
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Proofs by annotations for a simple

data�parallel language

Luc Boug�e� David Cachera March ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Proofs by annotations for a simple data�parallel language

Luc Boug�e� David Cachera

March ����

Abstract

We present a proof outline generation system for a simple data�parallel kernel language
called L� We show that proof outlines are equivalent to the sound and complete Hoare
logic de�ned for L in previous papers� Proof outlines for L are very similar to those for
usual scalar�like languages� In particular� they can be mechanically generated backwards
from the �nal post�assertion of the program� They appear thus as a valuable basis to
implement a validation assistance tool for data�parallel programming�

Keywords� Concurrent Programming� Specifying and Verifying and Reasoning about Programs�
Semantics of Programming Languages� Data�Parallel Languages� Proof System� Hoare Logic� Weak�
est Preconditions�

R�esum�e

Nous pr�esentons un syst�eme pour la g�en�eration de sch�emas de preuve par annotations
proof outlines pour un petit noyau de langage �a parall�elisme de donn�ees appel�e L�
Nous montrons que les sch�emas de preuve par annotations sont �equivalents �a la logique
de Hoare pour le langage L d�e�nie dans les articles pr�ec�edents� La manipulation des
annotations des programmes L est tr�es semblable �a celle des langages scalaires habituels
de type Pascal� En particulier� les annotations peuvent �etre g�en�er�ees automatiquement
�a partir de la post�condition du programme� Cette m�ethode constitue donc une base
formelle int�eressante pour l�impl�ementation d�outils d�aide �a la programmation data�
parall�ele�

Mots�cl�es� Programmation parall�ele� sp�eci�cation et validation de programmes� s�emantique des
langages de programmation� langages data�parall�eles� syst�eme de preuve� logique de Hoare� plus
faibles pr�econditions�

Proofs by annotations for a simple data�parallel language

Luc Boug�e�z� David Cachera�

April ��� ����

Abstract

We present a proof outline generation system for a simple data�parallel kernel language

called L� We show that proof outlines are equivalent to the sound and complete Hoare logic

de�ned for L in previous papers� Proof outlines for L are very similar to those for usual scalar�

like languages� In particular� they can be mechanically generated backwards from the �nal

post�assertion of the program� They appear thus as a valuable basis to implement a validation

assistance tool for data�parallel programming�

Contents

� A sound and complete proof system for a small data�parallel language �

��� The L language �

��� Denotational semantics of linear L�programs �

��� The �� proof system �

����� Assertion language �

����� Proof system �

��� Weakest preconditions calculus � 	

� A simple two�pass proof method �

��� First step
 syntactic labeling �

��� Second step
 proof outline ��

� A small example ��

� Equivalence of Proof Outlines and �
� ��

� Discussion ��

�LIP� ENS Lyon� �� All�ee d�Italie� F������ Lyon C�edex �	� France

zAuthors contact� Luc Boug�e �Luc�Bouge�lip�ens�lyon�fr
 This work has been partly supported by the French

CNRS Coordinated Research Program on Parallelism� Networks and Systems PRS

�

Introduction

Data�parallel languages have recently emerged as a major tool for large scale parallel programming�
An impressive e	ort is currently being put on developing e
cient compilers for High Performance
Fortran �HPF�� A data�parallel extension of C� primarily inuenced by Thinking Machine�s C��
is currently under standardization� Our goal is to provide all these new developments with the
necessary semantic bases�

In previous papers� we have de�ned a simple� but representative� data�parallel kernel lan�
guage ���� and we have described a natural semantics for it� We have designed a sound proof
system based on an adaptation of Hoare logic ���� We have shown it gives rise to a Weakest
Precondition calculus ���� which can be used to prove its completeness for loop�free programs ����

Yet� a crucial step remains to be done for a practical application of these results� Quoting Apt
and Olderog�s seminal book ��� Section �����

Formal proofs are tedious to follow� We are not accustomed to following a line of
reasoning presented in small� formal steps ������

A possible strategy lies in the facts that �programs� are structured� The proof rules
follow the syntax of the program� so the structure of the program can be used to
structure the correctness proof� We can simply present the proof by giving a program
with assertions interleaved at appropriate places ������

This type of proof is more simple to study and analyse than the one we used so far�
Introduced by Gries and Owicki� it is called a Proof Outline�

The presentation of Apt and Olderog focuses on control�parallel programs� that is� sequential
processes composed with the k operator� In this paper� we show that the approach of Gries and
Owicki can be adapted as well to data�parallel L programs� giving birth to a notion of data�parallel
annotations�

For the sake of completeness� we briey recall in Section � the de�nition of the L language�
its logical two�part assertions� the associated Hoare logic and the Weakest Precondition calculus�
Section � describes the formation rules for the Data�Parallel Proof Outlines� In contrast with the
usual scalar case� they are generated in two passes� Pass � labels program instruction with their
respective extent of parallelism �to be called activity context below�� it works top�down� Pass �
generates the intermediate assertions starting from the �nal post�condition� it works bottom�up�
Section � describes an example� Section � proves our main result� which is the equivalence between
this notion of Data�Parallel Proof Outline and the Hoare logic for L�

� A sound and complete proof system for a small data�parallel language

An extensive presentation of the L language can be found in ���� For the sake of completeness� we
briey recall its denotational semantics as described in ����

��� The L language

In the data�parallel programming model� the basic objects are arrays with parallel access� Two kinds
of actions can be applied to these objects� component�wise operations� or global rearrangements � A
program is a sequential composition of such actions� Each action is associated with the set of array
indices at which it is applied� An index at which an action is applied is said to be active� Other

�

indices are said to be idle� The set of active indices is called the activity context or the extent of

parallelism� It can be seen as a boolean array where true denotes activity and false idleness�
The L language is designed as a common kernel of data�parallel languages like C� ���� Hy�

perC ��� or MPL ���� We do not consider the scalar part of these languages� mainly imported
from the C language� For the sake of simplicity� we consider a unique geometry of arrays� arrays
of dimension one� also called vectors � Then� all the variables of L are parallel� and all the objects
are vectors of scalars� with one component at each index� As a convention� the parallel objects are
denoted with uppercase letters� The component of parallel object X located at index u is denoted
by X j

u
� The legal expressions are usual pure expressions� i�e� expressions without side e	ects� The

value of a pure expression at index u only depends on the values of the variables components at
index u� The expressions are evaluated by applying operators component�wise to parallel values�
We do not detail the syntax and semantics of such expressions any further� We introduce a special
vector constant called This� The value of its component at each index u is the value u itself�
�u � Thisju � u� Note that This is a pure expression and that all constructs de�ned here are
deterministic� The L�instructions are the following�

Assignment� X ��E� At each active index u� component X ju is updated with the local value of
pure expression E�

Communication� get X from A into Y � At each active index u� pure expression A is evaluated to
an index v� then component Y j

u
is updated with the value of component X j

v
� We always

assume that v is a valid index�

Sequencing� S�T � On the termination of the last action of S� the execution of the actions of T
starts�

Conditioning� where B do S end� The active indices where pure boolean expression B evaluates
to false become idle during the execution of S� The other ones remain active� The initial
activity context is restored on the termination of S�

Iteration� loop B do S� The actions of S are repeatedly executed with the current extent of paral�
lelism� until pure boolean expression B evaluates to false at each currently active index� The
current extent of parallelism is not modi�ed�

In the following� we restrict ourselves to linear programs� i�e� programs without loops�

��� Denotational semantics of linear L�programs

We recall the semantics of L de�ned in ��� in the style of denotational semantics� by induction on
the syntax of L�

An environment � is a function from identi�ers to vector values� The set of environments is
denoted by Env� For convenience� we extend the environment functions to the parallel expressions�
��E� denotes the value obtained by evaluating parallel expression E in environment �� We do not
detail the internals of expressions any further� Note that ��This�j

u
� u by de�nition�

De�nition � �Pure expression� A parallel expression E is pure if for any index u� and any envi�

ronments � and ���

��X � ��X�ju � ���X�ju�� ���E�ju � ���E�ju��

�

Let � be an environment� X a vector variable and V a vector value� We denote by ��X � V �
the new environment �� where ���X� � V and ���Y � � ��Y � for all Y �� X �

A context c is a boolean vector� It speci�es the activity at each index� The set of contexts is
denoted by Ctx� We distinguish a particular context denoted by True where all components have
value true � For convenience� we de�ne the activity predicate Activec� Activec�u� � cj

u
�

A state is a pair made of an environment and a context� The set of states is denoted by State�
State � �Env � Ctx� � f�g where � denotes the unde�ned state�

The semantics ��S�� of a program S is a strict function from State to State� ��S����� � �� and
��S�� is extended to sets of states as usual�

Assignment� At each active index� the component of the parallel variable is updated with the new
value�

��X ��E����� c� � ���� c��

with �� � ��X � V � where V ju � ��E�ju if Activec�u�� and V ju � ��X�ju otherwise� The
activity context is preserved�

Communication� It acts very much as an assignment� except that the assigned value is the value
of another component�

��get X from A into Y ����� c� � ���� c�

with �� � ��Y � V � where V j
u
� ��X�j

��A�j
u

if Activec�u�� and V j
u
� ��Y �j

u
otherwise�

Sequencing� Sequential composition is functional composition�

��S�T ����� c� � ��T �����S����� c���

Conditioning� The denotation of a where construct is the denotation of its body with a new context�
The new context is the conjunction of the previous one with the value of the pure conditioning
expression B�

��where B do S����� c� � ���� c�

with ��S����� c� ��B�� � ���� c���

��� The �� proof system

����� Assertion language

We de�ne an assertion language for the correctness of L programs in the lines of ���� Such a
speci�cation is denoted by a formula fPg S fQg where S is the program text� and P and Q are
two logical assertions on the variables of S� This formula means that� if precondition P is satis�ed
in the initial state of program S� and if S terminates� then postcondition Q is satis�ed in the �nal
state� As we consider here only linear programs� S will always terminate� A proof system gives a
formal method to derive such speci�cation formulae by syntax�directed induction on programs�

We recall below the proof system described in ���� As in the usual sequential case� the assertion
language must be powerful enough to express properties on variable values� Moreover� it has to
handle the evolution of the activity context along the execution� An assertion shall thus be broken
up into two parts� fP�Cg� where P is a predicate on program variables� and C a pure boolean
vector expression� The intuition is that the current activity context is exactly the value of C in the
current state� as expressed in the de�nition below�

�

De�nition 	 �Satis�ability� Let ��� c� be a state� and fP�Cg an assertion� We say that ��� c�
satis�es the assertion fP�Cg� denoted by ��� c� j� fP�Cg� if � j� P and ��C� � c� The set of states

satisfying fP�Cg is denoted by ��fP�Cg��� When no confusion may arise� we identify fP�Cg and

��fP�Cg���

De�nition � �Assertion implication� Let fP�Cg and fQ�Dg be two assertions� We say that fP�Cg
implies fQ�Dg� and write fP�Cg � fQ�Dg� i�

�P � Q� and �P � �u � �Cj
u
� Dj

u
�

Our assertion language manipulates two kinds of variables� scalar variables and vector variables�
As a convention� scalar variables are denoted with a lowercase initial letter� and vector ones with an
uppercase one� We have a similar distinction on arithmetic and logical expressions� As usual� scalar
�resp� vector� expressions are recursively de�ned with usual arithmetic and logical connectives�
Basic scalar �resp� vector� expressions are scalar �resp�vector� variables and constants� Vector
expression can be subscripted� If the subscript expression is a scalar expression� then we have
a scalar expression� Otherwise� if the subscript expression is a vector expression� then we have
another vector expression� The meaning of a vector expression is obtained by component�wise
evaluation� We introduce a scalar conditional expression with a C�like notation c�e � f � Its value
is the value of expression e if c is true� and f otherwise� Similarly� the value of a conditional vector
expression� denoted by C�E � F � is a vector whose component at index u is Ej

u
if Cj

u
is true� and

F ju otherwise�
Predicates are usual �rst order formulae� They are recursively de�ned on boolean scalar expres�

sions with logical connectives and existential and universal quanti�ers on scalar variables � Note
that we do not consider quanti�cation on vector variables�

We introduce a substitution mechanism for vector variables� Let P be a predicate or any vector
expression� X a vector variable� and E a vector expression� P �E�X � denotes the predicate� or
expression� obtained by substituting all the occurrences of X in P with E� Note that all vector
variables are free by the de�nition of our assertion language� The usual Substitution Lemma ���
extends to this new setting�

Lemma � �Substitution lemma� For every predicate on vector variables P � vector expression E

and environment ��
� j� P �E�X � i� ��X � ��E�� j� P

We can de�ne the validity of a speci�cation of a L program with respect to its denotational seman�
tics�

De�nition
 �Speci�cation validity� Let S be a L program� fP�Cg and fQ�Dg two assertions�

We say that speci�cation fP�Cg S fQ�Dg is valid� denoted by j� fP�Cg S fQ�Dg� if for all states
��� c�

���� c� j� fP�Cg�� ���S����� c� j� fQ�Dg��

����	 Proof system

We recall on Figure � the proof system de�ned in ���� This system is a restricted proof system� in
the sense that a number of rules only manipulates a certain kind of speci�cation formulae� precisely
these formulae fP�Cg S fQ�Dg such that the boolean vector expression D describing the �nal
activity context may not be modi�ed by the program S� More formally� using the notations of ����
we de�ne the following sets of variables�

�

Assignment Rule
X �	 Var�D�

fQ��D�E � X��X �� Dg X ��E fQ�Dg

Communication Rule
Y �	 Var�D�

fQ��D�X jA � Y ��Y �� Dg get X from A into Y fQ�Dg

Sequencing Rule
fP�Cg S fR�Eg� fR�Eg T fQ�Dg

fP�Cg S�T fQ�Dg

Conditioning Rule
fP�C �Bg S fQ�Dg� Change�S�
Var�C� � �

fP�Cg where B do S end fQ�Cg

Consequence Rule
fP�Cg � fP �� C�g� fP �� C�g S fQ�� D�g� fQ�� D�g � fQ�Dg

fP�Cg S fQ�Dg

Substitution Rule
fP�Cg S fQ�Dg� Tmp �	 V ar�S��Var�Q�� Var�D�

fP �E�Tmp�� C�E�Tmp�g S fQ�Dg

Figure �� The �� proof system for linear�L

De�nition � Let E be an expression� Var�E� is the set of all variables appearing in E� Expression
E may only depend on the values of these variables� We extend this de�nition to a L�program S�

Var�S� is the set of all variables appearing in S�
Let S be a L�program� Change�S� is the set of program variables which appear on the left�

hand side of an assignment statement or as the target of a communication statement� Only these

variables may be modi�ed by executing S�

A su
cient condition to guarantee the absence of interference between S and D is thus Change�S�

Var�D� � ��

The proof system contains a particular rule� called the Substitution Rule� This rule is used to
handle conditioning constructs where the variables appearing in the conditioning expression may be
modi�ed by the body of the construct� More formally� if we consider the program where B do S end
with Var�B�
Change�S� �� �� the value ofB on exiting S may be di	erent from its value on entering
this body� This fact leads us to introduce hidden variables � i�e� variables that do not appear in
programs� context expressions or postconditions� These variables are used to store temporarily
the initial value of conditioning expressions and� as they do not appear in programs� these value
remains unchanged during the execution of the body� As hidden variables are in a way �new�
variables� there is no reason why they should appear in speci�cations� The role of the Substitution
Rule is namely to get rid of them eventually�

If a speci�cation formula fP�Cg S fQ�Dg is derivable in the proof system� then we write
�� fP�Cg S fQ�Dg�

Theorem � �Soundness of �� ��� The ��
proof system is sound� If �� fP�Cg S fQ�Dg� then

j� fP�Cg S fQ�Dg�

�

Construct Conditions Weakest Precondition

Assignment X �	 V ar�D�
WP�X �� E� fQ�Dg�

� fQ��D�E � X��X ��Dg

Communication Y �	 V ar�D�
WP�get X from A into Y � fQ�Dg�

� fQ��D�X j
A
� Y ��Y �� Dg

Sequencing �
WP�S��S�� fQ�Dg�

� WP�S��WP�S�� fQ�Dg��

Conditioning ���

V ar�D�
 Change�S� � �

V ar�B�
 Change�S� � �

WP�S� fQ�D� Bg� � fP�Cg

WP�where B do S end� fQ�Dg�

� fP�Dg

Conditioning ���

V ar�D�
 Change�S� � �

Tmp �	 Var�S�� Var�Q� �Var�D�

WP�S� fQ�D � Tmpg� � fP�Cg

WP�where B do S end� fQ�Dg�

� fP �B�Tmp�� Dg

Figure �� De�nability properties of weakest preconditions for linear L�programs

��� Weakest preconditions calculus

A weakest preconditions calculus has been presented in ���� and has been used to prove the com�
pleteness of the �� proof system in ���� We briey recall here some useful de�nitions and results�

De�nition � �Weakest preconditions� Let E be a subset of State� S a linear L�program� We de�ne

the weakest preconditions as

WP�S� E� � fs 	 State j ��S���s� 	 Eg

Lemma 	 �Consequence Lemma� j� fP�Cg S fQ�Dg i� ��fP�Cg�� WP�S� fQ�Dg��

The weakest preconditions de�ned above are sets of states� As such� they cannot be explicitly
manipulated in the proof system� We have to prove that these particular sets of states can actually
be described by suitable assertions� This is the de�nability problem� De�nability results have been
proved in ���� They are listed up on Figure �� We add here a general result on WP that will help
us in the next section� if we use the De�nability Properties to construct the assertion de�ning a
weakest precondition� the variables appearing in this assertion already appear in the program� the
postcondition or the context expression� In other words� and more intuitively� computing a WP

doesn�t generate �new� variables� This fact is expressed in the following proposition�

�

Proposition � Let Z be a variable� S a program� Q an assertion and D a boolean expression such

that Var�D�
 Change�S� � �� If

Z �	 Var�S��Var�Q��Var�D��

then there exists some assertion fP�Cg such that

WP�S� fQ�Dg� � fP�Cg�

and

Z �	 Var�P � � Var�C��

Proof

This result is a consequence of the de�nability properties� and is established by induction on
the structure of S�

� If S � X ��E� WP�S� fQ�Dg� � fQ��D�E � X��X �� Dg� As Z �	 fXg � Var�E� �
Var�Q� �Var�D�� Z doesn�t appear in the weakest precondition�

� The case of communication is similar to that of assignment�

� If S � S��S�� then by induction hypothesis Z doesn�t appear in the assertion
WP�S�� fQ�Dg�� AsWP�S�� fQ�Dg� is used as postcondition for S�� a second use of the
induction hypothesis for S� shows that Z doesn�t appear in the assertionWP�S� fQ�Dg��

� If S � where B do T end� we have two cases to consider�

� If Var�B�
Change�S� � �� we apply the �rst de�nability property for conditioning�
Let us assume that WP�T� fQ�D � Bg� � fP�Cg� We have Z �	 Var�S�� so Z �	
Var�B�� The induction hypothesis thus yields Z �	 Var�P �� so Z doesn�t appear in
fP�Dg� which is the precondition for S�

� If Var�B�
Change�S� �� �� we apply the second de�nability property for condition�
ing� Let Tmp be a variable not in Var�T � � Var�Q� � Var�D�� and let fP�Cg be
WP�T� fQ�D� Tmpg�� If Z � Tmp� then� as WP�S� fQ�Dg� � fP �B�Tmp�� Dg�
Z is substituted by B in the weakest precondition� so it doesn�t appear in it any
more� If Z �� Tmp� then by induction hypothesis Z �	 Var�P � and Z �	 Var�B�� so
Z �	 Var�P �B�Tmp���

Proof of Proposition � is done�

As shown in ���� the use of WP calculus is the key to establish the completeness of the �� proof
system�

Theorem 	 �Completeness of �� ��� Let fP�Cg S fQ�Dg be a speci�cation� If

j� fP�Cg S fQ�Dg

then

�� fP�Cg S fQ�Dg

�

� A simple two�pass proof method

We present here a simple proof method that allows� after a �rst step that slightly transforms the
program� to handle it as an usual scalar program� The �rst step consists in a labeling of the program
that expresses the depth of conditioning constructs� In other words� a subprogram labeled by i is
executed within the scope of i where constructs� This labeling follows the syntax of the program�
labels are increased on entering the body of a new conditioning construct� Context expressions are
saved here in a series of auxiliary variables� This allows us to alleviate any restriction on context
expressions of conditioning constructs�

The second step consists in a proof method similar to that used in the scalar case� It is presented
here in the form of a proof outline� As introduced by Gries and Owicki in ����� this form gives a
more convenient presentation of the proof� interleaving assertions and program constructs ����

In this section� we give the formal description of the two steps� and then prove the equivalence
between this proof method and the �� proof system�

��� First step� syntactic labeling

In this step� we associate to each subprogram of the considered program an integer label that counts
the number of nesting where constructs� Counting starts at for the entire program� Consider for
instance the program

where X�� do
X��X���
where X�� do

X��X���
end end

We want to get the following labeling�

��� where X�� do
��� X��X���
��� where X�� do

��� X��X��
end

end

In order to store context expressions� we distinguish particular auxiliary variables that do not
appear in programs�

De�nition � Variables fTmpi j i 	 Ng are such that for any program S� and for any index i�

Tmpi �	 Var�S�� This set is the set of auxiliary variables�

The conditioning construct can be seen as a stack mechanism� entering a where construct is the
same as pushing a value on a context stack� while exiting this construct corresponds to a �pop��
The label is namely the height of the stack� At a given point� the current context is corresponding
to the conjunction of all the stack�s values� Each auxiliary variable is used to store one cell of
the context stack� Thanks to this storage� the variables appearing in context expressions may be
modi�ed� We thus can alleviate restrictions on context expressions of conditioning constructs�

For a subprogram at depth i� the current context is the current value of Tmp�� � � ��Tmpi� To
get a clearer presentation of this fact� we add annotations of the form �Tmpi � B� to each where
construct� The previous example is recast into

�

��� where X�� do 	Tmp� � X �

��� X��X���
��� where X�� do 	Tmp� � X � �

��� X��X��
end

end

We now give a formal de�nition of program labeling� It is made by induction on the program�s
syntactic structure� and expressed by the rules listed below� ��S� � being the labeling of program
S�

�� X �� E � i� � �i� X �� E

�� get X from A into Y � i� � �i� get X from A into Y

�� S � T � i� � ��S� i� � ��T� i�

�� where B do S end � i� � �i� where B do �Tmpi�� � B�

��S� i! ��

end

��� Second step� proof outline

A proof outline is a visual and convenient way to present a proof with assertions interleaved in the
text of the program at appropriate places ���� The structure of the proof follows the structure of
the program� thus giving a more readable presentation�

As we use labeled programs� and auxiliary variables to store contexts� we know at each place in
the program the expression denoting the current context� We then can drop context expressions out
of assertions and proceed exactly the same way as in the scalar case� with backward substitutions�
The only di	erences are that expressions in substitutions are conditioned by a conjunction of
Tmpk and that the data�parallel where construct adds a new substitution� The rules for inserting
assertions in proof outlines are given below� Contiguity between two assertions refers to the use of
the consequence rule� If S is a labeled subprogram� we denote by S� a proof outline obtained from
S by insertion of assertions� and by Lab�S� the label associated to S�

Notice that� as labeling starts at for the entire program� Tmp� thus denotes the initial context
in which S is executed�

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�E � X�X �g �i� X �� E fQg

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�X jA � Y�Y �g �i� get X from A into Y fQg

fPg S� fRg fRg T � fQg �j � Lab�S��Tmpj �	 Var�R��Var�Q�

fPg S��fRg T � fQg

�

P � P � fP �g S� fQ�g Q� � Q �j � Lab�S��Tmpj �	 Var�Q�� Var�Q��

fPgfP �g S� fQ�gfQg

fPg S� fQg Lab�S� � i! � �j � i�Tmpj �	 Var�Q�

fP �B�Tmpi���g �i� where B do �Tmpi�� � B�
fPg
S�

fQg
endfQg

fPg S� fQg

fPg S�� fQg

where S�� is obtained from S� by deleting any assertion�

Let us explain intuitively the need of restrictions of the form ��j � i�Tmpj �	 Var�Q��� In
the rule for the conditioning construct� we substitute Tmpi�� by B� We thus need that Tmpi�� �	
Var�Q� to respect the conditions of the Substitution Rule� But� as the postcondition �Q� is the
same for S and for where B do S end� we need that condition to be satis�ed for every nesting depth
greater than Lab�S��

� A small example

We go back in this section to our previous example� We want to prove the two following speci�ca�
tions�

fX ju � ��Trueg
where X�� do

X��X�� �
where X�� do

X��X��
end

end
fX j

u
� ��Trueg

fX ju � ��Trueg
where X�� do

X��X�� �
where X�� do

X��X��
end

end
fX j

u
� ��Trueg

The proofs are simply done by establishing the following proof outline � the result of the �rst
step has already been given as example in the previous section�

First proof f�Tmp� �X � � �Tmp� �X � �X ! � � X� � ���Tmp� �X � �X ! � � X� ! � �
�Tmp� �X � �X ! � � X��j

u
� �g

��� where X�� do 	Tmp� � X �

��

f�Tmp� � Tmp� � �Tmp� � Tmp��X ! � � X� � ���Tmp� � Tmp��X ! � � X� ! � �
�Tmp� � Tmp��X ! � � X��j

u
� �g

��� X��X�� �

f�Tmp� � Tmp� �X � ��X ! � � X�ju � �g

��� where X�� do 	Tmp� � X � �

f�Tmp� � Tmp� � Tmp��X ! � � X�ju � �g

��� X��X��

fX ju � �g

end

fX j
u
� �g

end

fX j
u
� �g

If we denote by P the �rst assertion of this proof outline� we only have to prove that

X j
u
� � � Tmp� � True � P�

In other words� we prove that
X ju � �� P �True�Tmp��

The assertion P �True�Tmp�� is equivalent to

f�X � � �X � �X ! ��X� � ���X � �X ! ��X� ! ���X � �X ! ��X��j
u
� �g

Let us consider an index u such that X j
u
� �� Then� the boolean expression �X � �j

u
is true�

As X ! �ju � �� ��X � �X ! � � X� � ��ju is also true�
Conditional expression

�X � � �X � �X ! � � X� � ���X � �X ! � � X� ! � � �X � �X ! � � X��ju

thus simpli�es into �X � �X ! � � X� ! �ju� which in turn simpli�es into X ! �! �ju�
Assertion P �True�Tmp�� thus simpli�es into X ! � ! �j

u
� �� which is true�

Second proof� As no simpli�cation using the value of X occurs in the �rst proof outline� the
second is almost the same� we just replace the value � by the value �� Then� if we denote by P �

the assertion obtained by substituting � by � in P � we just have to check that

X j
u
� �� P ��True�Tmp��

��

Let us consider an index u such that X ju � �� Then� the boolean expression �X � �ju is true�
But this time� as X ! �j

u
� �� ��X � �X ! � � X� � ��j

u
is false�

Conditional expression

�X � � �X � �X ! � � X� � ���X � �X ! � � X� ! � � �X � �X ! � � X��ju

thus simpli�es into �X � �X ! � � X�j
u
� which in turn simpli�es into X ! �j

u
�

Assertion P ��True�Tmp�� thus simpli�es into X ! �j
u
� �� which is true�

� Equivalence of Proof Outlines and �
�

We now want to prove that the method de�ned above is equivalent to the �� proof system� More
precisely� we want to prove the following theorem�

Theorem � Let fPg � �S fQg be a formula such that for each j � � Tmpj �	 Var�Q��

fPg S� fQgis a proof outline for S

m

�� fP�Tmp�g S fQ�Tmp�g

We actually prove the more general following fact�

Proposition 	 Let S be a subprogram labeled by i� and P and Q assertions such that �j � i�Tmpj �	
Var�Q�� Then

fPg S� fQg

is a proof outline for S if and only if

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig

We begin with the easiest part of the proof� if there exists a proof outline� then the desired
speci�cation is derivable in ���

Proof

Let S be a subprogram labeled with i� and fPg S� fQg a proof outline for S� The proof is
by induction on the length of the construction made to obtain the proof outline� We have six
cases to consider� corresponding respectively to each derivation rule for proof outlines�

� If the last rule applied was

�j � i�Tmpj �	 Var�Q�

fQ�
Vi

k��Tmpk�E � X�X �g �i� X �� E fQg
�

then� since X �	 fTmpi j i 	 Ng� we have �
� fP�Tmp� � � � ��Tmpig S fQ�Tmp� � � � ��

Tmpig�

� The second case� dealing with the communication statement� is handled exactly the same
way�

��

� If the last rule applied was

P � P � fP �g S� fQ�g Q� � Q �j � Lab�S��Tmpj �	 Var�Q� �Var�Q��

fPgfP �g S� fQ�gfQg
�

then by induction hypothesis we have �� fP ��Tmp� � � � �� Tmpig S fQ��Tmp� � � � � �
Tmpig� so the consequence rule of �� applies and gives the desired result�

� If the last rule applied was the rule for sequential composition� then there exist S� and S�
such that S � S��S�� and an assertionR such that we have the proof outlines fPg S�

� fRg
and fRg S�

� fQg� Furthermore� we know that S� and S� are labeled by the same value i�
By the rule for sequential composition in proof outlines� we have �j � i�Tmpj �	 Var R�
By induction hypothesis� we thus have

