Claire Kenyon

Best-Fit Bin-Packing with Random Order

Keywords: Best Fit, Bin-Packing, On-line Algorithms, Approximation Ratio, Markov Chains Mise en Bo^ tes, Algorithmes En-Ligne, Rapport de Performance, Cha^ nes de Markov

Best-t is the best known algorithm for on-line bin-packing, in the sense that no algorithm is known to behave better both in the worst case and in the average uniform case. In practice, Best-t appears to perform within a few percent of optimal. In this paper, we study the expected performance ratio, taking the worst-case multiset of items L, and assuming that the elements of L are inserted in random order. W e show a l o wer bound of 1:07 : : :and an upper bound of 1:5 on the random order performance ratio of Best-t.

Best-Fit Bin-Packing with Random Order Claire Kenyon September 13, 1995 1 Introduction

Background

Bin-packing is a basic problem of computer science: given a list of items between 0 and 1, L = (x 1 : : : x n), assign each item to a bin, so that the sum of the values of the items assigned to the same bin does not exceed 1, and the goal is to minimize the number of bins used. This problem is NPhard 10] and heuristics have been developed to approximate the minimum number of bins. In the on-line version of the problem, the items arrive o n e by one, and x i must be assigned to a bin without knowledge of the future items (x i+1 : : : x n).

The simplest and most classical algorithms designed for this problem are Next-t, First-t and Best-t. Best-t maintains a list of current bins, ordered by sizes, and upon arrival of item x, puts it in the current fullest bin in which it ts, opening a new bin for x if this fails. First-t maintains a list of current bins, ordered by the date at which t h e y w ere opened, and upon arrival of item x, puts it in the rst bin in which it ts, opening a new bin for x if this fails. Next-t maintains the last opened bin, and upon arrival of item x, puts it in that bin if it ts and opens a new bin otherwise. More recently, the Harmonic algorithm was designed 11] it is more complicated, but linear time, and tailored to behave w ell in worst-case situations.

Permanent address: LIP, URA CNRS 1398, ENS-Lyon, 46, All ee d'Italie, 69364 Lyon Cedex 07. This work was done at U.C. Berkeley, where the author was supported by CNRS and by a N A TO fellowship.

1

The notion of performance ratio is used to evaluate bin-packing algorithms. Let OPT denote the (unknown) optimal o -line algorithm, and, for an algorithm A and a list L, let A(L) denote the number of bins used by algorithm A run on L.

De nition 1 The performance r atio C(A) of algorithm A is:

C(A) = l i m sup OPT(L)!1 A(L) OPT(L) :
In the seminal paper 2], it is proved that Best-t and First-t have performance ratio 1:7, while Next-t has performance ratio 2. The Harmonic algorithm is proved in 11] to have performance ratio 1:69 : : : ?, and improved versions have slightly lower performance ratios to the author's knowledge, the current best performance ratio is 1:58 : : : 14]. The quest for better algorithms was somewhat quelched by Y ao's lower bound: no deterministic on-line algorithm can have performance ratio better than 1: 5 4]. This lower bound was later improved up to 1:54 : : :in 5, 6, 7], and proved to hold even for randomized algorithms 9].

The performance ratio has the drawback that for Best-t, the worstcase sequences upon which it relies are very contrived and never occur in practice. In fact, it has been observed that Best-t usually behaves within a few percent of optimal in practice, much better than predicted by t h e performance ratio. To explain this, researchers have studied the behavior of on-line algorithms when the items are drawn independently from particular distributions. Of particular interest is the uniform distribution in 0 1]. In his thesis, Peter Shor analyzed Best-t and First-t under this distribution, and proved that they are asymptotically optimal on average, and that the expected amount o f w asted space (number of bins minus the sum of the item sizes) is O(n 1=2 (log n) 3=4) for Best-t and about n 2=3 for First-t 3, 1]. This is in fact even better than practice: real-life distributions are not always as nice as the uniform distribution! In recent y ears, people have also studied other distributions: a discretized version of the uniform distribution as well as some truncated versions, where the items are drawn uniformly in interval a b]. Analyzing these distributions precisely is a challenging problem. For example, in a recent p a p e r 1 5] , i t w as shown, using a computer program to compute Lyapunov functions to analyze multi-dimensional bounded-jump Markov c hains, that Best t has linear expected waste when the items are drawn uniformly from the set f1=11 2=11 : : : 8=11g, and also when the items are drawn uniformly from the set f1=12 2=12 : : : 9=12g.

