
HAL Id: hal-02102021
https://hal-lara.archives-ouvertes.fr/hal-02102021v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Network API for in-Kernel Applications in
Clusters

Brice Goglin, Olivier Glück, Primet, Pascale Vicat-Blanc

To cite this version:
Brice Goglin, Olivier Glück, Primet, Pascale Vicat-Blanc. An Efficient Network API for in-Kernel
Applications in Clusters. [Research Report] LIP RR-2005-18, Laboratoire de l’informatique du paral-
lélisme. 2005, 3+16p. �hal-02102021�

https://hal-lara.archives-ouvertes.fr/hal-02102021v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

An Efficient Network API for in-Kernel
Applications in Clusters

Brice Goglin,
Olivier Glück,
Pascale Vicat-Blanc Primet

Avril 2005

Research Report No 2005-18

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr



An Efficient Network API for in-Kernel Applications in
Clusters

Brice Goglin, Olivier Glück, Pascale Vicat-Blanc Primet

Avril 2005

Abstract

Running parallel applications on clusters with high-speed local net-
works requires fast communication between computing nodes but also
low latency and high bandwidth file access. However, the application
programming interfaces of high-speed local networks were designed
for MPI communication and do not always meet the requirements of
other applications like distributed file systems.
In this paper, we explore several solutions to improve the use of high-
speed network for in-kernel applications. Distributed file systems im-
plemented on top of the GM interface of MYRINET are first examined
to demonstrate how hard it is to get an efficient interaction between
such applications and the network. Then, we propose solutions to sim-
plify and improve this interaction and integrate them into the kernel
interface of the new MYRINET driver, MX. Performance comparisons
between MX and GM, and their usage in both a distributed file system
and a zero-copy protocol show nice improvements. Moreover, we are
able to improve the performance of the flexible kernel API we designed
in MX that allows to remove some intermediate copy.

Keywords: High-speed local networks, in-kernel network API, distributed file systems,
zero-copy socket protocols.

Résumé



L’exécution performante d’applications parallèles sur une grappe né-
cessite des communications rapides entre les nœuds, mais aussi des ac-
cès aux fichiers à faible latence et grande bande passante. Cependant,
les interfaces logicielles de programmation des réseaux rapides ont été
conçues pour les communications MPI et ne conviennent pas toujours
aux besoin des autres applications, par exemple les systèmes de fichiers
distribués.
Dans cet article, nous explorons différentes solutions pour améliorer
l’utilisation des réseaux rapides pour les applications dans le noyau.
Nous examinons tout d’abord l’implantation d’un système de fichiers
distribués sur MYRINET/GM pour montrer les difficultés rencontrées
lorsqu’on cherche à obtenir une interaction efficace entre ces applica-
tions et le réseau. Nous proposons ensuite des solutions pour simpli-
fier et améliorer cette interaction et nous les intégrons dans l’interface
noyau du nouveau pilote MYRINET, MX. Les études de performance
de MX et GM et de leur utilisation dans un système de fichiers dis-
tribués et un protocole socket zéro-copie montrent des gains intéres-
sants. De plus, la flexibilité de l’interface de programmation que nous
avons conçue nous permet de supprimer certaines copies intermédi-
aires.

Mots-clés: Réseaux locaux haute performance, interface de programmation réseau dans le
noyau, systèmes de fichiers distribués, protocole socket zéro-copie.

2



B. Goglin, O. Glück, P. Vicat-Blanc Primet 1

1 Introduction

The emergence of parallel applications led to the success of workstation clusters which are
generic, extensible and less expensive. As the application always require more compu-
tational power, high-bandwidth and low-latency local networks with intelligent interface
cards have been developed, such as MYRINET [BCF+95], QUADRICS [PFHC03] or INFINI-
BAND [Pfi01]. Specific software optimizations have been proposed to enable on one hand
the overlapping of communications with computation phases, and on the other hand a dras-
tic reduction of communication overhead in the host.

Overlapping communication between different nodes is enabled by deporting a large
part of the protocol stack in the network interface card. This led to high-level software pro-
gramming interfaces that are based on asynchronous communication primitives, such as
MPI (Message Passing Interface [For94]). The application posts send or receive requests and
gets notification of their completion later. This is very different from traditional network in-
terfaces, especially the SOCKET interface to access ETHERNET networks through the TCP/IP
stack where all communication primitives are blocking.

The reduction of the communication overhead in the host is achieved by three mech-
anisms. Intermediate copies have been removed (0-copy), the operating system has to be
avoided (OS-bypass) and data have to be transferred directly between applications and the
network through DMA (Direct Memory Access) initiated by the NIC (Network Interface Card).

Several works have targeted communication software layers to improve the performance
of parallel applications. However, very few works have focussed the utilization of high-
speed local networks in other contexts, especially for applications that are not implemented
in user-space like MPI computations. For instance, storage requirements in clusters may
benefit from an efficient usage of these networks. This includes either distributed file sys-
tems or Network Block Devices. Applications using the SOCKET interface may also be im-
proved by using a zero-copy protocol on top of the native in-kernel API of a high-speed
local network. All these kernel contexts have specific constraints that are very different from
user-space communication requirements.

