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In this report, we study more deeply the retiming techniques that are useful both for automatic parallelization and architecture synthesis. We recall the formalism of retiming and the main results due to Leiserson and Saxe. We propose two new optimization results: the minimization and the maximization of the number of registerless edges of a synchronous circuit. These two optimizations appear for problems such a s the software pipelining and the maximization of data locality.

Nous nous proposons dans le cadre de ce rapport d' etudier plus avant l e s techniques de retiming utiles a la fois en synth ese d'architectures et en parall elisation automatique. Nous en pr esentons le formalisme et nous rappelons les principaux r esultats obtenus par Leiserson et Saxe. Nous proposons deux nouveaux r esultats d'optimisation sur cette technique : la minimisation et la maximisation du nombre d'arcs sans registres d'un circuit synchrone. Ces deux probl emes apparaissent notamment d a n s l e cadre du pipeline logiciel et de la maximisation de la localit e des donn ees.
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R esum e

Actuellement, les techniques de parall elisation automatique comme le pipeline logiciel ou la parall elisation de boucles prennent une importance croissante. Elles visent aussi bien a exploiter les ressources disponibles dans les processeurs VLIW qu' a transformer du code s equentiel en code parall ele destin e a des langages comme HPF.

L' etude de ces techniques r ev ele que plusieurs d'entre elles mettent e n a vant un formalisme et un ensemble de probl emes connus sous le nom de retiming dans le cadre de la synth ese architecturale. Le retiming, i n troduit par Leiserson et Saxe en 1983, bien plus qu'une simple technique d'optimisation de circuits synchrones, s'av ere un outil puissant pour la manipulation de graphes. Son utilisation dans le cadre de la parall elisation automatique a pu r ev eler sa g en eralit e e n r eutilisant l e s r esultats obtenus par Leiserson et Saxe. D'autre part la mise en avant d e n o u v eaux probl emes solubles par retiming est venue con rmer son ouverture.

Nous nous proposons dans le cadre de ce rapport d' etudier plus avant les techniques de retiming. N o u s e n p r esentons le formalisme et nous rappelons les principaux r esultats obtenus par Leiserson et Saxe. Nous proposons deux nouveaux r esultats sur cette technique et nous etudions de quelle fa con ils interviennent dans le cadre de la parall elisation automatique. En n nous pr esentons les nouveaux probl emes qui se posent, puis nous concluons sur les evolutions actuelles du retiming dans le cadre de la parall elisation automatique.

Introduction

De nos jours, l'incessante mont ee en fr equence des composants et leur complexit e croissante s'approchant p a s a pas des limites physiques des mat eriaux utilis es imposent la mise en uvre d'optimisations a tous les niveaux de la conception d'un circuit.

C'est dans ce cadre que Leiserson et Saxe introduisirent en 1983 une technique souple et robuste pour l'optimisation de circuits qu'ils d esign erent s o u s l e n o m d e retiming (voir LS91]). D'une mise en uvre simple, le retiming se fonde sur la mobilit e d e s el ements de synchronisation (ou registres) d'un circuit a n d'en modi er les propri et es sans a ecter son comportement fonctionnel.

Consistant donc en une relocalisation temporelle des parties fonctionnelles du circuit, le retiming a ecte en cons equence plusieurs caract eristiques de celui-ci.

La premi ere et la plus importante est d esign ee sous le nom de p eriode d'horloge et poss ede une in uence directe sur la fr equence maximale de fonctionnement d'un circuit. Le probl eme consistant a atteindre la p eriode d'horloge minimale (c'est-a-dire la fr equence maximale) r ealisable par retiming a et e r esolu e cacement par Leiserson et Saxe. Ils ont m o n tr e qu'il pouvait s'exprimer sous forme d'arcs suppl ementaires dans le graphe repr esentant le circuit, permettant ainsi de le combiner a d'autres crit eres.

La seconde caract eristique g en eralement c o n s i d er ee dans la mise au point d'un circuit est son nombre total de registres, in uant d e f a con evidente sur sa consommation et sa taille. L a encore, le retiming permet de modi er cette quantit e et ainsi de gagner en espace et en puissance. Leiserson et Saxe ont egalement p r o p o s e une r esolution e cace de ce probl eme, avec ou sans contrainte sur la p eriode d'horloge.

En n, de nombreuses recherches ont et e consacr ees a l ' i n t egration des techniques de retiming dans le cadre complexe de la synth ese de circuits. Selon les cas, des optimisations [START_REF] Leiserson | Retiming Synchronous Circuitry[END_REF]) ont p u être trouv e e s o u a u c o n traire des preuves de complexit e s o n t v enues con rmer la di cult e d e l a conception d'un circuit optimal vis-a-vis de multiples crit eres ( dFAK + 96]).

Pourtant i l s e m ble l egitime de se demander si toutes les possibilit es du retiming ont et e exploit ees. En e et, d'un point de vue plus global, le retiming appara^ t plus comme une technique de graphe que comme une m ethode d'optimisation sp eci que aux circuits synchrones. De plus nous pouvons constater qu'il intervient e ectivement hors de son cadre d'origine, entre autres dans de nombreuses techniques de parall elisation automatique. C'est pourquoi nous nous int eressons ici a deux nouveaux crit eres d'optimisation de graphes par retiming, tous deux d epourvus de sens dans le cadre de la synth ese d'architectures, mais qui se r ev elent tout a fait int eressants en parall elisation automatique.

Tout d'abord nous etudierons le probl eme de la minimisation du nombre d'arcs de poids nul d'un graphe par retiming. N o u s v errons que ce probl eme d ej a evoqu e dans CDR96] etait connu comme polynomial mais, jusqu'alors, n' etait pas r esolu autrement que par programmation lin eaire. Nous proposerons alors un algorithme de graphe e cace pous la r esolution de ce probl eme, permettant d'obtenir une meilleure complexit e que celle de la solution pr ec edente. Nous verrons egalement qu'il est possible d'ajouter a c e p r o b l eme une contrainte sur la p eriode d'horloge du graphe apr es retiming tout en restant e cace.

Nous etudierons ensuite le probl eme inverse, c'est-a-dire la maximisation du nombre d'arcs de poids nul par retiming. Une variante de ce probl eme autorisant un retiming non l egal est propos ee dans DR93] ainsi qu'une preuve de NP-compl etude au sens faible de ce sous-probl eme. Nous prouvons ici que le probl eme est NP-complet au sens fort dans tous les cas (retiming l egal ou non) g en eralisant e t c o m p l etant ainsi le r esultat de Darte et Robert.

Nous verrons en n un certain nombre d'applications en parall elisation automatique faisant appara^ tre un de ces deux probl emes et illustrant l e u r i n t erêt. Nous commencerons par le pipeline logiciel, qui fait partie d'un ensemble de techniques visant a exploiter le parall elisme contenu dans le corps des boucles. A l'heure actuelle, avec l'apparition de processeurs superscalaires ou plus r ecemment VLIW (Very Long Instruction Word), ces techniques prennent une importance croissante. Le but ici est de d eterminer un ordre d'ex ecution des op erations permettant de conserver la s emant i q u e d u r esultat tout en maximisant l e n o m bre d'op erations ex ecut ees a l a m ême date (c'est-a-dire en parall ele).

La s emantique est pr eserv ee en proc edant a une analyse des d ependances entre instructions, c'est-a-dire de l'ordre partiel d'ex ecution impos e par leurs e ets de bord a n de garantir le r esultat. L'ensemble de ces d ependances peut être repr esent e par un graphe appel e graphe de d ependance dont la manipulation servira a d eterminer un ordonnancement v alide des op erations (un ordre d'ex ecution respectant l a s emantique du code original).

Il s'av ere que la repr esentation choisie ainsi que la formulation d'un ordonnancement font ap-para^ tre l'expression d'un retiming agissant sur la valeur des d ependances. Ainsi il est possible d'en d eduire de nouveaux crit eres d'optimisation permettant la mise en parall ele du maximum d'op erations par retiming. Ces crit eres d'optimisation partagent certains r esultats utilis es pour les circuits synchrones (minimisation de la p eriode d'horloge), mais mettent egalement e n a vant d e nouveaux objectifs a atteindre (comme la minimisation du nombre total d'arcs de poids nul).

Nous consid ererons ensuite le cas de la maximisation du nombre d'arcs de poids nul qui intervient dans plusieurs techniques de maximisation de la localit e des donn ees. Cette localit e e s t d'une importance cruciale pour deux raisons : d'une part elle permet de maximiser l'utilisation de la m emoire cache et ainsi d' eviter de coûteux acc es m emoire, d'autre part dans le cadre du parall elisme sur machines a m emoire distribu ee elle est d'autant plus importante qu'un acc es non local correspond a une communication, c'est-a-dire a une perte d epassant largement celle des acc es m emoire.

En n nous parlerons de r ecentes recherches qui semblent s ' être int eress ees a l'extension des techniques de retiming. Nous pouvons citer, entre autres, PS96] o u l e retiming devient m ultidimensionnel a n de saturer un nombre de ressources plus important, ou SC93] o u l e retiming est combin e a u n d eroulage du graphe de d ependance a n de minimiser l'ordonnancement nal.

Finalement, le retiming appara^ t comme un point de jonction entre plusieurs domaines plus ou moins eloign es les uns des autres. D'un point de vue global il semble intervenir dans un ensemble de techniques de manipulation du temps relatif entre diverses tâches.

Nous tenterons donc dans le cadre de notre etude de pr esenter ses di erentes facettes en donnant u n a p e r cu des divers domaines dans lesquels il intervient. En r esum e, ce rapport sera organis e suivant le plan suivant. Nous commencerons par rappeler en section 2 les bases historiques et le formalisme du retiming, ainsi que les principaux objectifs qu'il permet d'atteindre. Nous pr esenterons alors deux nouveaux r esultats sur cette technique, a s a voir un algorithme de graphe e cace pour la minimisation du nombre d'arcs de poids nul par retiming dans la section 3, et une preuve d e forte NP-compl etude du probl eme inverse, la maximisation du nombre d'arcs de poids nul par retiming, dans la section 4. Nous verrons alors, en section 5, comment l e retiming s'est etendu a d'autres domaines et nous illustrerons l'utilit e des nouveaux probl emes mis en evidence dans les sections pr ec edentes, en n nous compl eterons notre etude par une discussion sur l' etat actuel de cette technique et sur les perspectives de recherches qu'elle continue d'o rir.

Introduction aux techniques de retiming

Notre objectif dans cette section est de pr esenter, de mani ere g en erale et si possible synth etique, l'ensemble des techniques de retiming intervenant dans l'optimisation de circuits et la parall elisation automatique. Nous souhaitons egalement donner des pistes plus d etaill ees destin ees au lecteur int eress e, ainsi que les voies de recherche encore ouvertes.

