D), and let fP Cg be WP(T fQ D ^Tmpg). I f Z = Tmp, then, as WP(S fQ Dg) = fP B=Tmp] D g, Z is substituted by B in the weakest precondition, so it doesn't appear in it any more. If Z 6 = Tmp, then by induction hypothesis Z = 2 Var(P) and Z = 2 Var(B), s o Z = 2 Var(P B=Tmp]).

{ If Var(B)\Change(S) = , w e apply the rst de nability property for conditioning. Let us assume that WP(T fQ D ^Bg) = fP Cg. W e h a ve Z = 2 Var(S), s o Z = 2

Var(B). The induction hypothesis thus yields Z = 2 Var(P), s o Z doesn't appear in fP Dg, which is the precondition for S.

 In this step, we associate to each subprogram of the considered program an integer label that counts the number of nesting where constructs. Counting starts at 0 for the entire program.

	instance the program	Consider for
	where X>0 d o X:=X+1 where X>2 d o X:=X+1 end end	
	We w ant to get the following labeling.	
	(0) where X>0 d o (1) X:=X+1 (1) where X>2 d o (2) X:=X+1 end end	

This work has been partly supported by the French CNRS Coordinated Research Program on Parallelism, Networks and Systems PRS.

Proposition 3 Let Q be an assertion such that Tmp i+1 = 2 Var(Q). I f WP(S fQ Tmp 0 ^: : : ^Tmp i+1 g) = fP Tmp 0 ^: : : ^Tmp i+1 g then WP(where B do S end fQ Tmp 0 ^: : : ^Tmp i g) = fP B=Tmp i+1] Tmp 0 ^: : : ^Tmp i g: Proof Let (c) 2 WP(where B do S end fQ Tmp 0 ^: : :^Tmp i g). Let (0 c) be where B do S end]](c). We h a ve S]](c^ (B)) = (0 c^ (B)), and (0 c) j= fQ Tmp 0 ^: : :^Tmp i g by the de nition of WP. Let 1 = Tmp i+1