This paper presents our study and propositions for improving the interaction between
such in-kernel applications and the highly-specific network programming interface on MYRINET.
Section 2 presents potential in-kernel applications that may be used on clusters and their
issues when interacting with the network. Then, we expose, in Section 3, how we have mod-
ified the GM interface of MYRINET to allow an efficient usage of the the underlying network
in distributed file system clients. We detail in Section 4 several ideas to improve the flexibility
of network programming interfaces and how we integrated them in the new MYRINET/MX
driver. Section 5 finally gives a first performance evaluation in both distributed file systems
and zero-copy socket protocols.

2 In-Kernel Applications on High-Speed Local Networks

2.1 Context

Parallel applications running on clusters often want to get as much performance for storage
access as for communication between computing nodes. Storage access layers may include
either distributed file systems or network block devices, and were usually implemented in
the operating system. The standard interface that is exposed to user application is basically



2 B. Goglin, O. Glück, P. Vicat-Blanc Primet

based on non-vectorial non-collective blocking operations, often implemented with inter-
mediate copies. This basic interface led cluster designers to propose new specific file access
interfaces, in the same way they improved communication performance by proposing spe-
cific APIs that are suitable to high-speed network low-level software layers.

The MPI-IO interface [MPI] was designed to provide the same model for file access prim-
itives than for communication primitives in MPI. Another example is DAFS (Direct Access
File System [MAFS03]), which was designed to make the most out of the underlying network
for remote file access. It thus provides a highly specific API, similar to VIA (Virtual Interface
Architecture [SASB99]). Both file access interfaces provide a high-performance distant file ac-
cess model. But, they require user-application to be written according to their very specific
requirements, for instance asynchronous requests and completion queues.

More recently, modern operating systems have integrated these parallel application re-
quirements. Vectorial primitives were first introduced. Then, zero-copy file access was
added to the LINUX kernel and asynchronous input-output in LINUX 2.6. This new support
for advance features in the operating system leads to the utilization of standard interfaces in-
stead of specific interfaces that required application rewriting. LUSTRE [Clu02] is one of the
most famous recent distributed file systems for clusters. It provides a parallel and scalable
system that respects the standard file access interface.

On the other hand, high-speed network APIs remain very specific. Event-based inter-
faces with asynchronous primitives and completion notification generally does not raise
very difficult problems in non-MPI contexts. However, the virtual memory management,
and especially memory registration, still seems designed for user-space MPI applications.
For instance, first LUSTRE releases used intermediate memory copies to integrate the GM
interface [Myr03a] of MYRINET networks. These copies are CPU consuming while the user
parallel application needs the CPU for its computations (MYRINET support has apparently
been dropped now). Moreover, the kernel PVFS2 client (Parallel Virtual File System [Lig01])
returns to user-space before accessing the network. This design choice is justified in the doc-
umentation through the problem of having ready access to all networking APIs from within
the kernel.

We now detail the constraints of high-speed network interfaces, study their interaction
with our main target application, a distributed file system client, and give several hints con-
cerning other in-kernel applications.

2.2 Constraints of High-Speed Network APIs

2.2.1 Memory registration

Applications manipulate virtual addresses while the hardware only knows physical ad-
dresses. The memory management subsystem is usually in charge of this translation. It
is no-more involved in OS-bypass communications. QUADRICS QSNET networks require
modification of the operating system so that all addressing details are transparently for-
warded to the network interface. Most other network systems, especially MYRINET and
INFINIBAND, prefer not modifying the operating system. Thus, they require address trans-
lation with the explicit help of the kernel.

The common strategy is based on asking the application to prepare the I/O buffers it is
going to use for communications. This operation is commonly called Memory Registration. It
uses a specific system call to pin pages in physical memory and register their address trans-



B. Goglin, O. Glück, P. Vicat-Blanc Primet 3

lations into the network interface card. All the following communications may then directly
pass virtual addresses to the NIC which will get their associated physical addresses from its
translation table. Data transfers are thus processed by a DMA engine on the NIC without
any operating system help. This translation table in the NIC has been first introduced in
U-NET/MM [WBvE97].

This strategy presents two drawbacks. Firstly, memory registration cost is usually so
high that it can only be efficient if the application reuses registered buffers in several com-
munications. Secondly, traditional applications were not designed to explicitly register their
I/O buffers. It is thus required to either modify them or to insert a transparent layer to
register on the flight.

Standard parallel computing libraries such as MPI or VIA have fortunately been imple-
mented on top of these specific network software interfaces. This leads to parallel applica-
tions making the most out of the underlying high-speed network. However, this specificity
makes their usage difficult in a different context, especially for an in-kernel application or a
client-server protocol.

2.2.2 Example of Memory Registration with GM on Myrinet networks

DMA

Memory
User

Kernel

Network
Address

Translation

(a) DMA transfer between the application and the
network after memory registration.

0 65536 131072 196608 262144
Message size (bytes)

0

100

200

300

400

500

O
ve

rh
ea

d 
(m

ic
ro

se
co

nd
s)

Copy (P3 1.2 GHz)
Copy (P4 2.6 Ghz)
Memory Registration
Memory De-registration
Register + Dereg.

(b) Comparison between copy and memory regis-
tration cost in GM.

Figure 1: Memory registration model and overhead in GM.

GM is the current official driver of MYRINET networks. It follows the message-passing
paradigm and was designed for MPI applications. The user posts send, receive or remote
memory access requests and gets their completion notifications in a unique event queue.

GM requires all I/O buffers used by the application to be registered in the NIC first (see
Figure 1(a)). As the amount of page translations that may be stored in the NIC is limited,
useless entries have to be deregistered. As usual, registration and deregistration have a high
cost. In GM, we measured a 3 µs overhead per page registration, with the addition of a
200 µs base for deregistration (see Figure 1(b)). Actually, this model is only interesting for
large memory zones that are used several times.



4 B. Goglin, O. Glück, P. Vicat-Blanc Primet

A simple strategy consists in copying small buffers into a statically pre-registered mem-
ory zone. A small amount of CPU cycles is wasted but the large cost of memory registration
is also avoided for these small buffers (see Figure 1(b)).

The major improvement was proposed in [TOHI98]: a memory registration cache (Pin-
down Cache). Deregistration is delayed until it is really required (when no more pages can
be registered). If cached pages are re-used, registration is not needed. The major drawback
is that the cache must be kept up-to-date with mapping changes. As the application is not
aware of the caching of its address translations in the NIC, it might change its address space
(especially through free or munmap), thus making the registered translation invalid. A com-
mon solution consists in updating the cache by intercepting all address space modification
calls from the application.

This happens in a middle-ware (for instance MPI) between GM and applications that
were not written to register their I/O buffers. In this case, the middle-ware transparently
registers buffers on the flight and intercepts address space modifications. In a distributed
file-system or zero-copy socket protocol, we will see that such an on-the-flight registration
mechanism is also required.

2.3 Interaction between High-Speed Networks and Distributed File Systems

We now detail the interaction issues between high-speed network software interfaces and
our main target in-kernel application, a distributed file system client.

2.3.1 Buffered Access to remote files and Interaction with the Page-Cache

Physical storage systems are so slow that modern operating systems have to optimize their
access. The LINUX Page-Cache keeps copies of disk blocks in the host memory to avoids
repetitive reading of same physical blocks. Writing is processed asynchronously so that the
application does not wait. Data transfer involving the application are thus only memory
copies between its user-space and the page-cache.

In a distributed file system using such buffered accesses, a protocol has to maintain con-
sistency across cached pages on different clients and physical blocks on the server. Using a
GM-like interface in such a context really differs from parallel application context. Firstly,
high-speed network software layers were not designed for communication from a kernel
context. Secondly, memory zones that are involved here have very different characteristics
than the traditional user buffers. Pages of the page-cache are already locked in physical
memory and generally not mapped in virtual memory. But, their physical address is easy
to obtain since for instance, a distributed file system client runs in a kernel context (in con-
trary to a user application running in a user context). The assumptions for the design of the
memory registration model are thus no more suitable here.

It is important to note that this is also valid for Network Block Device clients. The NBD
client is at the bottom of the storage stack in the operating system. It allows to mount remote
disks as local partitions. Such an application manipulates the page-cache as a distributed file
system client does. Thus, the same conclusion about memory registration applies here.



B. Goglin, O. Glück, P. Vicat-Blanc Primet 5

2.3.2 Direct access to remote files

The kernel page-cache has the drawback of preventing applications from controlling phys-
ical disk accesses. Memory consuming applications, for instance databases or out-of-core
computation, keep their own memory cache in user-space. They do not want their write
requests to be buffered by the operating system since the page-cache might swap out some
important pages of the application to store the local copy of written data. Modern UNIX sys-
tems thus provide zero-copy disk access to bypass the page-cache (by giving the O_DIRECT
flag when opening the file). Data transfers are then direct from application I/O buffers to
the storage subsystem, that is local disks or a distant file-system on the server.

This strategy is very similar to zero-copy data transfer between I/O buffers of different
instances of a parallel application running on a cluster. But, the implementation is very
different since several operating systems, especially LINUX, do not provide any support for
the high-speed network communication model while zero-copy file access is supported.

Actually, direct file access is not the only in-kernel application that require zero-copy data
transfer between user-space and the networks. It is now common to implement a zero-copy
socket layer on top of the native network interface. A specific zero-copy implementation is
added to the support of the SOCKET interface in the kernel. This makes traditional appli-
cation using sockets benefit from the underlying high-speed network without any modifi-
cation. Zero-copy socket protocols have same requirements than direct file access with the
O_DIRECTflag.

3 Experimentations with GM on Myrinet

Our goal is to improve the interaction between in-kernel applications and high-speed net-
work APIs. We now detail of such an application, a distributed file system client, may be
efficiently implemented on MYRINET networks.

3.1 ORFA, a remote file-access protocol for high-speed networks

We developed an experimentation protocol named ORFA (Optimized Remote File-system Ac-
cess) to optimize point-to-point communications between a client and a server in a dis-
tributed file system. Our work must then be applicable in real systems such as PVFS or
LUSTRE to improve their usage of the underlying high-speed network. We focus on stan-
dard file access interfaces, especially recent LINUX interfaces, and try to tightly integrate the
usage of MYRINET networks to make the most out of their performance.

ORFA has initially been developed in user-space to study the impact of high-speed net-
works on remote file access, without suffering of in-kernel implementation constraints. The
ORFA client (see Figure 2(a)) was a user-level library transparently intercepting all remote
file access and supporting special primitives such as fork or exec [GP04b].