Les techniques de retiming ont et e i n troduites par E. Leiserson et J.B. Saxe [START_REF] Gondran | Graphes et algorithmes, v olume 37 of Collection de la direction des etudes et recherches d' electricit e d e f r ance[END_REF]) dans le cadre de la synth ese architecturale et plus pr ecis ement de l'optimisation de circuit, elles sont fond ees sur la mobilit e d e s el ements de synchronisation, ou registres, et permettent l ' a m elioration d'un circuit rapidement con cu o rant ainsi un meilleur compromis temps de d eveloppement / performance.

La simplicit e et l'e cacit e d u retiming ont permis son evolution rapide et son int egration dans la synth ese r eelle de circuit [START_REF] Leiserson | Retiming Synchronous Circuitry[END_REF]) grâce a un certain nombre d'optimisations des techniques initiales.

Nous pr esentons donc dans un premier temps le principe et le formalisme utilis es dans la mise en uvre du retiming. N o u s v errons ensuite quels sont l e s c r i t eres d'optimisation des circuits synchrones et comment les satisfaire par retiming. En n nous pr esenterons deux probl emes de retiming encore ouverts dont nous apporterons la r esolution dans les sections suivantes.

Principe et formalisme

Nous nous int eressons ici au principe du retiming, e t n o u s i n troduisons les notations utilis ees par la suite. Nous commen cons par une pr esentation des circuits synch r o n e s e t d e l e u r r e p r esentation telle qu'elle appara^ t dans LS91], sur lesquels nous appliquerons le retiming proprement dit. 

Circuits synchrones
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Fig. 1: Un exemple de circuit la somme maximale des d elais des unit es fonctionnelles pr esentes sur un chemin sans registres du circuit. Nous verrons que la p eriode d'horloge d'un circuit est d'une importance cruciale pour de nombreux probl emes de retiming, en particulier, pour les circuits synchrones, elle correspond a une borne a l a f r equence maximale d'horloge pouvant être utilis ee.

Retiming

Le retiming est une technique agissant sur les registres d'un circuit synchrone. Plus pr ecis ement, il d e nit une redistribution de l'ensemble des registres du circuit correspondant directement a u n d ecalage dans le temps de l'ex ecution de ses di erentes parties (le retiming s'av ere equivalent a une technique connue sous le nom de d erive d'horloge permettant de mieux cerner cet aspect temporel, cf. MS98]). D e nir un retiming consiste donc a assigner a c haque unit e fonctionnelle une valeur repr esentant la quantit e de temps, en termes de tops d'horloge, par laquelle son ex ecution est retard ee par rapport a l'ex ecution de l'ensemble du circuit (ou avanc ee dans le cas d'une valeur n egative).

Formellement, nous d e nissons le retiming par une application q de l'ensemble des sommets du circuit dans Z. Nous lui associons le poids des arcs apr es retiming, w q , d e ni de la mani ere suivante : 8e = ( u v) 2 E w q (e) = q(v) ; q(u) + w(e). A n de conserver une signi cation physique en tant que circuit au graphe, nous imposons w q (e) 0 pour tout arc e 2 E. U n retiming v eri ant cette condition sera dit l egal. La gure (2) illustre les e ets du retiming.

3 3 3 3 7 7 7 0 1 2 3 4 5 7 6 q(V )=0 q(V )=-1 q(V )=-2 8 q(V )=-1 q(V )=-1 q(V )=-2 q(V )=-2 q(V )=0
Fig. 2: Un retiming du circuit pr ec edent Nous pouvons constater que le retiming poss ede une in uence evidente d'une part sur la p eriode d'horloge d'un circuit et d'autre part sur son nombre total de registres. De plus, Leiserson et Saxe ont montr e non seulement q u e l e retiming ne modi ait pas le comportement fonctionnel d'un circuit, mais aussi qu'il s'agissait de la transformation la plus g en erale fond ee sur une modi cation du nombre de registres par arc ne modi ant pas ce comportement.

Optimisation des circuits synchrones

Nous rappelons ici les principaux crit eres d'optimisation d'un circuit synchrone pouvant être atteints par le biais du retiming. Ces optimisations sont a l'heure actuelle largement i n t egr ees dans la synth ese de circuits, mais nous verrons n eanmoins que la combinaison du retiming avec d'autres techniques d'optimisation de circuit peut faire exploser la complexit e de l'ensemble.

Minimisation de la p eriode d'horloge

La premi ere optimisation, et sans doute la plus importante, est la recherche d'un retiming minimisant l a p eriode d'horloge du circuit et donc permettant son utilisation a de plus hautes fr equences. Comme nous l'avons vu, le retiming agit sur le poids des arcs d'un graphe, il a donc une in uence evidente sur la p eriode d'horloge du circuit. La minimisation de celle-ci par retiming a et e r esolue de fa con e cace par Leiserson et Saxe dans leur papier original [START_REF] Gondran | Graphes et algorithmes, v olume 37 of Collection de la direction des etudes et recherches d' electricit e d e f r ance[END_REF]), nous en rappelons ici bri evement le principe.

La minimisation de la p eriode d'horloge d'un circuit se r ealise par une recherche dichotomique d'une p eriode r ealisable parmi les p eriodes possibles. La premi ere etape consiste donc a être capable de d eterminer si une p eriode d'horloge donn ee est r ealisable ou non, c'est-a-dire être capable de trouver un retiming, s'il en existe un, tel que le graphe apr es retiming ait la p eriode d'horloge souhait ee. Ceci s'obtient en remarquant deux faits :

{ le nombre total de registres sur un ch e m i n n e v arie que suivant l e retiming de ses extr emit es.

Nous notons par W(u v) = m i n fw(p)ju p vg le poids minimal d'un chemin entre deux sommets u et v, nous avons alors W q (u v) = W(u v) + q(v) ; q(u)

{ l e d elai induit par un chemin est invariant par retiming (en e et le retiming n'agit pas sur les d elais des n uds). Nous notons D(u v) = m a x fd(p)ju p v et w(p) = W(u v)g le d elai maximal induit par un chemin de poids minimal entre deux sommets u et v, nous avons alors D q (u v) = D(u v).

Il s'agit alors d'imposer un poids non nul sur tout chemin de poids minimal dont l e d elai maximal d epasse la p eriode d'horloge. L'id ee consiste a traduire ceci sous forme d'arcs suppl ementaires.

Plus formellement, si c est la p eriode d'horloge souhait ee, pour tout chemin u p v E, tel que D(u v) > c nous imposons W(u v) 1 e n a j o u t a n t un arc de poids W(u v) ; 1 e n tre u et v. Il est facile de voir que l'ensemble des p eriodes d'horloge possibles est inclus dans l'ensemble des d elais de chemin possibles, plus pr ecis ement il est possible de limiter la recherche a l'ensemble des valeurs de D(u v). Pour trouver le retiming minimisant l a p eriode d'horloge, il su t donc d'e ectuer une recherche dichotomique dans cet ensemble, en utilisant la proc edure pr ec edente.

Finalement l'ensemble de l'algorithme d etermine un retiming minimisant l a p eriode d'horloge en O(jV jjEj logjV j) ( o u jEj est en fait born e par jV j 2 apr es l'ajout des arcs d'horloge).

Minimisation du nombre de registres

Lors de la synth ese d'un circuit, minimiser le nombre total de registres revient a minimiser la taille de la m emoire n ecessaire a c e c i r c u i t , e t p r esente donc un certain int erêt. De même que la p eriode d'horloge, la minimisation du nombre de registres par retiming a et e r esolue par Leiserson et Saxe lorsqu'ils ont i n troduit les techniques de retiming.

La minimisation du nombre de registres par retiming revient a minimiser la somme de quantit es locales a c haque sommet. Plus pr ecis ement, le nombre global de registres introduit par un retiming sur l'ensemble des arcs incidents a un sommet est egal a l a v aleur du retiming sur ce sommet multipli e par la di erence entre le nombre d'arcs entrant et le nombre d'arcs sortant de ce sommet. Nous voulons donc : min

X v2V q(v)(d + (v) ; d ; (v))
Le probl eme s'exprime alors sous forme de programme lin eaire dont le dual r ev ele un probl eme de ot de coût minimum, soluble en temps polynomial. Il s' etend facilement au probl eme de minimisation du nombre de registres soumis a une contrainte sur la p eriode d'horloge en ajoutant les arcs suppl ementaires correspondants.

Mise en uvre

La mise en pratique des algorithmes pr esent es pr ec edemment implique souvent l'introduction d'un certain nombre d'optimisations. L' elimination de variables inutiles et de contraintes redondantes permet une nette am elioration des temps de calcul, comme le montrent M a h e s h wari et Sapatnekar dans MS98]. En particulier la redondance de certains arcs d'horloge, que Leiserson et Saxe avaient d ej a m i s e e n a vant, est d etaill ee dans cet article ainsi que les possibilit es d'exploiter la mobilit e limit ee de certains registres.

En revanche, la combinaison du retiming a d'autres techniques d'optimisation de circuit, que nous pourrons appeler retiming g en eralis e, donne souvent naissance a des probl emes NP-complets, par exemple lors de la combinaison du retiming avec la r epartition temporelle des op erateurs (ou time folding), ou encore avec le multiplexage (voir dFAK + 96]).

Variantes

Il semble que les besoins en retiming dans le cadre de la synth ese d'architectures se limitent, a l'heure actuelle, aux probl emes de minimisation de la p eriode d'horloge et/ou du nombre total de registres.

Des variantes existent, l a encore introduites par Leiserson et Saxe, consistant principalement a prendre en compte un coût de mise en place de registres par arc, ou encore des d elais de propagation non uniformes au sein des op erateurs. Nous ne d etaillerons pas ces autres points qui sortent du cadre de cette etude.

Nouveaux crit eres d'optimisation

Nous pr esentons dans cette section deux nouveaux probl emes de retiming encore ouverts dont nous proposons la r esolution en sections 3 et 4.

Comme nous allons pouvoir le constater, ces crit eres d'optimisation semblent i n utiles dans le cadre de l'optimisation des circuits synchrones, n eanmoins nous verrons en section 5 qu'ils interviennent non plus en synth ese d'architectures mais en parall elisation automatique. Nous pouvons constater que ces deux crit eres n'ont apparemment aucun sens dans le cadre de la synth ese architecturale, de plus ils ne correspondent a rien de connu en mati ere de retiming, dans les deux cas ni la p eriode d'horloge (ici les d elais ne sont pas pris en compte), ni le nombre maximal ou minimal de registres (resp. 4 et 7 sur l'exemple) ne sont impliqu es dans la r esolution des probl emes associ es.

