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Abstract

Best��t is the best known algorithm for on�line bin�packing� in
the sense that no algorithm is known to behave better both in the
worst case and in the average uniform case� In practice� Best��t
appears to perform within a few percent of optimal� In this paper�
we study the expected performance ratio� taking the worst�case

multiset of items L� and assuming that the elements of L are
inserted in random order� We show a lower bound of ���� � � � and
an upper bound of ��� on the random order performance ratio of
Best��t�

Keywords� Best Fit� Bin�Packing� On�line Algorithms� Approximation
Ratio� Markov Chains

R�esum�e

L	algorithme de meilleur choix est le meilleur pour la mise en bo
�te
en�ligne� en ce sens qu	on ne conna
�t pas d	algorithme qui lui est
sup�erieur 
a la fois dans le pire cas et dans le cas moyen uniforme�
En pratique� Meilleur choix semble 
etre 
a quelques pour cent
de l	optimum� Dans cet article� nous �etudions la performance
relative moyenne par rapport 
a l	optimum� consid�erant le pire cas
de valeurs de donn�ees mais supposant que leur ordre d	arriv�ee est
al�eatoire� Nous montrons une borne inf�erieure de ��� � et une
borne sup�erieure de ���� 
a la performance de Meilleur choix avec
cette d�e�nition�

Mots�cl�es� Mise en Bo
�tes� Algorithmes En�Ligne� Rapport de Perfor�
mance� Cha
�nes de Markov�
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� Introduction

��� Background

Bin�packing is a basic problem of computer science� given a list of items
between � and �� L � �x�� � � � � xn�� assign each item to a bin� so that the
sum of the values of the items assigned to the same bin does not exceed ��
and the goal is to minimize the number of bins used� This problem is NP�
hard ���� and heuristics have been developed to approximate the minimum
number of bins� In the on�line version of the problem� the items arrive one
by one� and xi must be assigned to a bin without knowledge of the future
items �xi��� � � � � xn��

The simplest and most classical algorithms designed for this problem
are Next��t� First��t and Best��t� Best��t maintains a list of current bins�
ordered by sizes� and upon arrival of item x� puts it in the current fullest bin
in which it �ts� opening a new bin for x if this fails� First��t maintains a list
of current bins� ordered by the date at which they were opened� and upon
arrival of item x� puts it in the �rst bin in which it �ts� opening a new bin
for x if this fails� Next��t maintains the last opened bin� and upon arrival
of item x� puts it in that bin if it �ts and opens a new bin otherwise� More
recently� the Harmonic algorithm was designed ����� it is more complicated�
but linear time� and tailored to behave well in worst�case situations�
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The notion of performance ratio is used to evaluate bin�packing algo�
rithms� Let OPT denote the �unknown� optimal o��line algorithm� and� for
an algorithm A and a list L� let A�L� denote the number of bins used by
algorithm A run on L�

De�nition � The performance ratio C�A� of algorithm A is�

C�A� � lim sup
OPT �L���

A�L�

OPT �L�
�

In the seminal paper ���� it is proved that Best��t and First��t have
performance ratio ���� while Next��t has performance ratio �� The Harmonic
algorithm is proved in ���� to have performance ratio ���� � � ��� and improved
versions have slightly lower performance ratios� to the author	s knowledge�
the current best performance ratio is ���� � � � ����� The quest for better
algorithms was somewhat quelched by Yao	s lower bound� no deterministic
on�line algorithm can have performance ratio better than ��� ���� This lower
bound was later improved up to ���� � � � in ��� �� ��� and proved to hold even
for randomized algorithms ����

The performance ratio has the drawback that for Best��t� the worst�
case sequences upon which it relies are very contrived and never occur in
practice� In fact� it has been observed that Best��t usually behaves within
a few percent of optimal in practice� much better than predicted by the
performance ratio� To explain this� researchers have studied the behavior of
on�line algorithms when the items are drawn independently from particular
distributions� Of particular interest is the uniform distribution in ��� ��� In
his thesis� Peter Shor analyzed Best��t and First��t under this distribution�
and proved that they are asymptotically optimal on average� and that the
expected amount of wasted space �number of bins minus the sum of the item
sizes� is O�n����log n����� for Best��t and about n��� for First��t ��� ��� This
is in fact even better than practice� real�life distributions are not always as
nice as the uniform distribution� In recent years� people have also studied
other distributions� a discretized version of the uniform distribution as well
as some truncated versions� where the items are drawn uniformly in interval
�a� b�� Analyzing these distributions precisely is a challenging problem� For
example� in a recent paper ����� it was shown� using a computer program
to compute Lyapunov functions to analyze multi�dimensional bounded�jump
Markov chains� that Best �t has linear expected waste when the items are