We showed in [GP04a] that MYRINET networks may transfer large amount of data with
very high performance in this context. However, meta-data access (file attributes) does not
benefit from the low latency of the network. We then decided to work on ORFS (Opti-
mized Remote File System), the ORFA client in the LINUX kernel (see Figure 2(b)). This imple-
mentation benefits from VFS caches (Virtual File Systems) improving meta-data access, and
secondly gives a much larger validation of our work since most distributed file systems in
clusters are now implemented in the kernel.



6 B. Goglin, O. Glück, P. Vicat-Blanc Primet

Client

ORFA Server

Server

VFS

Application

ORFA Client GM

(a) ORFA model. A user-space library intercepts
application calls and redirects them to a distant
server.

Client

ORFS Server

Server

VFS

Ext2

Application

VFS

ORFS Client

GM

(b) ORFS model. A file-system in the kernel for-
wards to a distant server the requests that come
from an application through system layers.

Figure 2: ORFA and ORFS models.

We now detail both direct and buffered file access implementations in ORFS on GM. We
used GM 2.0.13 on a Linux kernel 2.4.26. Our experimentation platform is composed on
2.6 GHz dual-XEON nodes with 2 GB RAM and PCI-XD MYRINET cards. This network can
sustain 250 MB/s full-duplex.

3.2 Direct access to remote files on GM

Application

GMKRC

GM

GMKRC Spy

VFS

ORFS

Memory
Management

(a) Direct access in ORFS with GMKRC (registra-
tion cache) and VMA SPY (notification of address
space modifications).

1 16 256 4096 65536
Message size (bytes)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B
/s

)

GM Raw
ORFA with Registration Cache
ORFS with Registration Cache
ORFS without Reg. Cache

(b) Performance of direct access in ORFS with and
without registration cache. Comparison with raw
GM and ORFA (user-space implementation).

Figure 3: Direct access to distant files with ORFS client on GM.

Direct remote file access implementation in ORFS (see Section 2.3.2) requires communi-
cations from application user-space memory to a MYRINET communication port, that was
open in the kernel. Memory registration seems to be the simplest solution to this case. But,
a registration cache (as in the ORFA client) is needed. This imposes to know address space
modifications. It is possible in user-space by intercepting application requests in a shared



B. Goglin, O. Glück, P. Vicat-Blanc Primet 7

library. But, the LINUX kernel does not provide any mechanism for such tracing in a kernel
context. Thus, we developed a generic infrastructure called VMA SPY allowing any exter-
nal module to ask for notification of address space modifications (for instance, mapping or
protection change, or fork ).

Then, we implemented a generic registration cache in the kernel named GMKRC (GM
Kernel Registration Cache) which is kept up-to-date by VMA SPY (see Figure 3(a)). Moreover,
GMKRC is responsible for solving collisions between address spaces of the multiple pro-
cesses accessing our file system. Indeed, GM assumes a port can only be used by a single
process. Our shared port model prevents the network interface card from knowing which
address space a given virtual address belongs to. We solved this problem by recompiling
the card firmware with 64 bits pointers on 32 bits host and by storing a descriptor of the
address space in the most significant bits. This strategy is transparently implemented inside
GMKRC so that in-kernel users still pass normal 32 bits pointers to the GMKRC API.

This work leads to very good performance with GM in the kernel (see Figure 3(b)). Com-
paring ORFS with and without registration cache highlights the impact of the application
memory utilization scheme. Without any cache hit, the performance is 20 % lower. ORFS
performance is still lower than ORFA because of the overhead of system calls and of the
traversal of the VFS layers.

3.3 GM and the Page-Cache

16 64 256 1024 4096
Message size (bytes)

0

10

20

30

40

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Memory Registration
Physical Address

(a) Comparison between communication latency
from the kernel with registered virtual memory
and physical memory primitives.

1 16 256 4096 65536 1048576
Message size (bytes)

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B
/s

)

ORFS/GM Direct Access
ORFS/GM Buffered Access
GM Raw

(b) Performance comparison between direct access
(zero-copy) and buffered access (through the page-
cache using the physical address) in ORFS on GM.

Figure 4: Performance of the physical address based primitives for in-kernel GM commu-
nications involving the page cache for remote file access.

Buffered file access requires to transfer data between the page-cache in the kernel and the
distant server. From the ideas we developed in Section 2.3.1, we added to the GM kernel in-
terface some communication primitives based on physical addresses and the required infras-
tructure in the MCP (Myrinet Control Program, the program running in the network interface
card). Remote file access through the page-cache in ORFS give the physical addresses of all



8 B. Goglin, O. Glück, P. Vicat-Blanc Primet

pages that are involved in the requested communication to the NIC. This strategy improves
the latency since the NIC does not require to translate the given virtual address by looking
in its translation table. We measured a 0.5 µs gain on both the sender and the receiver’s side
on our MYRINET cards, that is 10 % improvement.

Remote file access performance with ORFS using our GM physical address based inter-
face is presented on Figure 4(b). We measure the throughput at the application level when
accessing large files sequentially. Remote accesses without involving the page-cache are rep-
resented by the direct case, while buffered case is through the page-cache.