Il s'agit donc bien de deux probl emes nouveaux intervenant d a n s u n c a d r e d i erent de la synth ese d'architecture que nous nous proposons de r esoudre.

3 Minimisation du nombre d'arcs de poids nul Nous traitons, dans cette partie, de l'utilisation des techniques de retiming dans le cadre de la minimisation du nombre d'arcs de poids nul d'un graphe. Comme nous le verrons en section 5.2.1, la r esolution de ce probl eme s'av ere utile a la mise en place d'heuristiques de pipeline logiciel.

Nous allons pouvoir constater que l'expression du probl eme sous forme de programme lin eaire nous montre qu'il est polynomial (car la matrice du programme est totalement unimodulaire). Plus exactement, en ecrivant astucieusement le dual du programme en question, nous d ecouvrons un probleme de ot de coût minimal dont la resolution est connue. N eanmoins la fonction de coût particuli ere a prendre en compte dans notre cas complique le probl eme. En e et, comme nous allons le voir, une r esolution directe du probl eme obtenu par un algorithme classique ne fournit pas la solution la plus e cace.

Nous pr esentons donc dans un premier temps un algorithme d eduit directement du programme lin eaire initial r esolvant le probl eme en O(jV jjEj 2 ). Nous proposerons ensuite un algorithme de type primal-dual, moins naturel mais plus e cace, r esolvant le probl eme en O(jEj 2 ). Nous montrerons egalement comment c o m biner la minimisation de la p eriode d'horloge et la minimisation du nombre d'arcs de poids nul du graphe.

Formulation du probl eme

Etant d o n n e un graphe pond er e G = ( V E d w), le probl eme consiste a trouver un retiming q : V ! Z tel que : 8u e ! v 2 E q(v) ; q(u) + w(e) 0 (retiming l egal)

(1) et jfe 2 E j w q (e) = 0 gj soit minimal

(2) Notre but est ici de rendre la fonction objective (la quantit e a minimiser) lin eaire a n de pouvoir utiliser un certain nombre de r esultats connus (programmation lin eaire). Pour cela nous l'exprimons sous forme de coût dans lequel nous comptons les arcs de poids nul seulement. Nous d e nissons donc le coût d'un arc comme une application v : E ! N pour laquelle nous cherchons a obtenir une valeur v(e) strictement positive sur les arcs e de poids nul et nulle sur les autres. En imposant : 8u e ! v 2 E q(v) ; q(u) + w(e) 0

(3) q(v) ; q(u) + w(e) + v(e) 1 (4) et en minimisant P e2E v(e), nous obtenons le r esultat voulu (voir CDR96]). En e et, pour chaque arc, la contrainte (3) impose a q d'être l egal, tandis que la contrainte (4) impose soit un poids non nul apr es retiming, soit une valeur non nulle de v. T rouver q et v de telle sorte que P e2E v(e) soit minimal revient d o n c a trouver un retiming q rendant le nombre d'arcs de poids nul du graphe minimal.

Ici l'id ee de simpli er les contraintes pr ec edentes en :

8u e ! v 2 E q(v) ; q(u) + w(e) + v(e) 1

(5)

0 v(e) 1 (6) 
comme nous pouvons le voir dans CDR96] s e r ev ele mauvaise. En e et dans ce cas, le passage au dual, que nous d etaillons dans la suite, fait appara^ tre une expression de la fonction objective plus complexe dont l a r esolution s'av ere ardue (les auteurs de CDR96] etaient d'ailleurs rest es bloqu es sur ce probl eme).

L'ensemble des contraintes pr ec edentes ((3) et (4)) ainsi que la fonction objective min P e2E v(e) constituent un programme lin eaire pouvant s ' ecrire sous forme matricielle de la fa con suivante : min q v ; 0 1 ; q v 0 C C Id Id 0 ; 0 1 ; w ;w

o u C est la matrice de connexion de G, e t q v w sont l e s v ecteurs associ es respectivement aux applications q v w. Le probl eme dual peut s'exprimer par ( dW90], p.33-34) :

max 8 < : ; 0 1 ; w ;w 0 @ x y z 1 A 0 C C Id Id 0 0 @ x y z 1 A = ; 0 1 0 @ x y z 1 A 0 9 = (8)
ou encore min f(w ; 1)y + wz j C(y + z) = 0 0 y 1 z 0g

La contrainte C(y + z) = 0 impose a la quantit e f = y + z d'être un ot, c'est-a-dire :

8v 2 V X ? e !v2E f(e) = X v e !?2E
f(e)

Les contraintes y 0 e t z 0, limitent notre recherche aux ots positifs ou nuls que, par la suite, nous appellerons \ ots admissibles".

Nous pouvons egalement remarquer que la connaissance du ux dans un arc e permet de d e nir sans ambigu t e y(e) e t z(e) de telle sorte que le coût de f soit minimal : en e et, on montre sans di cult es que f(e) > 0 ) y(e) = 1 .

Un algorithme na f

La formulation pr ec edente du probl eme comme recherche d'un ot f = y + z de coût minimal nous conduit a distinguer pour chaque arc deux ux y(e) e t z(e) d e c o ût di erent, et soumis a des contraintes di erentes sur leurs valeurs. En d'autres termes cela revient a rechercher un ot de coût minimal dans un graphe G 0 = ( V E 0 d w 0 ) d eduit de G en doublant les arcs de E de la mani ere suivante : 8u e ! v 2 E 8 < :

e 1 e 1 2 E 0 w 0 (e 1 ) = w(e) ; 1 w 0 (e 1 ) = w(e) c(e 1 ) = 1 c (e 1 ) = 1 o u c repr esente la capacit e d'un arc (c'est-a-dire la quantit e de ux qu'il peut recevoir).

Le probl eme ainsi transform e s e r esoud de mani ere e cace par la plupart des algorithmes de recherche de ot de coût minimal avec capacit e, nous en pr esentons un en O(jV jjEj 2 ) en annexe.

Un algorithme primal-dual

Nous pr esentons ici un algorithme de type primal-dual (jouant s u r l ' ecart de coût d'un couple de solutions admissibles, l'une primale, l'autre duale). Cet algorithme est adapt e d'un algorithme de recherche de ot de coût minimal, connu sous le nom d'algorithme des arcs non conformes ( GM85], p. 152), et dû a F ulkerson (1961).

Soient G = ( V E w) un graphe pond er e sur ses arcs seulement, q : V ! Z un retiming l egal de G, e t f : E ! N un ot admissible de G.

Nous d e nissons pour chaque arc u e ! v 2 E deux quantit es : w q (e) = q(v) ; q(u) + w(e) (10) v(e) = 1 si w q (e) = 0 0 sinon (11) La premi ere, w q (e), correspond au poids d'un arc apr es retiming par q, la seconde, v(e), est la valeur minimale v eri ant (4) et caract erisant l e c o ût du retiming q.

Nous dirons que q est optimal lorsque P e2E v(e) est minimal, c'est-a-dire lorsque q minimise le nombre d'arcs de poids nul de G.

Condition d'optimalit e

Nous montrons ici qu'il existe une relation entre q et f, qui repr esentent respectivement une solution du probl eme primal et une solution du probl eme dual. Plus pr ecis ement, nous montrons que coût(q) coût(f) et qu'il y a egalit e a l'optimal.

Soit C f le multicycle d e ni par f (tout ot peut se d ecomposer en combinaison lin eaire des cycles el ementaires du graphe, GM85], p. 135). Nous montrons que le coût d'un ot est ind ependant d'un retiming du graphe : proposition 1 P e2C f f(e)w(e) = P e2C f f(e)w q (e):

preuve :la preuve s e t r o u v e en annexe.

Ceci nous permet de montrer la proposition suivante, mettant en relation le coût de q et celui de f : ic(e) = v(e) si f(e) = 0 v(e) ; 1 + f(e)w q (e) sinon ic(e) exprime pour chaque arc e l' ecart de coût entre q(e) e t f(e).

proposition 3 8e 2 E ic(e) = 0 ) q est optimal.

preuve :la preuve se trouve en annexe.

Nous obtenons donc une borne inf erieure au coût du retiming, nous verrons par la suite, avec l'algorithme, que cette borne est atteinte. Cette caract erisation des solutions d'un probl eme par rapport a celles de son dual est egalement c o n n ue sous le nom de th eor eme des ecarts compl ementaires en programmation lin eaire et peut être exprim ee en termes de solutions admissibles des programmes (7) et (8).

Caract erisation des arcs

Comme nous l'avons vu, nous obtenons un retiming optimal lorsque tous les arcs ont un indice de conformit e n ul, etudions a p r esent sous quelles conditions cela se produit.

Si nous tra cons pour un arc e quelconque l'ensemble des couples (f(e) w q (e)) pour lesquels ic(e) = 0, nous obtenons le diagramme de la gure (6), que nous appellerons diagramme de conformit e d e e. Comme illustr e sur ce diagramme, nous assignons a c haque arc e un type suivant l e s v aleurs de w q (e) e t f(e), et nous appellerons arcs conformes les arcs pour lesquels ic(e) = 0 :

Type 1 : w q (e) > 1 et f(e) = 0 Type 3 : w q (e) = 1et f(e) = 0 Type 4 : w q (e) = 1et f(e) = 1 Type 6 : w q (e) = 0et f(e) = 1 Type 7 : w q (e) = 0et f(e) > 1

9 > > > > = > > > > arcs conformes
Type 2 : w q (e) > 0 et f(e) > 1 ou w q (e) > 1 et f(e) > 0 Type 5 : w q (e) = 0et f(e) = 0 9 = arcs non conformes Nous en d eduisons que si tous les arcs sont conformes, c'est-a-dire si ic(e) = 0 pour tout arc e, alors nous sommes a l'optimal.

Nous pouvons de plus constater que pour tout arc conforme e, il est possible de faire varier w q (e) o u f(e) Tout le probl eme est donc de faire baisser l'indice de conformit e des arcs de type 5, sans faire monter celui des autres arcs. Pour cela, nous assignons a c haque type d'arc une couleur repr esentative des degr es de libert e dont il dispose : { noir pour les arcs de type 3,5 et 6 (f(e) e t w q (e) p e u v ent augmenter seulement) { v ert pour les arcs de type 2 et 4 (f(e) e t w q (e) p e u v ent diminuer seulement) { rouge pour les arcs de type 7 (f(e) peut augmenter ou diminuer, w q (e) ne peut pas varier) { incolore pour les arcs de type 1 (f(e) n e p e u t p a s v arier, w q (e) peut augmenter ou diminuer). 

