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Abstract

We design a new radix � digit on�line �i�e�� serial� most signi�cant digit �rst�
�oating�point divider which performs its arithmetic operation in digit on�line
mode both for the exponent and the mantissa� We have performed parallel
discrete�event simulations of the circuit on a memory�distributed massively pa�
rallel computer�
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R�esum�e

Ce document d�ecrit un diviseur 	en�ligne
 en v��rgule �ottante fonctionant en
base �� L�exposant comme la mantisse sont transmis chire �a chire� Des si�
mulations parall�eles d��ev�enements discrets du circuit ont et�e eectu�ees sur une
machine parall�ele �a m�emoire distribu�ee�

Mots�cl�es� parall�elisme �a ganularit�e �ne� calcul h�et�erog�ene� calcul en�ligne�
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R�esum�e

We design a new radix � digit on�line �i�e�� serial� most signi�cant digit �rst� �oating�
point divider which performs its arithmetic operation in digit on�line mode both for the
exponent and the mantissa� We have performed parallel discrete�event simulations of
the circuit on a memory�distributed massively parallel computer�

� Introduction

On�line arithmetic is a radical departure from conventional techniques for performing scien�
ti�c computations ����������������� In such arithmetic� the digits circulate serially� most signi�
�cant digit �rst� Since in classical �i�e� non redundant� number systems� carries are propa�
gated from the least signi�cant digit to the most signi�cant one� digit on�line computations
are not possible in these systems� Then� we need to use a redundant number system� which
enables carry�free computations� Here� we use the BS �	borrow save
� notation ��� which is
a special bit�level implementation of the binary signed�digit representation ����
The digit on�line arithmetic operators are characterized by their delay� that is the number
� such that p digits of the result are deduced from p� � digits of the input operands� When
successive digit on�line operations are performed in digit pipelined mode� the resulting de�
lay will be the sum of the individual delays of operations and communications� and the
computation of large numerical jobs can be executed in an e�cient manner� Here� we will
assume that any communication has a delay of ��
As we can see from �gure �� the computations in digit on�line mode can be described as a
data�ow graph� DFG� These graphs consist of nodes� which indicate operations executed on
arithmetic units� and edges from one node to another node� which indicate the �ow of data
between them� A nodal operation can be executed only when the required information� a
digit from all the input edges is received� Typically a nodal operation requires one or two
operands and produces one result� Once the node has been activated and the computations
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related to the input digits inside the arithmetic unit performed �i�e� the node has �red��
the output digit is passed to the destination nodes� This process is repeated until all nodes
have been activated and the �nal result obtained� Of course� more than one node can be
�red simultaneously�
In this paper� we deal with the digit on�line �oating�point implementation of the division�

a

c
d

b
ith digit of a� b � c� d

�

�

�

�i � ��th digits of the products

�i � ��th digits of the inputs

�� � �

�� � �

Fig� � � Digit�level pipelining in digit on�line arithmetic

We shall assume that both the exponents and the mantissas of numbers circulate in digit on�
line mode and are represented in the BS system� We have already introduced digit on�line
�oating�point adders and multipliers ���� ���� Recently� Tu����� ���� has studied �oating�point
implementations of digit on�line operators� but in a slightly dierent manner� he assumes
that the exponents enter the operators in parallel�

� The BS notation and the number format

��� The BS notation

An interesting implementation of a radix�� carry�free redundant system is Borrow Save
notation� BS for short� In BS� the ith digit xi of a number x is represented by two bits x�i
and x�i with xi � x�i � x�i � Then � has two representations� �� �� and �� ��� The digit �
is represented by �� �� and the digit �� �or �� by �� ��� Using the BS number system� the
addition can be computed without carry propagation ���� Figure � shows some elementary
�xed�point BS circuits�

��� Floating�point number format

A BS �oating�point number X with n digits of mantissa and p digits of exponent is repre�
sented by X � mx�ex� where mx �

Pn

i��mxi��i and ex �
Pp��

i�� exi�
i� In our system the

exponents and the mantissas circulate in digit on�line mode� exponent �rst� See �gure ��

��� Pseudo�normalization

In classical binary �oating�point representation� a number is said normalized if its mantissa
belongs to ����� �� or ��� ����� Normalization of numbers leads to more accurate represen�
tations and consequently results� In BS representation� to check if a number is normalized
needs sometimes the examination of all its digits� For this reason� we adopt the concept of
pseudo�normalized numbers� A number is said pseudo�normalized if its mantissa belongs to
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exp�� � � �ex� mx� � � �mxn

Fig� � � The BS �oating�point format

����� �� or ��� ����� It is easier and faster to ensure that a number is pseudo�normalized� it
su�ces to forbid a mantissa beginning by ��� ��� �� or ��� This pseudo�normalization is
performed in two steps�

�� A four state automaton examines two consecutives digits and transforms the couples
�� �� and �� �� into �� �� and �� �� respectively and leaves the other couples unchanged�
We call this operation an atomic pseudo�normalization� This automaton is shown in
�gure ��

�� The second step consists in counting the zeroes generated by the previous computation
and adding the same quantity to the exponent�

The divider could have a smaller delay if the divisor is guaranteed to be pseudo�normalized�
In this case the output of all arithmetic operators �adders� multipliers� dividers� etc�� must
be pseudo�normalized�
But� as our principal goal is to perform computations in digit�level pipelined mode� it is
preferable to pseudo�normalizer the inputs of the divider internally�
Note that the �rst solution makes the subtraction a variable delay operation� The second
ones make the divider more complex� but allows the adders to have a �x digit on�line delay�
This last solution is preferable because the division is less frequent than the addition is
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scienti�c computation�

� The digit on�line algorithm

The digit on�line �oating�point division algorithm performs three operations� exponents
calculation� mantissas centring and calculation� A synchronization is performed between
the exponent and the mantissa� The algorithm part of mantissa computation is based on
the algorithm presented in ���� Let us present the algorithm�

��� The algorithm

We want to compute Q � X�Y with X � mx�ex� Y � my�ey� Q � mq�eq and

��� � my � �

jmxj � my

We will see how to deal with the cases of mx � my and negative divisor mantissa in the
next sections� The algorithm can be stated as follows�

Algorithm � �Digit on�line division algorithm�

Step � �Exponent computation�

�� Compute the subtraction of the exponents but its last two digits� eqp��� � � � � eq��

Step � �Mantissas shifting and exponent computation�

�� MY
�

� �
P�

i��myi�
�i�

�� A
��

� �
P�

i��mxi�
�i�

�� if MY
�

� � ��� then MY� � ��MY
�

� � else MY� � MY
�

� �

�� if �jA
��

� j� ���� �MY� � ����� then A
�

� � A
��

���� else A
�

� � A
��

� �



�� if A
�

� � A
��

��� then increment eq and compute eq��

�� if �jA
�

�j� ���� �MY� � ����� then A� � A
�

���� else A� � A
�

��

�� if A� � A
�

��� or MY� � ��MY
�

� then increment eq and compute eq��

Step � �Mantissa computation�

�� for �j � �� j � n� ��
f

��� if Aj � ��� then mqj�� � ��
else if Aj � ���� then mqj�� � ���
else mqj�� � ��

��� if MY
�

� � ��� then

f

		 MYj�� � MYj �myj���
�j���

		 Aj�� � �Aj �mxj���
�� �mqj��MYj�� �Qjmyj���

���

g

else

f

		 MYj�� � MYj �myj���
�j���

		 Aj�� � �Aj �mxj���
�� �mqj��MYj�� �Qjmyj���

���

g

��� Qj�� � Qj �mqj����j���

g

��� Proof of correctness

It is obvious that the computation of the exponent of the result is correct� On the other
hand� for the mantissas alignment and computation the situation is more complex� Let us
explain this�

����� Mantissas shifting

We show why it may be necessary to shift A
��

� and A
�

� one time each�
According to the algorithm it must be guaranteed that jmxj � my� Then� as the shift must
be performed with only � digits of each mantissa� we may have the following situations�

� If MY
�

�
� ���� jA

��

� j

MY�
� �������

�������
and� mx

my
may be equal to �����������

������������
� A shift is necessary�

But as jA
�

�j

MY�
� �������

�������
another shift is necessary and then� jA�j

MY�
� �������

�������
� With this� it

is guaranteed that jmxj � my�

� If MY
�

� � ��� then� MY
�

� is shifted of one position� The worst case is� jA
��

� j

MY�
� �������

������
�

Then� it is enough to shift A� one position to guaranteed that jmxj � my� With this
MY�� � ������ Where� MY is the mantissa of the divider�

Then� the exponent must be augmented in �� � or ��



����� Mantissa computation

To perform the division correctly� the values of mqj�� chosen in step � of the algorithm
must be compatibles with the Robertson�s conditions ���� They are�

�� if MXj � �MY�� then mqj�� � ��

�� if �MY�� �MXj � � then mqj�� � � or mqj�� � ��

�� if MXj � � then mqj�� � � or mqj�� � � or mqj�� � ��

�� if � � MXj �MY�� then mqj�� � � or mqj�� � ��

�� if MXj � MY�� then mqj�� � ��

The two following equations may be easily proved by induction�
If MY

�

� � ����

Aj � �j
������

j��X
i��

mxi�
�i �

� jX
i��

mqi�
�i

��j��X
i��

myi�
�i

������� ���

else if MY
�

� � ����

Aj � �j
������

j��X
i��

mxi�
�i �

� jX
i��

mqi�
�i

��j��X
i��

myi�
�i��

������� ���

Aj can be expressed also as�

Aj � �j
������

j��X
i��

mxi�
�i �

� jX
i��

mqi�
�i

�
MYj

������ ���

MYj is the shifted mantissa of the divisor at step j�
We de�ne a sequence as� �

MX� � mx

MXj�� � �MXj �mqj��MY
���

We �nd that�

MXj � �j
������

nX
i��

mxi�
�i �

� jX
i��

mqi�
�i

�
MY

������ ���

MXj �Aj � �j
������

nX
i�j��

mxi�
�i �

� jX
i��

mqi�
�i

��
MY �MYj

������� ���

As�

MYj �

� Pj��

i�� myi�
�i if MY

�

� � ���Pj��

i�� myi�
�i�� if MY

�

� � ���

�
���

We have�

jMXj � Aj � �j
������

nX
i�j��

��i �

� jX
i��

��i
��

jMY �MYj j

������� ���



As�

jMY �MYj j �

�
��j��� ifMY

�

� � ���
��j��� ifMY

�

� � ���

�
���

Then�
jMXj �Aj j � ���� � ���� � ���� ����

According to step � of the algorithm�

� if mqj�� � � then� Aj � ���� From equation �� we �nd that if Aj � ��� then
MXj � ����� Robertson�s conditions � and � are satis�ed�

� Similarly� if mqj�� � � then Aj � ���� Then� MXj � ����� Robertson�s conditions �
and � are satis�ed�

� if mqj�� � �� then� ���� � Aj � ����� From equation ��� we �nd that ���� � MXj �
���� and as� jMY j�� � ����� then� the Roberson�s conditions �� � and � are satis�ed�

Hence� the algorithm computes the division correctly�
However� this algorithm can be improved� The sequence of tests�

Test � �Test of Aj�

		 if Aj � ��� then mqj�� � �
else if Aj � ���� then mqj�� � ��
else mqj�� � �

needs the examination of all the digits of Aj �i�e�� j���� This examination involves a needless
loss of time �the arithmetic operations on step � of the algorithm may be performed in
parallel� without carry propagation� using the BS number system�� Therefore this sequence
of test is the most time�consuming part of the algorithm� In order to avoid this drawback�
we examine all the digits of Aj between the most signi�cant one and the digit which power
is ���� Namely� A�

j �
P�

i�� �
�iaj�i

�� Then� the test will be performed on A�
j instead of Aj

as following�

Test � �Test of A�
j�

		 if A�
j � ��� then mqj�� � �

else if A�
j � ���� then mqj�� � ��

else mqj�� � �

The proof of the improved algorithm is similar to the previous one�
We obtain the obvious relation�

jAj �A�
j j � ���� ����

Then� according to the modi�ed Step � of the algorithm�

� if mqj�� � � then� A�
j � ���� From equation �� we �nd that if A�

j � ��� then�
Aj � ���� and from �� we �nd that MXj � ��

�� by now let us assume that A�j can be represented as a � digits expression�



� Similarly� if mqj�� � � then� A�
j � ���� Then� Aj � ���� and MXj � ��

� if mqj�� � �� then� ��� � A�
j � ���� As A�

j is a multiple of ����� we have� ���� �
A�
j � ����� From equation �� we �nd� ���� � Aj � ���� and� from equation ��� we

�nd that ���� �MXj � �����

����� Pseudo�normalization

If the inputs of the �oating�point divider are pseudo�normalized then its output is also
pseudo�normalized� Let us prove that�

� If MY
�

� � ��� then� the worst case is� jXj

Y
� ���������

�������
� �

�
and the quotient is pseudo�

normalized�

� If MY
�

� � ��� then the worst case is� jXj
Y

� ���������
�����������

� �

�
and the quotient is pseudo�

normalized�

� The architecture

The �oating�point divider consists of several blocks ��gure ���

� A serial circuit to compute the dierence between the exponents�

� A serial augmenter to increase the exponent by �� � or ��

� A serial automaton that computes the absolute value of Y �

� A serial over�ow detector�

� A pseudo�normalizer� which ensures that ��� � Y � ��

� A serial shifter synchronizer for the mantissas�

� A serial divider for the mantissas�

absolute
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ready
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normalizer

ey

ex

mx

mx
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shift

my

my
mq

Q

X

Y

stop delay
over�ow

eq

detector

serial divider delay
and synchronizer inverter

delay

subtraction

sign
augmentation

augmenter

shifting

Fig� � � The on�line �oating�point divider



The �rst two computations are performed with the circuits of �gure ��
The automaton that computes the absolute value of Y is shown in �gure �� The sign inverter
changes the sign of the mantissa of the result if the state of the maximum value automaton
is ��
The detection of the over�ow is done at the output of the incrementer� A small automaton

�

��� ���

���

���

���

���

���

������

Initial
� state

Fig� � � The absolute value automaton

tries to �nd a representation of the exponent so that to have the carry digit equal to � �in
order to keep the p exponent of the format�� Figure � shows this automaton�
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�
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��x
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� � are overflow states

��x��x

Initial
state

Fig� � � The over�ow detector automaton

The shifter synchronizer guarantees that if shifts have been performed� then the exponent
is augmented and otherwise the exponent remains unchanged� We will explain with more
detail the pseudo�normalizer� the shifter synchronizer and the serial divider�

��� Pseudo�normalizer

The pseudo�normalizer is shown in �gure �� The automaton is shown in �gure �� A binary
counter stores the number that the exponent must be decreased� A zero tester is used to
avoid the delay of the serial circuit when the subtraction of the exponents is not performed�
The over�ow detector is similar to the ones shown in �gure �� The delay of the pseudo�
normalizer ��pno� is variable and depends on the degree of pseudo�normalization of the
operands� If le is the number of digits of the exponent and lbs the number of digits to



represent the �oating�point number� then�

le� � � �pno � lbs� � ����

Then the delay of the normalizer may be� in the worst case� as great as the length of the
number representation plus �� On the other hand� if the input operand is already pseudo�
normalized� �pno has its minimum value� Figure � shows an example�
If the zero tester is not used a simpli�ed design is obtained� but the minimum value of the
delay will be augmented by �� The serial subtraction can be replaced also by its parallel
version�
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Fig� � � The pseudo�normalizer
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Fig� � � Example of the internal synchronization on the pseudo�normalizer �my �
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��� Shifting the mantissas

The circuit performs the comparisons of the mantissas� The comparison on MY
�

�
is perfor�

med before the comparison with mx� A second comparison delays mx of � or � cycles if
necessary� None digit of mx is lost� but delayed� It is assumed that these operations can be
performed in one cycle�

��� The serial divider

The serial divider is shown in �gure ��� The upper part of it computes the termmqj��MYj���
Similarly� the lower ones computes Qjmj��� The BS four�input parallel adder computes the
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Fig� �� � The circuit for shifting the mantissas

term Aj � It is made up with � ��input BS parallel adders� A ��input parallel adder is
proposed in ���� The format control is very simple and requires only the test of the digit
with power ��� If the value of this digit is dierent form zero� then the digit with power ��

is inverted �remember� jAjj � ����� This technique was originally proposed by Kla ����

� Let Z � zn � � �z�z��z��z�k � Nz�z��K such that jZj � ��
if z� � � � Z � z��K else Z � z��K
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��� Internal synchronization of the �oating�point divider
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Fig� �� � The internal synchronization on the on�line �oating�point divider

As we can see from �gure ��� the decision on augmenting or not the exponent can be taken
when their last two digits go through the incrementer� As the last two digits of the exponent
are outputting� the �rst �ve digits of the mantissas are available� and then it is possible to
subtract �� �� or � from the exponent of the result� Using �gures � and �� we obtain the
interval values of the digit on�line delay of the �oating�point divider ��div��

le� � � �div � lbs� � ����

Note that if the inputs are guaranteed to be pseudo�normalized� the delay of the divider
would be ��

� Conclusion

We have described a new radix � digit on�line divider� This arithmetic unit has a variable
digit on�line delay which depends on the pseudo�normalization degree of the divisor�
This architecture is fully simulated using parallel discrete�event simulations� It works on
MaPar MP��� a memory�distributed massively parallel computer� where several operators
work in parallel�
With this operator and the adders and multipliers already introduced� it is possible to per�
form in a digit�level pipelined mode� complex computations such as the Gauss elimination
algorithm to solve linear equations�
We are working in a project to simulate and to build a digit on�line machine called CA�
RESSE� the french abbreviation of Serial Redundant Scienti�c Computer� that will made
up of heterogeneous digit on�line arithmetic units�
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