The page-cache is progressively filled by the kernel according to application requests.
Data transfers are processed per page (4 kB on our architecture). This leads to an under-
utilization of the network bandwidth. However, 4 kB accesses are faster through the page-
cache compared to direct accesses, even if an additional copy from the page-cache to the
application is required. This shows the efficiency of our physical based interface.

On the other hand, an application requesting large data transfers will show much better
performance in the direct case. The reason is that a direct access requires only one network
request while a large buffered access is split in page-sized requests. This issue should dis-
appear with LINUX 2.6 kernels which are able to combine multiple page-sized accesses in
a single request. However, this would require vectorial communication primitives, that is
something GM does not provide (see Section 4.1).

We took care of optimizing both direct and buffered remote file accesses. But, it is impor-
tant to keep in mind that choosing between these two types is the application responsibility.

4 Propositions to improve in-Kernel APIs of Cluster Networks

We have presented the difficulties one may face when trying to efficiently use the high-speed
network in a distributed file system. We had to patch both GM and the LINUX kernel to
simplify their interaction in our experimental platform, ORFS. These difficulties are actually
not specific to MYRINET GM. Any software interface based on memory registration will face
similar issues. That is why we propose new mechanisms to facilitate the usage of high-speed
local network APIs in a non-MPI contexts.

4.1 Physical address and vectorial communications

As memory registration is not the right solution for communication involving the page-cache
of the kernel, and as our physical address based primitives are adapted to any communica-
tion initiated from a kernel context, it is easy to obtain the physical address of any page of the
page-cache, but also any page that is mapped in kernel-space or even in user-space. Kernel
memory is used for messages that are exchanged between the in-kernel application and dis-
tant nodes, for instance requests that are sent to a file server. Such memory zones are often
already pinned. User memory is used for zero-copy data transfer between the application
and the network (see Section 2.3.2). User memory zones have to be pinned.

In both cases, the cost of memory registration is avoided and the latency is improved
(especially for small messages). Providing a physical address based interface to high-speed
network software APIs thus seems recommended.

However, a virtually contiguous memory zone is generally not physically contiguous.
It is especially true for user-space memory. Any multiple-page transfer (more than 4 kB on



B. Goglin, O. Glück, P. Vicat-Blanc Primet 9

IA32 architectures) between user-space and the network using physical addresses would
then be divided into multiple non-contiguous segments. Moreover, using multiple pages of
the page-cache would also leads to segmented communications (see Section 2.3.1).

It is obviously possible to use one communication primitive for each physically contigu-
ous zone. But, this might be a constraint since some interfaces (especially GM) ask the user
to limit the amount of pending requests. The easier solution here is to use vectorial commu-
nication primitives to transfer several non-contiguous segments at once. These primitives
are not offered by several interfaces such as GM. In the same way they are useful in user-
space (for instance to implement an efficient MPI layer), they might be a very interesting
feature in a kernel API. In the next Section, we detail the integration of these ideas in the
MX kernel interface.

4.2 Implementation in Myrinet Express

MX (Myrinet Express [Myr03b]) is the next official software interface of MYRINET networks.
Its main characteristics is to almost provide a MPI interface at the network level (since MPI
is the most common application). Vectorial communications are thus supported. Another
interesting point is the fact that physical addresses are now directly usable by the network
interface card, thus no explicit memory registration is required.

We worked in collaboration with MYRICOM to, firstly move and expose the MX pro-
gramming interface in the kernel, and secondly integrate our ideas to make the interaction
between in-kernel applications and MYRINET networks easier. Our work has now been in-
tegrated in the official MX distribution. Its in-kernel API proposes a native and optimized
support for different types of memory addressing. The application has to pass this type of
address to MX :

User virtual: MX pins the target zones and translates their addresses into physical addresses.

Kernel virtual: These zones are often already pinned. MX just has to translate addresses.

Physical: The application is responsible for pinning memory if needed.

The distinction between the first two types gives a more generic support of the difference be-
tween user and kernel spaces. These spaces are generally independent and non-contiguous.
This signify that they contain same virtual addresses pointing to different physical locations.
It is then impossible for the network layer to know whether a given virtual address should
translated into its user or kernel corresponding physical address. Even if standard LINUX

kernels do not have this issue (user and kernel spaces are contiguous), it is easy for any
application to tell what kind of address it is using. This is the reason why we added this
distinction in the MX API.

5 Performance evaluation

5.1 Performance of MX in-kernel interface

During the development of the MX kernel interface, we designed a very generic core infras-
tructure so that kernel communications would not suffer of a user-oriented design. Conse-
quently, latency (see Figure 5(a)) and bandwidth (see Figure 5(b)) do not differ between user



10 B. Goglin, O. Glück, P. Vicat-Blanc Primet

1 16 256 4096
Message size (bytes)

0

10

20

30

40

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

GM User
GM Kernel
MX User
MX Kernel

(a) Small message latency.

1 16 256 4096 65536 1048576
Message size (bytes)

0

50

100

150

200

250

B
an

dw
id

th
 (M

B
/s

)

GM
MX User
MX Kernel Physical

(b) Bandwidth.

Figure 5: Comparison of MX and GM performance.

and kernel communications. The large message bandwidth is even higher with the kernel
interface since the page locking overhead is lower.