Complexit e

La recherche du cycle ou du cocycle du lemme de Minty peut se faire par une proc edure de marquage en O(jEj) ( v oir la preuve dans GM85], p.158-159). Comme au moins un arc non conforme devient conforme a c haque it eration, le nombre d'it erations de l'algorithme est major e par le nombre d'arcs de poids nul du graphe initial, que nous pouvons encore majorer par jEj, ce qui nous donne une complexit e nale en O(jEj 2 ). note : L'impl ementation de l'agorithme peut être optimis ee en ne consid erant pour la minimisation que les composantes fortement connexes du graphe. En e et si le graphe n'est pas fortement connexe, apr es avoir minimis e par retiming le nombre d'arcs de poids nul des composantes fortement connexes, il est toujours possible de rendre non nul le poids des arcs les reliant en ajustant par une constante les valeurs de retiming de chacune d'elles.

Prise en compte de la p eriode d'horloge

Il s'agit maintenant de minimiser le nombre d'arcs de poids nul, pour une p eriode d'horloge donn ee. Rappelons que (G) r e p r esente la p eriode d'horloge de G, e t etudions les modi cations a apporter au programme lin eaire initial.

Interpr etation des contraintes

Aux contraintes (3) et (4) s'ajoute maintenant une nouvelle contrainte entre les paires de sommets du graphe entre lesquelles le d elai du plus long chemin d epasse la p eriode d'horloge. En e et un tel chemin devra contenir au moins un registre :

8(u v) 2 V 2 D (u v) > (G) ) q(v) ; q(u) + W(u v) 1 (12)
Cela correspond a l a c r eation de nouveaux arcs de poids W(u v) ; 1 e n tre toutes les paires de sommets (u v) telles que D(u v) > (G). Si nous notons E clock l'ensemble de ces nouveaux arcs, C clock la matrice d'incidence de E clock , E 0 = E E clock , e t C 0 la matrice d'incidence de E 0 , cela se traduit par la modi cation du programme lin eaire initial (7) en :

min q v ; 0 1 ; q v 0 C C C clock Id Id 0 0 ; 0 1 ; w ;w 1 ; W (13) 
Ce qui, en passant au dual, donne :

max 8 > > < > > : 0 B B @ 0 1 ; w ;w 1 ; W 1 C C A ; x y z t 0 C C C clock Id Id 0 0 0 B B @ x y z t 1 C C A = ; 0 1 0 B B @ x y z t 1 C C A 0 9 > > = > > (14) 
c'est-a-dire min f(w ; 1)y + wz + ( W ; 1)t j C(y + z) + C clock t = 0 0 y 1 z 0 t 0g

En notant y 0 z 0 et t 0 les prolongements respectifs de y z et t dans E 0 par l'ajout d'un nombre su sant de 0 (c'est-a-dire en consid erant le ot dans le graphe de d epart compl et e par les arcs d'horloge), cela revient a imposer a f = y 0 + z 0 + t 0 d'être un ot positif de G 0 = ( V E 0 ).

Nous pouvons remarquer que bien que les nouveaux arcs (que nous appellerons arcs d'horloge) n'aient pas d'incidence sur le coût du retiming, ils in uent sur le coût du ot.

Modi cation de l'algorithme

Nous allons voir maintenant comment i n t egrer ces nouveaux el ements a l'algorithme de mani ere a obtenir pour les nouveaux arcs une coloration compatible avec les couleurs d e nies pr ec edemment.

Le probl eme se pose d esormais de la mani ere suivante : etant donn e un graphe pond er e G = (V E d w) le probl eme consiste a trouver un retiming q : V ! Z et une application v : E ! N, tels que q soit valide dans G 0 = ( V E 0 d w ), o u E clock = f(u v)jD(u v) > (G)g, E 0 = E clock E et o u w est red e ni sur E 0 de la fa con suivante : w(e) = w(e) si e 2 E W(u v) ; 1 si e 2 E clock . En nous fondant sur les constatations pr ec edentes, nous modi ons l'indice de conformit e des arcs a n de prendre en compte ces modi cations :

8e 2 E 0 i c (e) = preuve :la preuve s e t r o u v e en annexe.

Nous en d eduisons une nouvelle condition d'optimalit e t e n a n t compte des arcs d'horloge.

proposition 5 8e 2 E 0 i c (e) = 0 ) q est optimal, de plus (G q ) = ( G).

preuve :la preuve s e t r o u v e en annexe.

Nous pouvons alors tracer le diagramme de conformit e pour les arcs de E Clock , et leur assigner un type de la fa con suivante :

Type 1 : w q (e) > 0 et f(e) = 0 Type 3 : w q (e) = 0et f(e) = 0 Type 4 : w q (e) = 0et f(e) > 0 

Positionnement du probl eme

Nous pouvons enoncer le probl eme de maximisation par retiming du nombre d'arcs de poids nul de la mani ere suivante :

Null-Weighted Edges Maximization : Instance : Un graphe dirig e G = ( V E w) e t u n e n tier positif K, o u V est l'ensemble des sommets du graphe, E 2 V 2 , son ensemble d'arcs, et w : E ;! N une pond eration des arcs. Question : Existe-t-il un retiming q : V ;! Z l egal (i.e. tel que 8e = ( u v) 2 E w q (e) = q(v) ; q(u) + w(e) 0), tel que jfe 2 E j w q (e) = 0 gj K ?

Le probl eme appartient a N P , en e et etant donn e u n retiming de G, il existe un retiming g en erant l e m ême nombre d'arcs de poids nul dont l e s v aleurs sont comprises entre 0 et le poids maximal d'un chemin du graphe (il su t de consid erer le graphe acyclique des arcs de poids nul a g en erer). Ce retiming constitue un certi cat polynomial de l'instance (puisque ses valeurs sont born ees par la somme des poids du graphe).

NP-compl etude

Nous d emontrons la NP-compl etude de Null-Weighted Edges Maximization en r eduisant polynomialement Not-All-Equal 3sat (c.f. GJ79], p.259) a ce probl eme. Nous en rappelons ici la formulation : Not-All-Equal 3sat : Instance : Un ensemble U = fu 1 : : : u n g de variables bool eennes et C = fc 1 : : : c m g de clauses sur U (pour toute variable u 2 U, on appelle u et u des litt eraux sur U, une clause sur U est un ensemble de litt eraux sur U), tels que pour chaque clause c 2 C jcj = 3 . Question : Existe-t-il une a ectation de v erit e p o u r U (i.e. une fonction t : U ;! f T Fg, e n posant t( u) = V si t(u) = F et t( u) = F si t(u) = V ) tel que chaque clause dans C ait au moins un litt eral vrai (c'est-a-dire a, tel que t(a) = V ) e t u n l i t t eral faux (c'est-a-dire b, tel que t(b) = F) ?

Transformation

Soit une instance de Not-All-Equal 3sat, c'est-a-dire la donn ee de U et C, n o u s d e nissons une transformation f(U C) = ( G K) d e ( U C) en instance de Null-Weighted Edges Maximization de la mani ere suivante : { nous partons de G = ( V E), avec V = et E = { pour chaque variable u 2 U, V = V fu ug, E = E f(u u) ( u u )g et w(u u) = w( u u) = 1 

R eduction

Soit une instance, (U C), de Not-All-Equal 3sat, a vec (G K) = f(U C). Si (U C) est un instance positive d e Not-All-Equal 3sat, soit une a ectation de v erit e, t, correspondant, et pour toute variable u 2 U, q(u) = 1 si t(u) = V 0 si t(u) = F q( u) = 1 ; q(u) alors f(U,C) est une instance positive d e Null-Weighted Edges Maximization : { q est un retiming l egal de G : en e et pour tout arc e = ( u v), q(v) ; q(u) ; 1, d'o u w q (e) = q(v) ; q(u) + w(e) 0 puisque tous les arcs de G ont pour poids 1 { jfe 2 E j w q = 0 gj = K : { pour toute variable u 2 U, q(u) ; q( u) = 1 d o n c s o i t w q (u u) = 0 e t w q ( u u) = 2 , soit w q (u u) = 2 e t w q ( u u) = 0, donc n arcs de poids nul g en er es par l'ensemble des variables { pour toute clause c = fa b cg 2 C, au moins un litt eral est vrai et un faux, donc il existe deux litt eraux, par exemple a et b tels que q(a) = q(b) e t q(a) ; q(c) = q(b) ; q(c) = 1. Donc aucun arc nul entre a et b, u n e n tre a et c, e t u n e n tre b et c, c'est-a-dire deux arcs nuls par clause, soit 2m pour l'ensemble des clauses.

au total 2m + n = K arcs de poids nul Si f(U C) est une instance positive d e Null-Weighted Edges Maximization, soit un retiming, q, correspondant, et pour tout litt eral u 2 U, t(u) = V si q(u) mod 2 = 1 F si q(u) mod 2 = 0 alors (U,C) est une instance positive d e Not-All-Equal 3sat.

Remarquons tout d'abord que au plus un seul des deux arcs g en er es par une variable peut avoir un poids nul apr es retiming puisque le retiming conserve le poids des cycles. D'autre part nous montrons qu'au plus deux des arcs g en er es par une clause peuvent a voir un poids nul. En e et la même remarque que pr ec edemment nous permet dans un premier temps de limiter ce nombre a trois, c'est-a-dire un au plus sur chaque cycle de longueur deux entre deux litt eraux. Supposons maintenant que pour une clause c = fa b cg il y ait trois arcs de poids nul apr es retiming. Cela signi e que, par exemple, q(a) = x, q(b) = x 1 (un arc de poids nul entre a et b, c'est-a-dire un des arcs du cycle de longueur deux), q(c) = x 1 (un arc de poids nul entre a et c, ici aussi un des arcs du cycle de longueur deux), donc soit q(b) = q(c) et il n'y a pas de troisi eme arc de poids nul, soit q(b) = q(c) 2 e t l e retiming est non l egal (de toutes fa cons un tel retiming g en ererait entre b et c un arc de poids -1 et un de poids 3, donc aucun de poids nul).

Ceci nous permet de d eduire que si jfe 2 E j w q = 0 gj K, alors jfe 2 E j w q = 0 gj = K, puisque K = 2 m + n, et il y a exactement un arc de poids nul entre un litt eral et son oppos e, et deux dans chaque clause.

Il nous reste a montrer que t est une a ectation de v erit e et qu'il satisfait toutes les clauses avec au plus deux litt eraux vrais, c'est-a-dire a m o n trer que : { t(u) 6 = t( u) : en e et il existe un arc de poids nul entre u et u, d o n c q(u) = q( u) 1, d'o u q(u) m o d 2 6 = q( u) m o d 2 { pour toute clause c = fa b cg, on a par exemple t(a) 6 = t(b) (au moins un litt eral faux et un vrai) : en e et toute clause contient exactement deux arcs de poids nul, donc au moins un, par exemple entre a et b d'o u q(a) = q(b) 1, c'est-a-dire t(a) 6 = t(b).

5 Applications

Nous allons maintenant tenter d'exposer les liens existant e n tre retiming et parall elisation automatique, en d etaillant certains probl emes dans lesquels appara^ t l'expression d'un retiming, e t nous verrons de quelle fa con il est possible d'exploiter nos r esultats pr ec edents.

L'ensemble des techniques mises en uvre dans les diverses approches de parall elisation automatique consid ere g en eralement u n t ype de graphe, appel e graphe de d ependance, identique dans sa forme aux graphes d ecrivant des circuits synchrones. Nous commen cons donc dans cette section par pr esenter ces graphes de d ependance et nous d etaillons leur fonction.

Nous verrons ensuite comment l'expression de certains probl emes d'ordonnancement fait ap-para^ tre une formulation des solutions en termes de retiming et de quelle fa con l'utilisation d'un retiming peut in uencer la localit e des donn ees. Nous etablirons dans chaque cas un lien entre ces nouveaux probl emes et les r esultats des sections 3 et 4, et nous evoquerons d'autres probl emes faisant i n tervenir l'expression d'un retiming mais pour lesquels les choses restent encore peu claires.

Graphes de d ependance

Nous introduisons ici bri evement le formalisme des graphes de d ependance, leurs principes et leur utilit e e n t a n t qu'outil th eorique pour la parall elisation automatique.

La n ecessit e d'introduire un outil tel que les graphes de d ependance na^ t d'une simple constatation : dans un programme \r egulier", le principal obstacle a la mise en parall ele des op erations qu'il ex ecute se r esume a l'existence de d ependances entre celles-ci. En d'autres termes, il est possible qu'une op eration donn ee ne puisse s'ex ecuter qu'apr es l'ex ecution d'un certain nombre d'autres op erations. Ceci se produit par exemple lorsque plusieurs d'entre elles acc edent a u n m ême endroit de la m emoire (et au moins une en ecriture). Le but d'un graphe de d ependance est de repr esenter de fa con simple et concise l'ensemble de ces contraintes.

Dans le cadre de la parall elisation automatique, nous nous limiterons a l ' etude de la parall elisation des instructions contenues a l ' i n t erieur d'un ensemble de boucles imbriqu ees (ou nid de boucles) et sans structures de contrôle (while, goto, etc.). Nous appelons d ependance une contrainte empêchant la mise en parall ele d'op erations, dans notre cas il ne s'agira que de d ependances li ees aux lectures/ ecritures en m emoire. Nous appelons instruction une instance g en erique d'op eration, ind ependante des it erations (une instruction selon notre d enomination correspond donc a une instruction du code source). Un graphe de d ependance est alors la repr esentation des d ependances entre instructions. 

Ordonnancements et probl emes de retiming

La recherche d'ordonnancements constitue le c ur des techniques de parall elisation automatique. En e et, la donn ee d'un ordonnancement correspond directement a la mise en evidence de parall elisme, les op erations ex ecut ees a l a m ême date pouvant potentiellement être ex ecut ees en parall ele.

L'un des objectifs de la parall elisation automatique etant justement de mettre en parall ele le maximum d'op erations, le probl eme consiste a d eduire d'un graphe de d ependance un ordonnancement, c'est a dire une date d'ex ecution de chaque op eration, minimisant le temps total d'ex ecution, et respectant bien entendu toutes les d ependances.

Nous pr esentons dans cette section deux approches possibles pour la recherche d'ordonnancements a partir d'un graphe de d ependance, et nous pr ecisons de quelle mani ere elles mettent en evidence l'un des probl emes de retiming etudi es en sections 3 et 4. Nous evoquerons ensuite d'autres techniques pour la recherche d'ordonnancements mettant e n evidence un probl eme de retiming di erent o u g en eralisant les notions pr ec edentes.

Pipeline logiciel

Le pipeline logiciel est une technique consistant a exploiter le parall elisme au niveau des instructions contenues dans une boucle, c'est-a-dire un parall elisme a grain tr es n, utilisable par les processeurs superscalaires ou VLIW. En d'autre termes, cela revient a r e c hercher un ordonnancement des instructions du corps de la boucle permettant l ' e x ecution la plus rapide possible de celui-ci.

Au pr ec edent probl e m e d e r e c herche du parall elisme maximal entre instructions s'ajoute g en eralement une limitation sur le nombre de ressources utilisables. Autrement dit, il ne su t plus de trouver l'ordonnancement de longueur minimale, mais il faut trouver l'ordonnancement de longueur minimale n'ex ecutant pas plus d'instructions en parall ele que le nombre de ressources disponibles.

Malheureusement l a r e c herche d'un tel ordonnancement s e h e u r t e a de nombreux probl emes th eoriques :

{ L a r e c herche d'ordonnancements ne peut raisonnablement se faire que parmi les ordonnancements K-p eriodiques (reproduisant u n m ême motif toutes les K it erations), pour des raisons evidentes de temps et d'espace m emoire n ecessaires a l e u r elaboration { Bien que l'on conjecture la dominance des ordonnancements K-p eriodiques parmi les ordonnancements optimaux (autrement dit, il existerait un ordonnancement K-p eriodique optimal), la d etermination du K en question reste de toutes fa cons un probl eme ouvert { La simple d etermination d'un ordonnancement p eriodique (c'est-a-dire 1-p eriodique) optimal sous contraintes de ressources est un probl eme NP-complet. Nous pr esentons donc dans cette section une heuristique pour la recherche d'ordonnancements p eriodiques sous contraintes de ressources, due a Calland, Darte, et Robert ( CDR96]), et fond ee sur plusieurs techniques de retiming. D'un point de vue global, elle tire parti de la structure de ces ordonnancements et de la mobilit e du calcul de certaines instructions entre di erentes it erations. Nous en r esumons ici l'id ee.

L'expression d'un ordonnancement p eriodique de p eriode peut se faire par le biais d'une fonction associant a c haque instruction u d'une it eration k donn ee une date d'ex ecution de la mani ere suivante :

(u k) = k + c u A n d'identi er le sch ema p eriodique, nous e ectuons une division euclidienne de c u par :

(u k) = (k + q u ) + r u avec 0 r u < De plus, notre ordonnancement d o i t v eri er les contraintes exprim ees par le graphe de d ependance, c'est-a-dire pour tout arc u e ;! v de G : (u k) + d(u) (v k+ w(e)) (k + q u ) + r u + d(u) (k + w(e) + q v ) + r v (r u ; r v ) + d(u) (q v ; q u + w(e))

En constatant que r u ; r v > ; , d(u) 0, et que (q v ; q u + w(e)) est entier, nous obtenons : q v ; q u + w(e) 0 q v ; q u + w(e) = 0) r v r u + d(u) Ici q v ; q u + w(e) correspond directement au poids des arcs d'un graphe G q obtenu a partir de G apr es retiming par q. Nous pouvons constater que seuls les arcs de poids nul apr es retiming imposent alors une contrainte suppl ementaire sur l'ordonnancement nal.

C'est ici que l'heuristique entre en jeu. Elle consiste a c o n s i d erer les di erents cycles de l'ordonnancement comme ind ependants (c'est-a-dire ne se recouvrant pas), et a appliquer un ordonnancement par liste pour d eterminer l'ordre d'ex ecution des op erations d'une it eration, ainsi que sa p eriode ( ).

Plus pr ecis ement les seuls arcs a c o n s i d erer pour l'ordonnancement des instructions d'une it eration sont les arcs de poids nul de G q , puisque, comme nous l'avons vu, eux seuls imposent une contrainte a l'int erieur d'un cycle (les autres contraintes etant satisfaites par le d ecoupage entre it erations). Le probl eme consiste donc a d eterminer q de mani ere a minimiser le plus long chemin de poids nul de G q (c'est-a -d i r e l a p eriode d'horloge), constituant u n c hemin critique pour l'ordonnancement par liste. Calland, Darte et Robert ont m o n tr e que cette heuristique etait garantie (grâce aux bornes de l'ordonnancement par liste). Il propos erent egalement u n c r i t ere suppl ementaire d'optimisation en choisissant l e retiming minimisant l e n o m bre total d'arcs de poids nul de G q , permettant dans la majorit e des cas de diminuer la p eriode obtenue (le graphe consid er e pour l'ordonnancement par liste ayant alors moins d'arcs, il semble probable que l'ordonnancement s'av erera plus e cace).

Pour la minimisation du nombre d'arcs de poids nul, ils eurent alors recours a la programmation lin eaire en nombres entiers. La matrice du programme etant totalement unimodulaire, sa r esolution est donc th eoriquement polynomiale.

N eanmoins, un des buts a ch es pour l'am elioration de cette heuristique etait d' eviter le recours a la programmation lin eaire en nombres entiers pour d eterminer un tel retiming. C'est ce que nous avons fait en section 3 en proposant un algorithme de graphe e cace pour la minimisation du nombre d'arcs de poids nul d'un graphe par retiming.

Maximisation de la localit e

Les acc es m emoire lors de l'ex ecution d'un programme sont bien souvent un frein a la vitesse de calcul des processeurs actuels. En parall elisme, o u u n a c c es a une donn ee non locale (c'est-a-dire dans la m emoire d'un autre processeur) equivaut a une communication inter-processeurs, ce facteur prend une importance d eterminante.

De plus la capacit e d e s m emoires cache devenant de plus en plus grande, il devient t r es avantageux de tenter de maximiser leur utilisation. L a encore dans le domaine du parall elisme ce facteur est d'autant plus important qu'une \ferme" (cluster) de stations poss ede d'autant p l u s d e m emoire cache qu'elle poss ede de machines (permettant parfois d'atteindre des acc el erations superlin eaires).

C'est pourquoi la maximisation de la localit e des donn ees est d'un int erêt capital aussi bien en parall elisation automatique que dans le cas g en eral. Par maximisation de la localit e, nous entendons minimisation de la distance (dans le temps) entre le calcul d'une valeur et son utilisation. Cette notion est egalement connue sous la forme de dur ee de vie des variables. Minimiser la dur ee de vie d'une variable revient a augmenter sa probabilit e d e p r esence dans le cache, et a gagner ainsi en temps d'acc es a l a m emoire.

Si nous consid erons le cas d'une simple boucle (ou d'un nid de boucles), nous dirons qu'une valeur dont d epend une instruction d'une it eration donn ee est locale si elle est calcul ee dans la même it eration et non locale si elle a et e calcul ee dans une it eration pr ec edente. Maximiser la localit e reviendra donc a maximiser le nombre d'arcs de poids nul du graphe de d ependance, c'esta-dire a maximiser le nombre d'op erations d ependant d'une op eration de la même it eration. Nous avons class e en section 4 ce probl eme qui se r ev ele NP-Complet au sens fort.