�



drawn uniformly from the set f����� ����� � � � ����g� and also when the items
are drawn uniformly from the set f����� ����� � � � � ����g�

��� The result

Best��t emerges as the winner among the various on�line algorithms� it is sim�
ple� behaves well in practice� and no algorithm is known which beats it both
in the worst�case and in the average uniform case� But the worst�case per�
formance ratio and the uniform�distribution performance ratio are not quite
satisfactory measures for evaluating on�line bin�packing algorithms� More�
over� it appears that studying given distributions accurately is an extremely
challenging problem�

In this paper� we focus on Best��t� and propose a new model of perfor�
mance evaluation� that of worst�case list of input items� but random insertion

order� all permutations being equally likely� This model was used in compu�
tational geometry with extreme success �see for example �����

De�nition � The random�order performance ratio RC�A� of an on�line al�

gorithm A is

RC�A� � lim sup
OPT �L���

E�A�L��

OPT �L�
�

where L� is the permuted list �x����� � � � � x��n�� and the expectation is taken

over all permutations � � Sn�

Note that the order is often crucial in the bad�case examples of bin�
packing heuristics� A textbook example of why Best��t is not optimal is the
list

L � ���� � �� � � � � ��� � �� �z �
n

� ��� � �� � � � � ��� � �� �z �
n

��

The optimal packing uses just n bins for L� while Best��t uses ���n bins�
However� if the list L is randomly permuted� the situation is completely
di�erent� It can be simulated by drawing each item independently and uni�
formly from f��� � �� ��� � �g� The sequence can be viewed as an unbiased
random walk in the plane� where at each step we move by ������� depend�
ing on whether the arriving item is larger or smaller than ���� the number
of items left unpaired is bounded by the vertical span of the random walk�
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which is of order o�n� with high probability� So� Best��t behaves optimally
for this list if the order is random�

We prove lower and upper bounds on the random�order performance ratio
of Best��t� First� we prove that for any list L� the random�order performance
ratio is asymptotically less than ���� Second� we exhibit a list L such that
the random�order performance ratio is ���� � � ��

Theorem � The random�order performance ratio of Best��t satis�es�

���� � RC�BF � � ����

We expect the true answer to lie somewhere close to �����
The proof of the lower bound analyzes the performance of Best��t when

the items are drawn uniformly and independently from f���� ���� ���g� for
which the optimum packing is perfect� The analysis can be reduced to study�
ing a �one�dimensional Markov chain �drawn on an in�nite strip of width
��� which is then solved by linear algebra�

The proof of the upper bound� much more di!cult� is a mixture of worst�
case and average�case analysis� and its heart lies in proving that the number
of items per bin in the optimum packing of the �rst t items converges quickly
to its �nal value� this in turn can be reduced to upright�matching�

Another question of theoretical interest would be to design an algorithm
tailored to behave well under the performance measure random�order per�
formance ratio� it is likely that it is possible to design an optimal algorithm
in this sense� since a recent paper by Rhee and Talagrand shows that if the
input comes from an arbitrary �xed distribution then there is a distribution�
dependent optimal algorithm� however such an algorithm would be of the�
oretical interest only� in practice e!ciency is a crucial issue and only the
simplest algorithms� such as Next Fit� First Fit or Best Fit� are actually
used�

� The upper bound

Let L be a list of n items� and let L� denote the list ordered according to
permutation �� Let us �rst prove the upper bound for easy restricted cases�
We classify the items inserted into three types according to their size� small
�x � ����� medium ���� � x � ����� and large �x � ����� We �rst study
Best Fit when not all types occur�
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��� No large items

Then all items are less than or equal to ���� It is well�known that the worst�
case performance ratio of Best Fit in this setting is ���� In fact� all bins
except at most two are �lled up to level ��� or more� To see that� �rst note
that all bins except possibly the last one contain at least two items� Now�
take the bins in the order in which they were opened� and consider the �rst
bin B whose �nal size is less than ���� Any bin created later than B and
with more than one item contains as �rst two items values between ��� and
���� whose sum is at least ���� Thus the only bins �lled up to less than ���
are B and possibly the last bin� This implies BF �L� � � � �OPT �L����

��� No small items

Then all items are strictly greater than ���� and the worst�case performance
ratio of Best�Fit in this setting is ���� To see this� observe that there are at
most two items per bin� and that with the Best Fit algorithm� only the large
items can be alone in their bin �except possibly for the last bin�� Let x be
the number of large items and y � n� x the number of medium items� The
optimal algorithm uses at least n�� bins� Best Fit uses at most x� y�� � ��
which is maximized for x � n�� and gives BF �L� � �OPT �L��� � ��

��� General case

In the general case� all sizes can occur� Let t be the last time that a small
item z was inserted into a bin B which either is new or was �lled up to less
than ��� immediately prior to inserting z�

We �rst analyze what happens up to time t �if t exists�� At time t� all
bins except B are �lled up to level at least ���� Let L���� t� denote the list
of items inserted up to time t� and W��t� denote their total weight� We have�
BF �L���� t�� � �W��t��� � � � �OPT �L���� t���� � ��

Now� we analyze what happens after time t� Let L��t� �� n� denote the
list of items inserted after time t� Let x be the number of large items and y
the number of medium items in L��t� �� n�� The optimal algorithm uses at
least �x � y��� bins when run on L��t � �� n�� But every bin created after
time t by Best Fit contains either at least two medium items or one large
item �except for the last bin�� So at most x � y�� � � are created� and the
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ratio �BF �L��BF �L��t��� n����OPT �L��t��� n�� is maximized for x � y�
Thus BF �L��BF �Lt� � �OPT �L��t� �� n���� � ��

Putting both inequalities together� we obtain

BF �L� � �

�
�OPT �L���� t�� �OPT �L��t� �� n��� � ��

Note that t depends on the permutation �� The rest of the proof consists
in proving that the average number of items per bins at time u in the optimal
packing� OPT �L���� u��u� converges quickly to its �nal value OPT �L��n for
random �� This relies heavily on up�right matching analysis ����

��� Analysis of the optimal algorithm

We cannot easily analyze the optimal algorithm� Instead� we analyze another
algorithm� less e!cient but for which up�right matching results apply� The
number of bins used by this algorithm is an upper bound on OPT �L���� u���

We �rst present the algorithm and analysis in the simple case when OPT
packs exactly two items in each bin� From now on� we take the wording
�with high probability to mean with probability �� o����

Lemma � Assume that OPT �L� packs eaxctly two items per bin� Then�

with high probability� we have�

sup
u

�
OPT �L���� u�� u

n
OPT �L�

�
� O�n����log n������

Proof �

We start with some notation� In the packing of OPT �L�� each bin i contains

two items� x�i�� � x
�i�
� � In tis proof� we call x�i�� �large and x

�i�
� �small � We

can assume that x
���
� � � � � � x

���
n��� Then OPT �L��� � � � u�� is at least as good

as the Modi�ed Best Fit �MBF� algorithm of ���� Brie"y� a new large item is
always put in a new bin� a new small item is matched to the largest possible
previously inserted large item �which is not already matched�� and put in a
new bin otherwise� a bin is closed as soon as it receives a small item�

This is almost the setting of the up�right matching analysis of ���� the
di�erence is that in the present situation� there are exactly the same number
n�� of small and large items� while in the setting of ���� there are n items�
each of which has probability ��� of being small and ��� of being large�
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this does not a�ect the analysis� since adding or removing O�
p
n� items only

changes the number of bins which MBF uses by O�
p
n��

The up�right matching analysis tells us that with high probability� the to�
tal number of unmatched items is O�

p
n�log n������ This implies the lemma�

In the general case� let b � OPT �L�� We �x � � �� and let k � d���e���
In the optimumpacking OPT �L�� we partition the bins into groups according
to how many items they contain� Let bi be the number of bins with exactly
i items� for � � i � k� and let bk denote the number pf bins with at least k
items� We have� b � b� � � � � � bk� Let Si denote the set of items in the bi
bins with i items �with � k items in the special case i � k��

The algorithm which we use to bound OPT �L���� u�� is basically MBF
used independently on each Si and on each item rank� We order the items
by decreasing size in each bin� The algorithm constructs a matching between
the largest and the second largest items of Si� and another matching between
the second largest and the third largest items of Si� and so on� It then takes
matched items and allocates them to the same bin�

More precisely� we use the following notation for items of Si� Order the
bins by decreasing size of their largest items� y

���
� � y

���
� � � � � � y

���
bi

� In each

bin j� � � j � bi� order the items by decreasing size� y
���
j � y

���
j � � � � � y

�j�
j �

For �nding an upper bound to OPT �L��� � � � u��� our algorithm works
independently for each Si� as follows� we apply MBF to form a matching
of the largest items �the �large items� with the second largest items �the
�small items�� we mark the unmatched items as having failed� We then
apply MBF to �nd a matching of the second largest items which have not yet
failed �the new �large items� with the third largest items �the new �small 
items�� We mark the unmatched items as having failed� We continue in the
same manner for i� � steps� Any two items which are matched at any stage
will be allocated to the same bin� Finally� in the special case of set Sk� we
allocate the remaining items R to bins using a greedy algorithm such as Best
Fit�

Lemma � If i � k� then we have�

sup
u

�
OPT �L���� u� � Si�� u

n
bi

�
� O�

q
bi�log bi�

�����
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If i � k� then we have�

sup
u

�
OPT �L���� u� � Sk�� u

n
bk

�
� �

u

n
bk �O�

q
bk�log bk�

����

The proof� ommitted here� is basically up�right matching applied i times
for Si� For the special case of the Sk� note that the items in R are all smaller
than ���� and thus won	t create new bins unless all bins are �lled up to level
�� ��� at least� which gives performance ratio �� � �� at most�

We �nally obtain�

BF �L� � �

�
�OPT �L���� t�� �OPT �L��t� �� n��

� �

�
n sup

u

OPT �L���� u��

u

� �

�
OPT �L��� � �� � o�OPT �L��

with high probability�
In the remaining� low�probability cases� we use the worst�case bound

BF �L� � ���OPT �L�� Altogether� we get�

E�BF �L�� � �

�
�� � �� o����OPT �L��

This implies the theorem�

� The lower bound

The calculations are only sketched here� they were done using Mathematica�
Instead of taking items from a �xed list in random order� we will draw n
items independently and uniformly from a �xed set S� This will generate a
random multiset Ln of n items inserted in random order� We will show that
as n goes to in�nity� the average performance ratio of Best��t is ���� � � �� It
follows that there exists at least one multiset for which the random�order
performance ratio is greater than or equal to ���� � � �� We choose S so that
the optimal algorithm is perfect� and packs exactly three items per bin� S has
three elements a � b � c which sum to �� Now� we make sure that if Best��t
starts packing a bin B the wrong way� by putting two copies of c together in
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B� the error is unretrievable� no more item can �t into B� In addition� by
choosing all elements greater than ���� we make sure that Best��t can never
pack four items in the same bin� and thus can never recoved from its errors�
All these conditions are satis�ed by S � f���� ���� ���g� which is thus a good
candidate to �nd a non�trivial lower bound�

Let a � ���� b � ���� c � ���� A bin is called closed if it can no longer
receive any more items �i�e� its current size is greater than ����� We have a
Markov chain� where the state of the system after i insertions is determined
by the collection of open bins� and the transitions correspond to inserting a�
b or c with probability ��� each�

An open bin has size either ���� ���� ���� ���� ���� ��� # with at most one
bin of each of these sizes� and additional constraints on which sizes can occur
simultaneously#� or size ��� or ���� or is closed� Note that bins of size ���
and bins of size ��� behave exactly in the same way� they can only receive
one additional a� So they do not need to be distinguished� and the state of
the system is determined by the number i of bins of size ��� or ���� plus a
constant amount of information on which other bin sizes are present� the
Markov chain is in�nite �one�dimensional � In addition� if i is greater than
�� one can check that either there are no other bins� or there is just one other
bin �which has size ��� or �����

The states of the Markov chain are the following� Let ai be the state with
i bins of size ��� or ���� Let bi be the state which has i bins of size ��� or ����
plus one bin of size ���� Let ci be the state which has i bins of size ��� or ����
plus one bin of size ���� Let A be the state with one bin of size ���� AA be
the state with one bin of size ���� AB be the state with one bin of size ����
AC be the state with one bin of size ���� and X be the state with one bin of
size ��� and one bin of size ����

The transitions are drawn in the �gure �� The chain is aperiodic and
irreducible� The stationary probabilities exist i� the following system of
equations has a positive normalized solution �where the name of a state is
identi�ed with its stationary probability for notational ease�����

��
ai�� � �

�
ci �

�
�
bi �

�
�
ai�� �

�
�
ci��

bi�� � �
�ai�� �

�
�bi��

ci�� � �
�ai�� �

�
�ci��

plus some additional equations for the initial part of the chain� From the
second and third equations� we infer that bi � ci for all i � �� We obtain the
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Figure �� Markov chain describing Best��t under random insertions from
f���� ���� ���g�

following linear recurrence relation�
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for all j � �� The characteristic polynomial has three roots� �� �p
����� �

� � �� �
p
������ Since aj� bj go to � as n goes to in�nity �the probabilities

sum to ��� the vector �an��� bn��� bn�T is in the eigenspace of ���p������ thus
a multiple of the eigenvector� ����

p
��� ���p������ ��T � We use the initial

part of the chain� and the fact that the probabilities sum to �� to determine
the mutiplicative factor and thus the stationary distribution� The probability
that an arrival causes a new bin to open is then pBF � a��AC����

P
i�� ai���

On the other hand� the optimal algorithm packs three items per bin�
so the probability that a new arrival causes OPT to use one more bin is
pOPT � ���� The average performance ratio of Best��t is thus RC�BF � �
pBF�pOPT � �pBF � Calculations show RC�BF � � ������� � � ��
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