GM does not provide such an efficient kernel interface. Its small message latency is 2 us
higher in the kernel compared than user-space. Moreover, GM user latency is more than
50 % higher than with MX (6.7 us against 4.2 us for 1-byte message). GM large message
bandwidth is the same than MX. But, GM benefits here from a 100 % reuse of the application
buffers while MX does not.

1024 4096 16384 65536 262144
Message size (bytes)

0

50

100

150

200

250

B
an

dw
id

th
 (M

B
/s

)

MX User
MX Kernel
MX Kernel No-send-copy
MX Kernel No-copy

LargeMedium
Messages Messages

Figure 6: Measured impact of the removal of the copy of medium messages (from 128 bytes
to 32 kB) on the sender side and predicted impact of the removal of both side copies.

Our specific kernel interface enables optimizations according to the type of addressing
that the application passes. Indeed, this addressing characteristic may be used to avoid lock-
ing or even segmentation of physically contiguous zones. The standard MX implementation
uses a copy on both sides when processing medium side messages (from 128 bytes to 32 kB).
Larger messages are pinned internally while small messages use Programmed I/O. These in-



B. Goglin, O. Glück, P. Vicat-Blanc Primet 11

ternal intermediate copies correspond to what common application do when trying to avoid
explicit memory registration (see Section 2.2.2). MX does not ask applications to register
memory but uses copy or registration internally.

This copy might actually be avoided for physical address based communications. As a
proof of concept, we removed the copy on the send side and show the resulting bandwidth
on Figure 6. It leads to 17 % bandwidth improvement for 32 kbytes messages. This optimiza-
tion is possible since the network card interface does only manipulate physical addresses in
MX. It is then easy to pass the application given addresses, even if a translation is needed
(since we are in the kernel).

We also predicted the impact of removing the copy on the receive side (see the dashed
graph on Figure 6). It gives another 15 % bandwidth improvement for medium messages.
It is currently impossible to implement this optimization since the NIC does not know the
address of the receive buffer. The receives are processed by the host. Thus, we can not avoid
the receive copy by directly passing our physical address to the NIC. This issue might be
solved when future MX development will move receive processing into the NIC.

Such an improvement might lead to increase the medium message maximal size in this
context since large message bandwidth looks lower. Fortunately, large message processing in
MX is still under strong development. The current performance difference might disappear
soon.

Anyway, our kernel interface allowed the removal of one intermediate copy for physi-
cally contiguous messages. Non-contiguous messages will require the upcoming vectorial
communication support in MX. For now, our optimization gives an interesting improve-
ment when sending up to 8 physically contiguous pages on IA32 architecture. This is not
a usual case in a distributed file-system environment. The most common case would be a
single-page transfer. In this case, our optimization gives a 9 % improvement.

5.2 Application to Distributed File systems

1 16 256 4096 65536 1048576
Message size (bytes)

0

50

100

150

200

250

Th
ro

ug
ht

pu
t (

M
B

/s
)

GM
ORFS/GM Direct
MX Kernel
ORFS/MX Direct

(a) Direct file access.

1 16 256 4096 65536 1048576
Message size (bytes)

0

50

100

150

200

250

Th
ro

ug
ht

pu
t (

M
B

/s
)

GM
ORFS/GM Buffered
MX Kernel
ORFS/MX Buffered

(b) Buffered file access.

Figure 7: Evaluation of the efficient usage of the network in ORFS on MX and GM.

We now study the performance of our MX kernel interface in real applications. The



12 B. Goglin, O. Glück, P. Vicat-Blanc Primet

copy-removal optimization that we just presented was not used during the following tests.
We first compare remote file access performance with ORFS on GM and MX on Figure 7.

Direct file accesses on MX are slightly better than over GM. The difference is similar to
their raw bandwidth difference. However, we have to keep in mind that GM benefits here
from 100 % hits in the registration cache while MX does not use such a strategy. We showed
in Section 3.2 that ORFS performance on GM can be reduce from 20 % with much less cache
hits.

Buffered file access in ORFS on MX shows a 40 % improvement over GM. Network
requests are page-sized in this context. But, MX raw performance is not better than GM for
such messages. The ORFS/MX performance improvement is thus caused by our improved
kernel interface (which makes the ORFS implementation much more efficient). It also has to
be emphasized that GM was designed for user-level applications and thus lacks an efficient
in-kernel communication implementation (as seen on Figure 5(a)).

In both file access types, the MX kernel interface was much easier to work with than the
GM one. Firstly, no kernel patch is required since memory registration is only used inter-
nally. Our kernel API provides all primitives that our implementation requires, especially
when dealing with user space for 0-copy data access or with physical addresses in the page-
cache for buffered accesses. Secondly, the MX API makes event notification more flexible,
for instance by allowing the application to wait on a single or any pending request. For
instance, this makes the implementation of both synchronous and future asynchronous file
requests easier.

5.3 Application to zero-copy Socket Protocol

MYRICOM offers another software which is using MX in the kernel, SOCKETS-MX. It al-
lows existing applications in binary format to benefit from the high-speed MYRINET network
when using TCP/IP socket function calls. It adds a new SOCKET protocol to the LINUX ker-
nel where data is directly passed onto the MYRINET network bypassing TCP/IP. With the
fully asynchronous send functions in MX the overhead is significantly lower than when the
full TCP/IP stack needs to be traversed (with fragmentation and checksum computation).
As a matter of fact, TCP/IP is known to use 50 % of the overall transaction cost [Sum00].

We compared SOCKETS-MX performance with the same implementation using GM. SOCKETS-
GM offers the same capabilities but lacked two major skills. Firstly, limited completion no-
tification mechanisms in GM require the use of an extra (dispatching) kernel thread which
increases the latency. Secondly, memory registration problems are similar to ORFS direct
file access troubles on top of GM, as expected in Section 2.3.2.

We used NETPIPE [Net] ping-pong to compare SOCKETS-MX and SOCKETS-GM perfor-
mance on PCI-XE MYRINET cards (these cards can sustain 500 MB/s full-duplex by using
two links). We measured a 5 µs one-way latency at the application level for 1-byte messages
with SOCKETS-MX (see Figure 8(a)). This is only a 1 µs overhead over raw MX latency. It is
very good since a system call is involved (about 400 ns). SOCKETS-GM gets 15 µs one-way
latency. A common GIGA-ETHERNET network might get much more.

SOCKETS-MX bandwidth is always higher than SOCKETS-GM. Medium message band-
width improvement is up to 100 % (for 4 kB) while large message is up to 50 % (for 1 MB).
This shows how the MX kernel interface and SOCKETS-MX behaves well.



B. Goglin, O. Glück, P. Vicat-Blanc Primet 13

1 4 16 64 256 1024 4096
Message size (bytes)

0

10

20

30

40

50

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

Sockets-GM
Sockets-MX

(a) Small message latency.

1 16 256 4096 65536 1048576
Message size (bytes)

0

100

200

300

400

500

B
an

dw
id

th
 (M

B
/s

)

Sockets-GM
Sockets-MX

(b) Bandwidth.

Figure 8: SOCKETS-MX and SOCKETS-GM performance comparison.

5.4 Results Summary

GM MX
Kernel latency 8 µs (6 in user-space) 4 µs (as in user-space)

Buffered remote file access Needs physical API 40 % improvement
Direct remote file access Needs kernel patching As least as good

0-copy socket latency 15 µs (7 µs overhead) 5 µs (1 µs overhead)
0-copy socket bandwidth Less than 70 % of the link capacity Up to 100 % improvement

Table 1: Summary of MX and GM in-kernel performance comparison.

Table 1 summarizes MX performance improvement for in-kernel applications. MX ker-
nel performance is better than GM, especially the small message latency. First performance
evaluations of distributed file systems with the MX kernel interface show a nice improve-
ment for buffered file accesses. Direct file accesses are slightly better than over GM with
100 % cache hits in its registration cache. The kernel API appears to be much more easy to
use and flexible in our context.

SOCKETS-MX shows that both latency and bandwidth get a large improvement com-
pared to the GM implementation. Future work will target a third in-kernel application,
Network Block Device, which we think should also benefit from our improved kernel interface
since its needs are similar to buffered distant file access that we studied with ORFS.

Moreover, several kernel specific optimizations in the MX implementation are possible
due to the advanced knowledge of memory type given by the application. As a proof of
concept, we introduced a 15 % bandwidth improvement by removing a copy on the sender’s
side when dealing with physically contiguous medium message in MX.



14 B. Goglin, O. Glück, P. Vicat-Blanc Primet

6 Conclusion and Perspectives

In this paper, we have presented the issues that may be raised when using high-speed net-
work software programming interfaces in a non-traditional context. These software inter-
faces were designed for MPI applications in user-space. Their specificity makes their usage
difficult in our very different target contexts. We focussed on in-kernel applications and es-
pecially detailed the interaction between MYRINET networks and a distributed file system
client.

We first exposed modifications of the GM interface of MYRINET networks. Firstly, using
physical address based communications seems very useful when dealing with the page-
cache. Secondly, the implementation of GMKRC (GM registration cache in the LINUX ker-
nel) and VMA SPY (generic infrastructure to notify of addressing modification) leads to
efficient direct remote file access. Performance evaluation on our experimental distributed
file system ORFS show how it is important to make the network programming interface and
storage access layers interact well.

We proposed several ideas to improve software interfaces for cluster networks. Physical
address based primitives and vectorial communications seem very important to improve the
way in-kernel applications benefit from the high-speed local network. Moreover, application
help (by saying the address type) looks useful to efficiently handle different types of memory
addressing. We integrated our ideas in the upcoming MYRINET driver, MX.

The MX kernel interface behaves at least as the traditional user-level interface, with a
more flexible support for different types of memory that an in-kernel application may ma-
nipulate. We presented performance evaluation of two in-kernel applications, a distributed
file system client and a zero-copy socket protocol. Both benefit from MX small message
latency and high bandwidth without requiring any memory registration cache mechanism.

We expect that our third target in-kernel application, a Network Block Device client, will
also largely benefit from our improved kernel software interface. This client transmits low-
level block device accesses to a remote server, allowing remote partition mounting such as
with ISCSI. Such a client manipulates the page-cache in a similar way a distributed file
system client does. Our physical address based interface should thus be suitable in this
context.

We also plan to evaluate the in-kernel APIs of other high-speed local networks, especially
QUADRICS QSNET and INFINIBAND VERBS, since they might face similar issues.