Exemple

Nous pr esentons ici la mise en uvre de l'heuristique de pipeline logiciel de Calland, Darte et Robert sur un exemple. L'exemple consid er e consiste en un calcul simple pour lequel la minimisation du nombre d'arcs de poids nul du graphe de d ependance se r ev ele fructueuse.

Consid erons le calcul des el ements de la suite :

a n = ( a n;1 ) 2 + ( a n;2 ) 4 + ( a n;3 ) 8

Il est facile de voir que le calcul direct de toutes les exponentiations met en uvre un trop grand nombre de multiplications pour être e cace. Une approche plus intelligente serait de calculer les el ements de la suite par le code suivant :

pour n=3 jusqu' a N faire b n] = a n-1]*a n-1] c n] = b n-1]*b n-1] d n] = c n-1]*c n-1] a n] = b n]+c n]+d n] finfaire
En prenant deux fois le temps de l'addition pour la multiplication, nous pouvons consid erer que toutes les op erations ont u n d elai egal, ce qui nous donne le graphe de d ependance de la gure 13 dont l a p eriode d'horloge est d ej a minimale ( egale a deux). Comme evoqu e p r ec edemment, dans cette heuristique il s'agit de satisfaire les d ependances ind ependantes de la boucle, les autres etant naturellement satisfaites par la s eparation entre it erations successives. La p eriode d'horloge repr esent e i c i u n c hemin critique pour l'ordonnancement par liste.

Il semble alors naturel de penser que moins un graphe poss ede d'arcs, plus l'ordonnancement par liste se r ev elera e cace (malheureusement ce n'est pas toujours le cas). C'est dans cette id ee que Calland, Darte et Robert proposent de minimiser le nombre d'arcs de poids nul avant d'ordonnancer le sous graphe qu'ils g en erent. En appliquant l'algorithme de la section 3 nous obtenons le graphe de la gure (15) apr es deux etapes d etaill ees dans la gure (14) (le choix de l'arc non conforme a traiter a u n e etape est fait de mani ere al eatoire, il est simple de v eri er sur cet exemple que cet ordre n'importe pas).

En ordonnan cant le graphe de d ependance suivant l a m ême m ethode que pr ec edemment nous obtenons cette fois un r esultat meilleur (c'est-a-dire une latence inf erieure, cf. gure 15). Nous pouvons de plus constater que le code correspondant a u retiming trouv e reste simple (de fa con g en erale un code produit apr es retiming ne change pas la structure de la boucle et reste donc lisible). Le code produit est le suivant (nous pouvons constater qu'un prologue et un epilogue suppl ementaires ont et e i n troduits, ce qui est classique en pipeline logiciel) : Nous avons donc pu v eri er l'int erêt de la m ethode sur un exemple, et, bien que celle-ci ne soit qu'une heuristique (garantie, cf. CDR96]), elle semble bonne intuitivement (moins d'arcs sur un graphe a ordonnancer). N eanmoins nous pouvons remarquer que cette technique n'est pro table que dans le cas de boucles dont le corps poss ede plusieurs instructions. Les techniques de pipeline logiciel intervenant g en eralement a un bas niveau (assembleur), il para^ t probable d'obtenir de telles boucles (puisque la programmation a un bas niveau met souvent en uvre un plus grand nombre d'instructions), sur lesquelles l'heuristique s'av erera e cace. Il est egalement possible d'associer cette heuristique a u n p r e-d eroulage de la boucle (qui multiplie la taille de son corps).

Notre m ethode semble donc s'av erer pro table, et le recours a un algorithme de graphe est un gain ind eniable par rapport a la programmation lin eaire.

Alignement de donn ees et retiming

La mise en uvre de calculs parall eles sur des machines a m emoire distribu ee implique souvent une r epartition des donn ees (donn ees du probl eme et valeurs calcul ees) entre les di erents processeurs.

Le probl eme de l'alignement de donn ees consiste a c hoisir cette r epartition de mani ere a minimiser le nombre de communications interprocesseurs, c'est-a-dire a minimiser le nombre de calculs faisant i n tervenir une donn ee non locale au processeur le r ealisant.

Ce probl eme a et e formalis e dans DR93] en termes de graphe (graphe de communication) et de retiming (vecteur de translation). Le probl eme se r ev ele equivalent a u p r o b l eme de maximisation par retiming du nombre d'arcs de poids nul d'un graphe, cependant, dans ce cas, nous sommes autoris es a c hoisir un retiming non l egal, c'est-a-dire sans contraintes sur le poids des arcs apr es retiming. Darte et Robert ont prouv e que le probl eme est NP-complet au sens faible.

Nous pouvons constater que notre d emonstration de NP-compl etude de la section 4 s'applique egalement dans ce cas puisque la preuve est toujours valide si nous autorisons un retiming non l egal. Nous avons donc g en eralis e l a d emonstration de Darte et Robert et montr e que le probl eme est NP-complet au sens fort.

Autres probl emes de retiming, extensions

Nous evoquons dans cette section d'autres probl emes pos es en termes de retiming intervenant sur d'autres crit eres que ceux vus pr ec edemment. Ils constituent pour la plupart des voies de recherche prometteuses et laissent e n trevoir de nombreuses perspectives d'extension des techniques de retiming.

Parall elisation de boucles

Certains algorithmes de parall elisation de boucles, comme par exemple celui de Darte-Vivien ( DV97]) ou de Feautrier, permettent la reconstruction d'un nid de boucles en un nouveau nid compos e d'un certain nombre de boucles s equentielles entourant un ou plusieurs nids de boucles parall eles.

Comme nous pouvons le constater dans DSV96], cette technique peut conduire, suivant les vecteurs d'ordonnancement trouv es pour les boucles s equentielles, a l a c r eation d'une suite s equentielle de nids parall eles. Ceci n'est pas souhaitable a plusieurs titres, d'une part la s eparation en suite s equentielle de nids parall eles requiert l'utilisation de synchronisations entre les nids, d'autre part cela diminue la localit e des donn ees dont n o u s a vons d ej a soulign e l'importance.

L'approche propos ee par Darte, Silber et Vivien permet d' eviter ce probl eme en construisant un minimum de nids parall eles dont le corps sera s equentiel. Ceci se r ealise en autorisant un certain nombre de d ependances ind ependantes de la boucle dans le nid nal, et n ecessite deux etapes : d'abord l'utilisation de techniques d'ordonnancement, puis celle d'un retiming a n d'obtenir les d ependances ind ependantes de la boucle.

Recherche d'ordonnancements K-p eriodiques

Comme nous l'avons d ej a m e n tionn e, il semblerait que les ordonnancements K-p eriodiques soient optimaux, cependant l a d etermination du K en question, qui pourrait a priori être exponentiellement grand par rapport a la taille du graphe de d ependance, reste un probl eme ouvert.

C'est pourquoi S anchez et Cortadella proposent dans SC93] une heuristique pour la recherche d'ordonnancements K-p eriodiques optimaux avec ou sans contraintes de ressources. Le principe de leur m ethode combine plusieurs techniques a n de d eterminer un ordonnancement maximisant l'utilisation des ressources (c'est-a-dire la moyenne du nombre de ressources utilis ees par unit e d e temps). Plus pr ecis ement les techniques suivantes sont mises en uvre : { d eroulage du graphe de d ependance, a n de ramener la recherche d'un ordonnancement Kp eriodique a l a r e c herche d'un ordonnancement p eriodique dans le graphe d eroul e K fois { retiming (pr esent e sous une autre forme), a n de d eterminer une fois le graphe d eroul e u n ordonnancement p eriodique associ e (un peu a l a f a con de Calland, Darte et Robert, cf. section 5.2.1) { suites de Farey et equations diophantiennes lin eaires, a n de d eterminer le nombre de d eroulages. Cependant a n de mettre en uvre cette heuristique, il est n ecessaire de borner le K de l'ordonnancement c herch e (ce qui conduit a la perte d'ordonnancements peut-être meilleurs). De plus, elle requiert un grand nombre de calculs et peut donc se r ev eler coûteuse.

Retiming multidimensionnel

Les processeurs ayant tendance a permettre l'ex ecution simultan ee d'un nombre d'instructions de plus en plus important, les techniques de pipeline logiciel ne parviennent pas toujours a saturer l'ensemble des ressources disponibles. C'est pourquoi l'extension de celles-ci aux nids de boucles comportant plus d'une boucle par la recherche de retiming multidimensionnel peut se r ev eler int eressante.

C'est ce que proposent P assos et Sha dans PS96]. Leur technique consiste a reconstruire le nid de boucles de telle sorte que le corps soit totalement parall ele. Ils r ealisent ceci en utilisant les techniques classiques d'ordonnancement a n de faire porter par la boucle externe toutes les d ependances non nulles, puis a appliquer un retiming multidimensionnel sur les d ependances restantes (c'est a dire un retiming modi e, d eterminant p o u r c haque sommet non plus une constante, mais un vecteur de dimension sup erieure a un).

N eanmoins cette approche pr esente deux inconv enients, d'une part elle produit un code complexe (car elle reconstruit le nid de boucles a partir des vecteurs d'ordonnancement), d'autre part elle d etruit une eventuelle permutabilit e totale entre les boucles, interdisant l'utilisation de techniques de tiling sur le r esultat produit. De plus, l'usage du retiming dans le cas multidimensionnel est encore peu mature et des am eliorations semblent possibles.

Conclusion

Nous avons pr esent e dans cette etude un ensemble de techniques dites de retiming, i n troduites par Leiserson et Saxe dans le cadre de la synth ese d'architectures et destin ees a l'optimisation de circuits synchrones. Nous avons rappel e leurs principaux r esultats, et nous avons mentionn e les avanc ees r ealis ees depuis dans ce domaine.

Nous avons alors propos e l a r esolution de deux nouveaux probl emes de retiming en consid erant la technique comme un outil de graphe et non plus une m ethode r eserv ee a l'optimisation de circuits.

Tout d'abord, nous avons r esolu le probl eme de la recherche d'un retiming minimisant le nombre d'arcs de poids nul d'un graphe. Le probl eme s'av erait connu comme polynomial ( CDR96]) en tant que cas particulier de la programmation lin eaire en nombres entiers (matrice totalement unimodulaire), et le but etait ici de fournir un algorithme de graphe permettant s a r esolution e cace.

Nous avons propos e un algorithme r esolvant l e p r o b l eme en O(jEj 2 ), adapt e d'un algorithme de recherche de ot de coût minimal dû a F ulkerson. Nous avons egalement m o n tr e c o m m e n t r esoudre ce probl eme sous contrainte d'horloge tout en restant e c a c e ( O(jEjjV j 2 ), c'est-a-dire l eg erement plus que la minimisation de la p eriode d'horloge, elle même en O(jV jjEj logjV j)).