The result

Best-t emerges as the winner among the various on-line algorithms: it is simple, behaves well in practice, and no algorithm is known which beats it both in the worst-case and in the average uniform case. But the worst-case performance ratio and the uniform-distribution performance ratio are not quite satisfactory measures for evaluating on-line bin-packing algorithms. Moreover, it appears that studying given distributions accurately is an extremely challenging problem.

In this paper, we focus on Best-t, and propose a new model of performance evaluation, that of worst-case list of input items, but random insertion order, all permutations being equally likely. This model was used in computational geometry with extreme success (see for example 8]).

De nition 2 The random-order performance r atio RC(A) of an on-line al

- gorithm A is RC(A) = lim sup OPT(L)!1 E A(L) OPT(L)
where L is the permuted list (x (1) : : : x (n)) and the expectation is taken over all permutations 2 S n .

Note that the order is often crucial in the bad-case examples of binpacking heuristics. A textbook example of why Best-t is not optimal is the list L = (1 =2 ; : :

: 1=2 ; | {z } n 1=2 + : : : 1=2 + | {z } n):
The optimal packing uses just n bins for L, while Best-t uses 1:5n bins. However, if the list L is randomly permuted, the situation is completely di erent. It can be simulated by drawing each item independently and uniformly from f1=2 ; 1=2 + g. The sequence can be viewed as an unbiased random walk in the plane, where at each step we m o ve b y (+1 1) depending on whether the arriving item is larger or smaller than 1=2. the number of items left unpaired is bounded by t h e v ertical span of the random walk, which is of order o(n) with high probability. So, Best-t behaves optimally for this list if the order is random! We prove l o wer and upper bounds on the random-order performance ratio of Best-t. First, we p r o ve that for any list L, the random-order performance ratio is asymptotically less than 1:5. Second, we exhibit a list L such t h a t the random-order performance ratio is 1:07 : : : . Theorem 1 The random-order performance r atio of Best-t satis es:

1:07 RC(BF) 1:5:

We expect the true answer to lie somewhere close to 1.07. The proof of the lower bound analyzes the performance of Best-t when the items are drawn uniformly and independently from f:29 : 35 : 36g, f o r which the optimum packing is perfect. The analysis can be reduced to studying a \one-dimensional" Markov c hain (drawn on an in nite strip of width 3), which is then solved by linear algebra. The proof of the upper bound, much more di cult, is a mixture of worstcase and average-case analysis, and its heart lies in proving that the number of items per bin in the optimum packing of the rst t items converges quickly to its nal value this in turn can be reduced to upright-matching.

Another question of theoretical interest would be to design an algorithm tailored to behave w ell under the performance measure random-order performance ratio it is likely that it is possible to design an optimal algorithm in this sense, since a recent paper by R h e e a n d T alagrand shows that if the input comes from an arbitrary xed distribution then there is a distributiondependent optimal algorithm however such an algorithm would be of theoretical interest only: in practice e ciency is a crucial issue and only the simplest algorithms, such as Next Fit, First Fit or Best Fit, are actually used.

The upper bound

Let L be a list of n items, and let L denote the list ordered according to permutation . Let us rst prove the upper bound for easy restricted cases. We classify the items inserted into three types according to their size: small (x 1=3), medium (1=3 < x 1=2), and large (x > 1=2). We rst study Best Fit when not all types occur.

No large items

Then all items are less than or equal to 1=2. It is well-known that the worstcase performance ratio of Best Fit in this setting is 1:5. In fact, all bins except at most two are lled up to level 2=3 o r m o r e . T o see that, rst note that all bins except possibly the last one contain at least two items. Now, take the bins in the order in which they were opened, and consider the rst bin B whose nal size is less than 2=3. Any bin created later than B and with more than one item contains as rst two items values between 1=3 a n d 1=2, whose sum is at least 2=3. Thus the only bins lled up to less than 2=3 are B and possibly the last bin. This implies BF(L) 2 + 3 OPT(L)=2.

No small items

Then all items are strictly greater than 1=3, and the worst-case performance ratio of Best-Fit in this setting is 1:5. To see this, observe that there are at most two items per bin, and that with the Best Fit algorithm, only the large items can be alone in their bin (except possibly for the last bin). Let x be the number of large items and y = n ; x the number of medium items. The optimal algorithm uses at least n=2 bins Best Fit uses at most x + y=2 + 1 , which is maximized f o r x = n=2 and gives BF(L) 3OPT(L)=2 + 1 .

General case

In the general case, all sizes can occur. Let t be the last time that a small item z was inserted into a bin B which either is new or was lled up to less than 1=2 immediately prior to inserting z.

We rst analyze what happens up to time t (if t exists). At t i m e t, all bins except B are lled up to level at least 2=3. Let L (1 t) denote the list of items inserted up to time t, a n d W (t) denote their total weight. We h a ve: BF(L (1 t)) 3W (t)=2 + 1 3OPT(L (1 t))=2 + 1 . Now, we analyze what happens after time t. L e t L (t + 1 n) denote the list of items inserted after time t. Let x be the number of large items and y the number of medium items in L (t + 1 n). The optimal algorithm uses at least (x + y)=2 bins when run on L (t + 1 n). But every bin created after time t by Best Fit contains either at least two medium items or one large item (except for the last bin). So at most x + y=2 + 1 are created, and the ratio (BF(L);BF(L (t+1 n)))=OP T(L (t+1 n)) is maximized f o r x = y. Thus BF(L) ; BF(L t) 3OPT(L (t + 1 n))=2 + 1 .

Putting both inequalities together, we obtain BF(L) [START_REF] Johnson | Worst-case performance b ounds for simple one-dimensional packing algorithms[END_REF] 2 (OPT(L (1 t)) + OPT(L (t + 1 n))) + 2: Note that t depends on the permutation . The rest of the proof consists in proving that the average number of items per bins at time u in the optimal packing, OPT(L (1 u)=u, converges quickly to its nal value OPT(L)=n for random . This relies heavily on up-right matching analysis 1].

Analysis of the optimal algorithm

We cannot easily analyze the optimal algorithm. Instead, we analyze another algorithm, less e cient but for which up-right m a t c hing results apply. T h e number of bins used by this algorithm is an upper bound on OPT(L (1 u)).

We rst present the algorithm and analysis in the simple case when OPT packs exactly two items in each b i n . From now on, we t a k e t h e w ording \with high probability" to mean with probability 1 ; o(1).

Lemma 1 Assume that OPT(L) packs eaxctly two items per bin. Then, with high probability, we have:

sup u OPT(L (1 u) ; u n OPT(L) = O(n 1=2 (log n) 3=4):
Proof :

We start with some notation. In the packing of OPT(L), each b i n i contains two items, x (i) 1

x (i) 2 . In tis proof, we call x (i) 1 \large" and x (i) 2 \small". We can assume that x (1) 1 : : : x (1) n=2 . T h e n OPT(L 1 : : : u]) is at least as good as the Modi ed Best Fit (MBF) algorithm of 3]. Brie y, a new large item is always put in a new bin a new small item is matched to the largest possible previously inserted large item (which is not already matched), and put in a new bin otherwise a bin is closed as soon as it receives a small item. This is almost the setting of the up-right m a t c hing analysis of 3] the di erence is that in the present situation, there are exactly the same number n=2 of small and large items, while in the setting of 3], there are n items, each of which has probability 1 =2 of being small and 1=2 of being large this does not a ect the analysis, since adding or removing O(p n) items only changes the number of bins which MBFuses by O(p n).

The up-right m a t c hing analysis tells us that with high probability, the total number of unmatched items is O(p n(log n) 3=4). This implies the lemma.

In the general case, let b = OPT(L). We x > 0, and let k = d1= e + 1 . In the optimum packing OPT(L), we partition the bins into groups according to how m a n y items they contain. Let b i be the number of bins with exactly i items, for 1 i < k , and let b k denote the number pf bins with at least k items. We h a ve: b = b 1 + + b k . L e t S i denote the set of items in the b i bins with i items (with k items in the special case i = k).

The algorithm which w e use to bound OPT(L (1 u)) is basically MBF used independently on each S i and on each item rank. We order the items by decreasing size in each bin. The algorithm constructs a matching between the largest and the second largest items of S i and another matching between the second largest and the third largest items of S i and so on. It then takes matched items and allocates them to the same bin.

More precisely, w e use the following notation for items of S i . Order the bins by decreasing size of their largest items, y (1) 1 y (1) 2 : : : y (1) b i . I n e a c h bin j, 1 j b i , order the items by decreasing size: y (1) j y (2) j : : : y (j) j .

For nding an upper bound to OPT(L 1 : : : u]), our algorithm works independently for each S i , as follows: we apply MBFto form a matching of the largest items (the \large" items) with the second largest items (the \small" items) we mark the unmatched items as having failed. We then apply MBF to nd a matching of the second largest items which h a ve not yet failed (the new \large" items) with the third largest items (the new \small" items). We mark the unmatched items as having failed. We c o n tinue in the same manner for i ; 1 steps. Any t wo items which are matched at any stage will be allocated to the same bin. Finally, in the special case of set S k , w e allocate the remaining items R to bins using a greedy algorithm such a s B e s t Fit.

Lemma 2 If i < k , then we have:

sup u OPT(L (1 u) \ S i) ; u n b i = O(q b i (log b i) 3=4):
B, the error is unretrievable: no more item can t into B. The states of the Markov c hain are the following. Let a i be the state with i bins of size :70 or :71. Let b i be the state which h a s i bins of size :70 or :71, plus one bin of size :35. Let c i be the state which has i bins of size :70 or :71, plus one bin of size :36. Let A be the state with one bin of size :29, AA be the state with one bin of size :58, AB be the state with one bin of size :64, AC be the state with one bin of size :65, and X be the state with one bin of size :65 and one bin of size :36.

The transitions are drawn in the gure 1. The chain is aperiodic and irreducible. The stationary probabilities exist i the following system of equations has a positive normalized solution (where the name of a state is identi ed with its stationary probability for notational ease): 8 > < > :

a i+1 = 1 3 c i + 2 3 b i + 1 3 a i+2 + 1 3 c i+1 b i+1 = 1 3 a i+1 + 1 3 b i+2 c i+1 = 1 3 a i+1 + 1 3 c i+2
plus some additional equations for the initial part of the chain. From the second and third equations, we infer that b i = c i for all i 1. We obtain the for all j 2. The characteristic polynomial has three roots, (5 ; p 13)=2 < 1 < (5 + p 13)=2. Since a j b j go to 0 as n goes to in nity (the probabilities sum to 1), the vector (a n+1 b n+1 b n) T is in the eigenspace of (5; p 13)=2, thus a m ultiple of the eigenvector, (;2+ p 13 (5; p 13)=2 1) T . W e use the initial part of the chain, and the fact that the probabilities sum to 1, to determine the mutiplicative factor and thus the stationary distribution. The probability that an arrival causes a new bin to open is then p BF = a 0 +AC=3+2 P i 1 a i =3.

On the other hand, the optimal algorithm packs three items per bin, so the probability that a new arrival causes OPT to use one more bin is p OPT = 1 =3. The average performance ratio of Best-t is thus RC(BF) = p BF =p OPT = 3 p BF . Calculations show RC(BF) = 1 :07322 : : : .

Figure 1 :

 1 Figure 1: Markov c hain describing Best-t under random insertions from f:29 : 35 : 36g.

 In addition, by choosing all elements greater than 1=4, we m a k e sure that Best-t can never pack four items in the same bin, and thus can never recoved from its errors. All these conditions are satis ed by S = f:29 : 35 : 36g, w h i c h i s t h u s a g o o d candidate to nd a non-trivial lower bound. Let a = :29 b= :35 c= :36. A bin is called closed if it can no longer receive a n y more items (i.e. its current size is greater than :71). We h a ve a Markov c hain, where the state of the system after i insertions is determined by the collection of open bins, and the transitions correspond to inserting a, b or c with probability 1 =3 e a c h. An open bin has size either :29 : 35 : 36 : 58 : 64 : 6 5 { w i t h a t m o s t o n e bin of each of these sizes, and additional constraints on which sizes can occur simultaneously{, or size :70 or :71, or is closed. Note that bins of size :70 and bins of size :71 behave exactly in the same way: they can only receive one additional a. So they do not need to be distinguished, and the state of the system is determined by t h e n umber i of bins of size :70

or :71, plus a constant amount of information on which other bin sizes are present: the Markov c hain is in nite \one-dimensional". In addition, if i is greater than 0, one can check that either there are no other bins, or there is just one other bin (which has size :35 or :36).

Acknowledgments

The author wishes to thank Richard Karp for numerous discussions, Mor Harchol for help with nding the relevant references, and Richard Kenyon for helping to solve the Markov c hain used in the lower bound.

The proof, ommitted here, is basically up-right m a t c hing applied i times for S i . F or the special case of the S k , note that the items in R are all smaller than 1= , and thus won't create new bins unless all bins are lled up to level 1 ; 1= at least, which gives performance ratio (1 +) a t m o s t .

We nally obtain:

with high probability.

In the remaining, low-probability cases, we use the worst-case bound BF(L) 1:7OPT(L). Altogether, we get:

This implies the theorem.

3 The lower bound

The calculations are only sketched here they were done using Mathematica.

Instead of taking items from a xed list in random order, we w i l l d r a w n items independently and uniformly from a xed set S. This will generate a random multiset L n of n items inserted in random order. We will show t h a t as n goes to in nity, t h e a verage performance ratio of Best-t is 1:07 : : : . I t follows that there exists at least one multiset for which the random-order performance ratio is greater than or equal to 1:07 : : : . W e c hoose S so that the optimal algorithm is perfect, and packs exactly three items per bin: S has three elements a b c which sum to 1. Now, we m a k e sure that if Best-t starts packing a bin B the wrong way, b y putting two c o p i e s o f c together in