7 Software Availability

ORFA and ORFS implementations are distributed under GPL licenses. They may be down-
loaded from http://perso.ens-lyon.fr/brice.goglin/work .

The MX kernel interface is available in the main MX distribution through MYRICOM.

8 Acknowledgments

We would like to thank MYRICOM for its collaboration, especially Markus Fischer for pro-
viding SOCKETS-MX performance evaluation results, and Andrew Gallatin and Loïc Prylli
for their precious help during the development of MX kernel interface.

http://perso.ens-lyon.fr/brice.goglin/work


B. Goglin, O. Glück, P. Vicat-Blanc Primet 15

References

[BCF+95] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29–36, 1995.

[Clu02] Cluster File Systems, Inc. Lustre: A Scalable, High Performance File System,
November 2002. http://www.lustre.org .

[For94] Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

[GP04a] Brice Goglin and Loïc Prylli. Performance Analysis of Remote File System Access
over a High-Speed Local Network. In Proceedings of the Workshop on Communica-
tion Architecture for Clusters (CAC’04), held in conjunction with the 18th IEEE IPDPS
Conference, Santa Fe, New Mexico, April 2004. IEEE Computer Society Press.

[GP04b] Brice Goglin and Loïc Prylli. Transparent Remote File Access through a Shared Li-
brary Client. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’04), volume 3, pages 1131–1137, Las
Vegas, Nevada, June 2004. CSREA Press.

[Lig01] Walt Ligon. Next Generaton Parallel Virtual File System. In Proceedings of the 2001
IEEE International Conference on Cluster Computing, Newport Beach, CA, October
2001.

[MAFS03] K. Magoutis, S. Addetia, A. Fedorova, and M. I. Seltzer. Making the Most out of
Direct-Access Network Attached Storage. In Proceedings of USENIX Conference on
File and Storage Technologies 2003, San Francisco, CA, March 2003.

[MPI] MPI-IO: I/O Extensions to the Message-Passing Interface. http://www.
mpi-forum.org/docs/mpi-20-html/node172.htm .

[Myr03a] Myricom, Inc. GM: A message-passing system for Myrinet networks, 2003. http:
//www.myri.com/scs/GM-2/doc/html/ .

[Myr03b] Myricom, Inc. Myrinet Express (MX): A High Performance, Low-level, Message-
Passing Interface for Myrinet, 2003. http://www.myri.com/scs/ .

[Net] NetPIPE: A Network Protocol Independent Performance Evaluator. http://
www.scl.ameslab.gov/netpipe/ .

[PFHC03] Fabrizio Petrini, Eitan Frachtenberg, Adolfy Hoisie, and Salvador Coll. Perfor-
mance Evaluation of the Quadrics Interconnection Network. Journal of Cluster
Computing, 6(2):125–142, April 2003.

[Pfi01] Gregory F. Pfister. Aspects of the InfiniBand Architecture. In Proceedings of the
2001 IEEE International Conference on Cluster Computing, pages 369–371, Newport
Beach, CA, October 2001.

http://www.lustre.org 
http://www.mpi-forum.org/docs/mpi-20-html/node172.htm
http://www.mpi-forum.org/docs/mpi-20-html/node172.htm
http://www.myri.com/scs/GM-2/doc/html/
http://www.myri.com/scs/GM-2/doc/html/
http://www.myri.com/scs/
http://www.scl.ameslab.gov/netpipe/
http://www.scl.ameslab.gov/netpipe/


16 B. Goglin, O. Glück, P. Vicat-Blanc Primet

[SASB99] Evan Speight, Hazim Abdel-Shafi, and John K. Bennett. Realizing the Perfor-
mance Potential of the Virtual Interface Architecture. In International Conference on
Supercomputing, pages 184–192, 1999.

[Sum00] Shinji Sumimoto. A Study of High Performance Communication for Parallel Computers
Using a Commodity Network. PhD thesis, Keio University, 2000.

[TOHI98] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache: A Virtual
Memory Management Technique for Zero-copy Communication. In 12th Interna-
tional Parallel Processing Symposium, pages 308–315, April 1998.

[WBvE97] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Incorporating Memory
Management into User-Level Network Interfaces. In Proceedings of Hot Intercon-
nects V, Stanford, August 1997.


	1 Introduction
	2 In-Kernel Applications on High-Speed Local Networks
	2.1 Context
	2.2 Constraints of High-Speed Network APIs
	2.2.1 Memory registration
	2.2.2 Example of Memory Registration with GM on Myrinet networks

	2.3 Interaction between High-Speed Networks and Distributed File Systems
	2.3.1 Buffered Access to remote files and Interaction with the Page-Cache
	2.3.2 Direct access to remote files


	3 Experimentations with GM on Myrinet
	3.1 ORFA, a remote file-access protocol for high-speed networks
	3.2 Direct access to remote files on GM
	3.3 GM and the Page-Cache

	4 Propositions to improve in-Kernel APIs of Cluster Networks
	4.1 Physical address and vectorial communications
	4.2 Implementation in Myrinet Express

	5 Performance evaluation
	5.1 Performance of MX in-kernel interface
	5.2 Application to Distributed File systems
	5.3 Application to zero-copy Socket Protocol
	5.4 Results Summary

	6 Conclusion and Perspectives
	7 Software Availability
	8 Acknowledgments