Nous avons ensuite montr e la NP-compl etude du probl eme inverse, a s a voir la maximisation du nombre d'arcs de poids nul par retiming. Plus pr ecis ement nous avons montr e que le probl eme s'av erait NP-complet au sens fort pour tout type de retiming (l egal ou non), g en eralisant e t compl etant ainsi un ancien r esultat de Darte et Robert ( DR93]) pour l'alignement de donn ees.

En n, nous avons illustr e l'utilit e de ces nouveaux r esultats en pr esentant un ensemble de techniques de parall elisation automatique faisant i n tervenir un retiming.

Nous avons vu que la minimisation du nombre d'arcs de poids nul intervenait dans le cadre d'une heuristique de pipeline logiciel due a Calland, Darte et Robert. Le probl eme etait ici de minimiser la p eriode d'horloge, puis le nombre d'arcs de poids nul tout en conservant cette p eriode d'horloge. Nous avons pu illustrer les apports de la minimisation du nombre d'arcs de poids nul sur un exemple.

Nous avons ensuite pu constater l'utilit e de la maximisation du nombre d'arcs de poids nul, dans le cadre de la maximisation de la localit e des donn ees, aussi bien par r eordonnancement que par alignement. Malheureusement comme nous l'avons d ej a vu le probl eme est NP-complet au sens fort. N eanmoins le cas particulier des graphes acycliques semble int eressant a etudier et pourrait s'av erer polynomial.

Finalement nous avons evoqu e les nombreux probl emes restant a r esoudre. Nous pouvons citer le cas du pipeline logiciel, pour lequel les techniques de retiming multidimensionnel, c'est-a-dire appliqu ees a un nid de boucles, ou les techniques de d eroulage de graphe et de recherche d'ordonnancements K-p eriodiques sont encore a l ' etat embryonnaire. De nombreuses approches restent encore inexplor ees, comme par exemple un retiming multidimensionel ne reconstruisant pas un nouveau nid de boucles par la d etermination d'hyperplans s eparants comme dans PS96].

De plus l'utilisation du retiming dans d'autres domaines est toujours possible. En e et la simplicit e e t l a g en eralit e d e l a t e c hnique en font un outil de graphe suppl ementaire plus qu'une technique r eserv ee a l'optimisation architecturale. En conclusion, le retiming appara^ t donc comme une technique g en erale, e cace (r esolution de la plupart des probl emes en temps polynômial), simple (il s'agit d'une simple pond eration des sommets d'un graphe), et exible (adapt e a plusieurs domaines eloign es les uns des autres).

Remerciements : A Alain Darte pour sa direction inspir ee, a A n toine Fraboulet et Fabien Rico pour leurs critiques pertinentes et leurs pr ecieux conseils, et a V alentina Tad e pour son soutien. Nous allons d etailler ici la construction de R (f) dans le cas de la recherche de ot de coût minimum dans G 0 . Comme nous le verrons, il est possible dans ce cas de r eduire le nombre d'arcs construits par l'algorithme. Soit f 0 un ot admissible de G 0 . N o u s p o u v ons remarquer que 0 constitue un ot admissible (il n'y a pas de capacit e inf erieure dans G 0 ) ce qui r esoud le probl eme d'initialisation de l'algorithme.
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Posons pour tout arc y(e) = f 0 (e 1 ) e t z(e) = f 0 (e 1 ). Nous avons alors f(e) = y(e) + z(e) admissible dans G (par construction), 0 y(e) 1 (capacit e d e e 1 ) et pour tout f 0 optimal, y(e) = 0 ) z(e) = 0 : en e et sinon y 0 (e) = y(e) + 1 e t z 0 (e) = z(e) ; 1 d e nissent un ot f admissible et de coût strictement inf erieur a f 0 (car w 0 (e 1 ) < w 0 (e 1 )).

D etaillons maintenant la construction de R (f 0 ) : pour chaque arc u e ! v 2 E, trois cas se pr esentent :

{ s i y(e) = 0 e t z(e) = 0 (c'est-a-dire f(e) = 0) : l'algorithme de base cr ee deux arcs, e 1 et e 2 de u vers v dans R (f 0 ) de poids respectifs w(e) e t w(e) ; 1. Dans notre cas seul e 2 est n ecessaire : en e et s'il existe un circuit el ementaire de poids n egatif passant p a r e 1 , il est de la forme (e 0 1 : : : e 0 i e 1 e 0 i+1 : : : e 0 n ) e t n e c o n tient p a s e 2 (puisqu' el ementaire), e 1 etant u n arc de u vers v, ( e 0 1 : : : e 0 i e 2 e 0 i+1 : : : e 0 n ) est alors lui aussi un circuit el ementaire de poids n egatif (puisque w 0 (e 2 ) < w 0 (e 1 ))

w(e)-1 v u Fig. 16: Arc de R (f 0 ) correspondant a un arc e de E tel que f(e) = 0 . { y(e) = 1 e t z(e) = 0 : l'algorithme de base cr ee deux arcs, u e 1 ! v et v e 2 ! v dans R (f 0 ) d e poids respectifs w(e) e t ;w(e) + 1. Dans ce cas, les deux sont a conserver puisqu'ils sont d e direction oppos ee { y(e) = 1 e t z(e) > 0 : l'algorithme de base cr ee trois arcs, u e 1 ! v, v e 2 ! u et v e 3 ! u dans R (f 0 ) de poids respectifs w(e), ;w(e) e t ;w(e) + 1 . D e m ême que pr ec edemment, il est possible de supprimer e 3 sans alt erer l'existence de circuit el ementaire de poids n egatif dans R (f 0 ). Consid erons en n le nombre d'it erations de l'algorithme : pour chaque arc e de G, w(e) 0, donc par construction, w 0 (e 1 ) ; 1 e t w 0 (e 1 ) 0. De plus c(e 1 ) = 1, il y a donc au plus jEj arcs Comme nous l'avons vu, a c haque arc u e ! v de G correspondent au plus deux arcs dans R (f), trois cas se pr esentent :

{ y(e) = 0 ( e t z(e) = 0), cf. g. 16 : un seul arc, de poids w(e) ; 1 correspond a e dans R (f) r(v) r(u) + w(e) ; 1 { y(e) = 1 e t z(e) = 0, cf. g. 17 :

deux arcs, de poids w(e) e t ;w(e) + 1 correspondent a e dans R (f) r(v) r(u) + w(e) r(u) r(v) ; w(e) + 1 () r(u) + w(e) ; 1 r(v) r(u) + w(e) { y(e) = 1 e t z(e) > 0, cf. g. 18 :

deux arcs, de poids w(e) e t ;w(e) correspondent a e dans R (f) r(v) r(u) + w(e) r(u) r(v) ; w(e) () r(v) = r(u) + w(e)

Nous en d eduisons un retiming en posant q(u) = ;r(u) e t v(e) = 0 si f(e) = 0 1 ; (q(v) ; q(u) + w(e)) sinon 32 et nous v eri ons que ; q v est une solution admissible de (7) en s'assurant des conditions (3), (4) et v 0 :

{ nous avons dans tous les cas r(v) r(u) + w(e) () q(v) ; q(u) + w(e) 0 ce qui v eri e (3) { s i y(e) = 0 : r(v) r(u) + w(e) ; 1 () q(v) ; q(u) + w(e) 1 et v(e) = 0 v eri ent ( 4 ) e t v 0 { s i y(e) = 1 : r(u) + w(e) ; 1 r(v) r(u) + w(e) () 1 q(v) ; q(u) + w(e) 0 d'o u v(e) = 1 ; (q(v) ; q(u) + w(e)) 0 q(v) ; q(u) + w(e) + v(e) = 1 1 donc (4) et v 0 s o n t v eri ees.

Nous avons donc un ot de coût minimal, et une solution admissible de (7), nous v eri ons qu'elle est optimale en appliquant l e t h eor eme des ecarts compl ementaires (p. 39, dW90], probl eme sous forme standard) :

; q v et ; x y z sont optimales ssi vx = 0 (qC+ v ; 1 + w)y = 0 (qC+ w)z = 0 Nous v eri ons les trois cas de la mani ere suivante :

1. on a x = 1 ; y : { s i y(e) = 0 , v(e) = 0 , d ' o u v(e)x(e) = 0 { s i y(e) = 1 , x(e) = 0, d'o u v(e)x(e) = 0 .

donc vx= P e2E v(e)x(e) = 0 2. { s i y(e) = 0 , ( q(v) ; q(u) + v(e) ; 1 + w(e))y(e) = 0 { s i y(e) = 1 , q(v) ; q(u) + v(e) ; 1 + w(e) = 0 p a r d e nition de v(e), d'o u ( q(v) ; q(u) + v(e) ; 1 + w(e))y(e) = 0 . donc (qC+ v ; 1 + w)y = P u e !v2E (q(v) ; q(u) + v(e) ; 1 + w(e))y(e) = 0 3. { s i z(e) = 0 , ( q(v) ; q(u) + w(e))z(e) = 0 { s i z(e) > 0, q(v) ; q(u) + w(e) = 0 p a r d e nition de q ( a partir de r), d'o u ( q(v) ; q(u) + w(e))z(e) = 0 . donc (qC+ w)z = P u e !v2E (q(v) ; q(u) + w(e))z(e) = 0 .

Nous obtenons donc le retiming optimal en appliquant une recherche de type Bellman-Ford sur le graphe auxiliaire R (f 0 ) nal. La complexit e totale de l'algorithme est donc O(jV jjEj 2 + jV jjEj), c'est-a-dire O(jV jjEj 2 ). Nous allons voir dans la section suivante que nous pouvons faire mieux en abordant l e p r o b l eme d'une mani ere plus d etourn ee.

Preuves des propositions pour la minimisation

Les preuves des propositions de la section 3 mettant en relation l'indice de conformit e et l'optimalit e du retiming.

proposition 1 P e2C f f(e)w(e) = P e2C f f(e)w q (e):

preuve : (1 ; f(e)w q (e)) X e2C f ((v(e) ; 1) + f(e)w q (e)) X e2C f (f(e)(v(e) ; 1) + f(e)w q (e)) car f(e) > 0 v(e) ; 1 0 (par d e nition) d 0 o u f (e)(v(e) ; 1) v(e) ; 1 X e2C f (f(e)(;w q (e)) + f(e)w q (e)) car v(e) ; 1 ; w q (e) (par d e nition de v(e)) 0 2 34 proposition 3 8e 2 E ic(e) = 0 ) q est optimal.

preuve :si ic(e) = 0 pour tout arc de G, alors : (f(e)(;w q (e)) + f(e)w q (e)) car v(e) ; 1 ; w q (e) (par d e nition de v(e)) 0 2 35 proposition 5 8e 2 E 0 i c (e) = 0 ) q est optimal, de plus (G q ) = ( G).

preuve : De mani ere analogue a l a p r e u v e de la proposition 3, si ic(e) = 0 pour tout arc de G 0 , alors : 

  Un circuit synchrone peut être vu comme un ensemble d'unit es fonctionnelles s epar ees par un certain nombre ( eventuellement n ul) de registres cadenc es par une même horloge globale. Le terme synchrone d esigne un circuit contenant u n n o m bre non n egatif de registres entre chaque unit e fonctionnelle, et au moins un registre par cycle. Nous pouvons d e nir un registre comme un el ement p o s s edant une entr ee et une sortie, fournissant en sortie un signal stable d e ni a c haque top d'horloge par son entr ee courante. Les unit es fonctionnelles sont des unit es de calcul d e nissant leur sortie comme une fonction de leurs entr ees, sous r eserve que celles-ci soient stables durant u n d elai sup erieur ou egal a leur d elai de propagation. Plus formellement n o u s m o d elisons un circuit par un graphe dirig e G = ( V E w d), o u V repr esente l'ensemble des unit es fonctionnelles, E V 2 l'ensemble des interconnections entre unit es fonctionnelles, w : E ;! N une pond eration des arcs de G indiquant le nombre de registres s eparant deux unit es fonctionnelles, telle que tout cycle ait un poids strictement positif, et d : V ;! N une pond eration des sommets indiquant l e d elai de propagation d'une unit e fonctionnelle. La gure (1) illustre ce formalisme. Dans toute la suite, nous d esignerons par u e ;! v l'existence d'un arc e entre u et v et par u p v l'existence d'un chemin p entre u et v. De plus, nous etendrons le d elai (resp. le poids) aux chemins en d e nissant l e d elai (resp. le poids) d'un chemin comme la somme des d elais (resp. des poids) de ses sommets (resp. de ses arcs). Nous pouvons caract eriser un circuit G par une quantit e s p eci que appel ee p eriode d'horloge et not ee (G). La p eriode d'horloge d'un circuit d e nit le temps durant lequel les sorties des registres doivent être stables a n de garantir la stabilit e de toutes les entr ees, elle est egale par d e nition a

  Il est alors possible par un algorithme de type Bellman-Ford de d eterminer s'il existe ou non un retiming achevant cette p eriode d'horloge et, dans le cas positif, de fournir un tel retiming en O(jV jjEj). En d'autres termes la recherche d'un retiming satisfaisant une certaine p eriode d'horloge se ram ene a l a r e c herche d'un retiming l egal dans le graphe de d epart muni d'arcs suppl ementaires de contrainte d'horloge que nous appellerons arcs d'horloge.
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 345 Fig. 3: Un exemple de graphe

  proposition 2 P e2E v(e) P e2C f (1 ; f(e)w(e)): preuve :la preuve s e t r o u v e en annexe. Nous d e nissons alors pour tout arc e 2 E une quantit e que nous d esignerons sous le nom d'indice de conformit e :

Fig. 6 :

 6 Fig. 6: Diagramme de conformit e et di erents types d'arcs

  d'une unit e t o u t e n c o n s e r v ant la conformit e d e e, et pour tout arc non conforme, il est possible de faire d ecro^ tre strictement son indice de conformit e en faisant v arier w q (e) o u f(e) d'une unit e. Plus pr ecis ement, nous avons les cas suivants : { s i f(e) augmente : les arcs de type 3,6 et 7 deviennent respectivement d e t ype 4,7 et 7, et restent conformes, les arcs de type 5 deviennent conformes (type 6), les autres arcs voient leur indice de conformit e c r o ^ tre (strictement) { s i f(e) diminue : les arcs de type 4 et 7 deviennent respectivement d e t y p e 3 e t 6 o u 7 , e t restent conformes, les arcs de types 2 deviennent conformes (ty p e 4 o u 1 ) o u v oient leur indice de conformit e d ecro^ tre (strictement), les autres arcs voient leur indice de conformit e cro^ tre (strictement) { s i w q (e) augmente : les arcs de type 1,3 et 6 deviennent respectivement d e t ype 1,1 et 4, et restent conformes, les arcs de type 5 deviennent conformes (type 3), les autres arcs voient leur indice de conformit e c r o ^ tre (strictement) { s i w q (e) diminue : les arcs de type 1 et 4 deviennent respectivement d e t ype 1 ou 3 et 6, et restent conformes, les arcs de type 2 deviennent conformes (ty p e 4 o u 7 ) o u v oient leur indice de conformit e d ecro^ tre (strictement), les autres arcs voient leur indice de conformit e cro^ tre (strictement). Nous allons maintenant v oir comment exploiter ces possibilit es a n de converger vers une solution optimale. 3.3.3 Algorithme L'algorithme consiste a partir d'une solution initiale admissible et a la faire evoluer vers une solution optimale. Le retiming nul et le ot nul constituent respectivement u n retiming l egal et un ot admissible et pour ceux-ci, ic(e) = v(e) pour tout arc e 2 E, c ' e s t -a-dire 1 sur les arcs de poids nul et 0 sur les autres. Remarquons que pour cette solution, tous les arcs sont d e t ype 1,3 ou 5.

Fig. 7 :

 7 Fig. 7: Coloration des di erents types d'arcs

Fig. 8 :

 8 Fig.8: Les deux eventualit es du lemme de Minty Nous obtenons donc au moins un arc non conforme de moins. En r ep etant l ' o p eration (coloration, puis variation du ot ou du retiming), jusqu' a ce que tous les arcs soient conformes, nous parvenons au retiming optimal.

  e) = 0 e t e 2 E v(e) ; 1 + f(e)w q (e) si f(e) > 0 et e 2 E f(e)w q (e) si e 2 E clock Ce qui nous conduit a modi er les preuves des propositions 2 et 3 en tenant compte des nouveaux a r c s d e l a m a n i ere suivante (nous noterons C f , C fclock , les ensembles constitu es respectivement des arcs e de E et E clock tels que f(e) > 0, et C 0 f = C f C fclock le multicycle de G 0 d e ni par f) :

Fig. 9 :

 9 Fig. 9: Diagramme de conformit e et coloration des nouveaux arcs 4 Maximisation du nombre d'arcs de poids nul Nous traitons, dans cette partie, de l'utilisation des techniques de retiming pour la maximisation du nombre d'arcs de poids nul d'un graphe de d ependance. Nous pourrons constater l'utilit e d u probl eme dans le cadre de la maximisation de la localit e et de l'alignement des donn ees en sections 5.2.2 et 5.3. Nous prouvons que le probl eme est fortement NP-complet.
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 1011 Fig. 10: Transformation d'une variable { pour chaque clause c = fa b cg 2 C, E = E f (a b) (b a) (b c ) (c b) (c a) (a c)g et w(a b) = w(b a) = = w(a c) = 1 1

Formellement, nous dFig. 12 :

 12 Fig. 12: Le graphe de d ependance de l'exemple 1 De fa con plus intuitive, il est possible de voir la valeur d'une d ependance comme une distance (en nombre d'it erations) s eparant les deux valeurs d ependantes (ou comme l'ensemble des distances possibles).

Fig. 13 :

 13 Fig. 13: Graphe de d ependance et ordonnancement p eriodique pour deux ressources L'ordonnancement a s s o c i e est obtenu en appliquant l'heuristique sans minimiser le nombre d'arcs de poids nul du graphe. Plus pr ecis ement, nous trouvons un ordonnancement p eriodique de latence minimale en proc edant aux deux etapes suivantes : { minimiser la p eriode d'horloge du graphe de d ependance, ce qui est d ej a fait dans notre exemple { c r eer le motif r ep et e a c haque it eration en pratiquant un ordonnancement par liste sur le sous graphe des arcs de poids nul du graphe de d ependance. Comme evoqu e p r ec edemment, dans cette heuristique il s'agit de satisfaire les d ependances ind ependantes de la boucle, les autres etant naturellement satisfaites par la s eparation entre it erations successives. La p eriode d'horloge repr esent e i c i u n c hemin critique pour l'ordonnancement par liste.Il semble alors naturel de penser que moins un graphe poss ede d'arcs, plus l'ordonnancement par liste se r ev elera e cace (malheureusement ce n'est pas toujours le cas). C'est dans cette id ee que Calland, Darte et Robert proposent de minimiser le nombre d'arcs de poids nul avant d'ordonnancer le sous graphe qu'ils g en erent. En appliquant l'algorithme de la section 3 nous obtenons le graphe de la gure (15) apr es deux etapes d etaill ees dans la gure (14) (le choix de l'arc non conforme a traiter a u n e etape est fait de mani ere al eatoire, il est simple de v eri er sur cet exemple que cet ordre n'importe pas).En ordonnan cant le graphe de d ependance suivant l a m ême m ethode que pr ec edemment nous obtenons cette fois un r esultat meilleur (c'est-a-dire une latence inf erieure, cf. gure 15). Nous pouvons de plus constater que le code correspondant a u retiming trouv e reste simple (de fa con g en erale un code produit apr es retiming ne change pas la structure de la boucle et reste donc lisible). Le code produit est le suivant (nous pouvons constater qu'un prologue et un epilogue suppl ementaires ont et e i n troduits, ce qui est classique en pipeline logiciel) :

Fig. 14 :Fig. 15 :

 1415 Fig. 14: Les etapes de la minimisation du nombre d'arcs de poids nul

Fig. 17 :Fig. 18 :

 1718 Fig.17: Arcs de R (f 0 ) correspondant a un arc e de E tel que f(e) = 1 .

  e)(v(e) ; 1) + f(e)w q (e)) car f(e) > 0 v(e) ; 1 0 (par d e nition) d 0 o u f (e)(v(e) ; 1) v(e) ; 1 X e2C f

  )w(e) et d'apr es la proposition 4, P e2E v(e) est minimale. De plus comme le retiming est l egal, (12) est v eri ee par construction de E clock , et donc (G q ) = ( G).

  2

  'algorithme 1 p.252 de dW90] se propose de d eterminer un ot de coût minimum dans un graphe G en partant d'un ot admissible f de G et en construisant a c haque etape un graphe auxiliaire R (f). L'existence d'un circuit el ementaire de poids n egatif dans R (f) nous permet alors de d eterminer une circulation x dans R (f) telle que f +x soit admissible dans G et de coût strictement inf erieur a celui de f. L'algorithme s'arrête lorque R (f) n e c o n tient plus de circuit el ementaire de poids n egatif, f est alors optimal.
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