�� fP�Tmp� � � � �� Tmpig S
�
� fR�Tmp� � � � �� Tmpig

and
�� fR�Tmp� � � � �� Tmpig S

�
� fQ�Tmp� � � � �� Tmpig�

Then� the Sequencing Rule of �� applies and yields

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

� If the last used rule was

fP �g T � fQg Lab�T � � i! � �j � i�Tmpj �	 Var�Q�

fP ��B�Tmpi���g �i� where B do �Tmpi�� � B�
T �

endfQg

with P � P ��B�Tmpi���� We have �j � i! ��Tmpj �	 Var�Q�� so by induction hypoth�
esis

�� fP ��Tmp� � � � �� Tmpi � Tmpi��g T fQ�Tmp� � � � �� Tmpi � Tmpi��g

As fP � � Tmpi�� � B�Tmp� � � � �� Tmpi � Bg � fP ��Tmp� � � � �� Tmpi � Tmpi��g�
the Consequence Rule yields

�� fP � � Tmpi�� � B�Tmp� � � � �� Tmpi �Bg T fQ�Tmp� � � � �� Tmpi � Tmpi��g�

The where Rule applies and yields

�� fP � � Tmpi�� � B�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

Finally� using the Substitution Rule with B�Tmpi�� yields

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

� The last case �elimination of assertions in the proof outline	 is straightforward�

The proof of the �rst part of Proposition
 is done�

We now want to prove second part of Proposition �� The proof uses the weakest preconditions
and needs the following auxiliary result�

��

Proposition � Let Q be an assertion such that Tmpi�� �	 Var�Q�� If

WP�S� fQ�Tmp� � � � �� Tmpi��g� � fP�Tmp� � � � �� Tmpi��g�

then

WP�where B do S end� fQ�Tmp� � � � �� Tmpig� � fP �B�Tmpi����Tmp� � � � �� Tmpig�

Proof

Let ��� c� 	 WP�where B do S end� fQ�Tmp� � � � � � Tmpig�� Let ���� c� be
��where B do S end����� c�� We have ��S����� c � ��B�� � ���� c � ��B��� and ���� c� j�
fQ�Tmp� � � � � � Tmpig by the de�nition of WP � Let �� � ��Tmpi�� � ��B��� and
��
� � ���Tmpi�� � ��B��� Since Tmpi�� is an auxiliary variable� we have Tmpi�� �	 Var�S��

and

��S������ c� ��B�� � ���
�� c� ��B���

and� as Tmpi�� �	 Var�Q��

���
�� c� j� fQ�Tmp� � � � �� Tmpig�

Furthermore� ��
��Tmpi��� � ��B�� so

���
�� c � ��B�� j� fQ�Tmp� � � � �� Tmpi��g�

We can deduce that ���� c� ��B�� j� fP�Tmp� � � � �� Tmpi��g� Thus

� j� P �B�Tmp i����

As Tmpi is an auxiliary variable� we have �i�Tmpi �	 Var�S�� so ���Tmp� � � � �� Tmpi� � c

implies
��Tmp� � � � �� Tmpi� � c�

Conversely� let ��� c� 	
��
fP �B�Tmpi����Tmp� � � � �� Tmpig

��
� and �� � ��Tmpi�� � ��B���

We have
��where B do S end����� c� � ���� c��

with ��S����� c� ��B�� � ���� c� ��B���

If ��
� � ���Tmpi�� � ��B��� we also have

��where B do S end������ c� � ���
�� c��

with ��S������ c� ��B�� � ���
�� c� ��B���

As ��� c� 	
��
fP �B�Tmpi����Tmp� � � � �� Tmpig

��
� �� j� P � and as Tmpi�� �	 Var�B�� we

have ���Tmp� � � � �� Tmpi��� � c � ��B�� By hypothesis� we have thus

���
�� c � ��B�� j� fQ�Tmp� � � � �� Tmpi��g�

As Tmpi�� �	 Var�Q�� we conclude that

�� j� Q

Furthermore� �i�Tmpi �	 Var�S�� so

���Tmp� � � � �� Tmpi� � ��Tmp� � � � �� Tmpi� � c�

This concludes the proof of proposition ��

��

We can now prove the second part of Proposition ��

Proof

Let us assume that

�� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

We want to �nd a proof outline of the form

fPg S� fQg�

We construct this outline by induction on the structure of S�

� If S � X ��E� by the soundness of the proof system� we have

j� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

By the de�nition of WP � we have

fP�Tmp� � � � �� Tmpig �WP�S� fQ�Tmp� � � � �� Tmpig�

where WP�S� fQ�Tmp�� � � ��Tmpig� � fQ�Tmp�� � � ��Tmpi�E � X�X ��Tmp�� � � ��
Tmpig� Then

fPg
fQ�Tmp� � � � �� Tmpi�E � X�X �g

S
fQg

is a proof outline for S�

� The case of communication statement is handled the same way�

� If S � S��S�� Let

fP��Tmp� � � � �� Tmpig � WP�S�� fQ�Tmp� � � � �� Tmpig�

and
fP��Tmp� � � � �� Tmpig � WP�S�� fP��Tmp� � � � �� Tmpig��

As �j � i�Tmpj �	 Var�S��Var�Q�� Lemma � guarantees that �j � i�Tmpj �	 Var�P���
The premises of the rule for sequential composition are thus satis�ed� By the soundness
of ��� we have j� fP�Tmp�� � � ��Tmpig S fQ�Tmp�� � � ��Tmpig� so by the de�nition
of WP �

P � P��

Then
fPg
fP�g

S�
fP�g

S�
fQg

is a proof outline for S�

��

� Consider now the case when S � where B do T end� The weakest preconditions calculus
enables us to construct a proof

�� fP ��Tmp� � � � �� Tmpi��g T fQ�Tmp� � � � �� Tmpi��g�

where
fP ��Tmp� � � � � � Tmpi��g � WP�T� fQ�Tmp� � � � �� Tmpi��g��

By induction hypothesis�
fP �g

T �

fQg

is a proof outline for T �

But Proposition � yields

WP�S� fQ�Tmp� � � � �� Tmpig� � fP ��B�Tmpi����Tmp� � � � �� Tmpig�

Then� by the soundness of the proof system� we have

j� fP�Tmp� � � � �� Tmpig S fQ�Tmp� � � � �� Tmpig�

We conclude that P � P ��B�Tmpi��� and that

fPg
fP ��B�Tmpi���g

where B do �Tmpi�� � B�
fP �g
T �

fQg
end

fQg

is a proof outline for S�

� Discussion

We have de�ned a notion of Proof Outline for a simple data�parallel kernel language� Due to
the two�part nature of the program assertions� it works in two passes� Pass � labels labels each
instruction with its respective extent of parallelism top�down� Pass � generates the intermediate
annotations bottom�up� starting from the �nal post�condition�

Pass � amounts to a simple rewriting� It could easily be handled by some advanced text
editor� The rewriting process is slightly more complex due to the possible conict between the
vector boolean expressions denoting the current extent of parallelism and the assignments� Fresh
temporary variables Tmpi have to be introduced to save the activity contexts� Pass � is very
similar to a Proof Annotation generating system for usual� scalar Pascal�like languages� The only
di	erence lies in the slightly more complex substitution mechanism�

This similarity con�rms that validating data�parallel programs is of the same level of complexity
as validating scalar programs� This is in strong contrast with control�parallel CSP�like programs�

��

In this respect� the data�parallel programming model appears as a suitable basis for large�scale
parallel software engineering�

A number of additional remarks can be made�

� Our equivalence result could probably be adapted to other shapes of assertions� It could be
interesting to consider for instance the one�part assertions of Le Guyadec and Virot ��� where
the current extent of parallelism is kept as the value of a special � symbol�

� Our two�pass annotation method could easily be carried out mechanically and integrated in
some design"validation assistance tool� The main di
culty lies in keeping the assertions sim�
ple enough to be understood �and corrected#� by a human reader� The complex substitution
mechanism generates nested conditional expressions which should be simpli�ed on the y by
some additional tool�

� Consider a conditioned statement �i� where B do S� If the conditioned body S does not
interfere with the expression denoting the current extent of parallelism� there is no need to
introduce any auxiliary Tmpi�� variable� One can as well use the conditioning expression
B directly� This will probably result in simpler assertions� Such an optimization should
de�nitely be considered in designing any real assistance tool�

� Proof outlines can also be used for automatic program documentation� An interesting appli�
cation would be to generate annotations at certain �hot spots� in the program only� focusing
on a set of crucial program variables� This could probably serve as a basis for an interactive
tool where the user could build at the same time both the program and a �partial� proof of it�

References

��� K�R� Apt and E��R� Olderog� Veri�cation of Sequential and Concurrent Programs� Text and
Monographs in Computer Science� Springer Verlag� ��� �

��� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� On the expressivity of a weakest precon�
ditions calculus for a simple data�parallel programming language� In ConPar���	VAPP VI�
Linz� Austria� September �����

��� L� Boug�e and D� Cachera� On the completeness of a proof system for a simple data�parallel
programming language� Research Report ��$��� LIP ENS Lyon� France� December �����

��� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� A proof system for a simple data�parallel
programming language� In C� Girault� editor� Proc� of Applications in Parallel and Distributed

Computing� Caracas� Venezuela� April ����� IFIP WG � ��� North�Holland�

��� L� Boug�e and J��L� Levaire� Control structures for data�parallel SIMD languages� semantics
and implementation� Future Generation Computing Systems� �����$���� �����

��� Y� Le Guyadec� B� Virot� Axiomatic semantics of conditioning constructs and non�local control
transfers in data�parallel languages� Research Report ��$��� LIFO� Orl�eans� France� �����

��� MasPar Computer Corporation� Sunnyvale CA� Maspar Parallel Application Language Refer�

ence Manual� ��� �

��

��� N� Paris� HyperC speci�cation document� Technical Report ��$�� HyperParallel Technologies�
�����

��� Thinking Machine Corporation� Cambridge MA� C� programming guide� ��� �

��

