Mario Fiallos Aguilar

Jean Duprat

A digit-serial divider for ne grain heterogeneous parallel-pipelined processing

Keywords: ne grain parallelisme, heterogeneous processing, digit on-line computation e ne, calcul h et erog ene, calcul en-ligne

We design a new radix 2 digit on-line (i.e., serial, most signi cant digit rst) oating-point divider which performs its arithmetic operation in digit on-line mode both for the exponent a n d t h e m a n tissa. We h a ve performed parallel discrete-event s i m ulations of the circuit on a memory-distributed massively parallel computer.

Introduction

On-line arithmetic is a radical departure from conventional techniques for performing scienti c computations 2], 5], 6], 12]. In such arithmetic, the digits circulate serially, most signicant digit rst. Since in classical (i.e. non redundant) number systems, carries are propagated from the least signi cant digit to the most signi cant one, digit on-line computations are not possible in these systems. Then, we need to use a redundant n umber system, which enables carry-free computations. Here, we use the BS (\borrow s a ve") notation 7] which i s a special bit-level implementation of the binary signed-digit representation 1]. The digit on-line arithmetic operators are characterized by their delay, that is the number such that p digits of the result are deduced from p + digits of the input operands. When successive digit on-line operations are performed in digit pipelined mode, the resulting delay will be the sum of the individual delays of operations and communications, and the computation of large numerical jobs can be executed in an e cient manner. Here, we will assume that any c o m m unication has a delay o f 1 . As we can see from gure 1, the computations in digit on-line mode can be described as a data ow graph, DFG. These graphs consist of nodes, which indicate operations executed on arithmetic units, and edges from one node to another node, which indicate the ow of data between them. A nodal operation can be executed only when the required information, a digit from all the input edges is received. Typically a nodal operation requires one or two operands and produces one result. Once the node has been activated and the computations : This work is part of a project called CARESSE which is partially supported by the \PRC A r c hitectures Nouvelles de Machine" of the French Minist ere de la Recherche et de la Technologie and the Centre National de la Recherche Scienti que.

y: Supported by CNPq and Universidade Federal do Cear a, Brazil.

related to the input digits inside the arithmetic unit performed (i.e. the node has red), the output digit is passed to the destination nodes. This process is repeated until all nodes have been activated and the nal result obtained. Of course, more than one node can be red simultaneously.

In this paper, we deal with the digit on-line oating-point implementation of the division. We shall assume that both the exponents and the mantissas of numbers circulate in digit online mode and are represented in the BS system. We h a ve already introduced digit on-line oating-point adders and multipliers 3], 4]. Recently, T u 10], 11] has studied oating-point implementations of digit on-line operators, but in a slightly di erent manner: he assumes that the exponents enter the operators in parallel.

2 The BS notation and the number format

The BS notation

An interesting implementation of a radix-2 carry-free redundant system is Borrow S a ve notation, BS for short. In BS, t h e i th digit x i of a number x is represented by t wo bits x + i and x ; i with x i = x + i ; x ; i . Then 0 has two representations, (0 0) and (1 1). The digit 1 is represented by (1 0) and the digit ;1 (o r 1) by (0 1). Using the BS number system, the addition can be computed without carry propagation 7]. Figure 2 shows some elementary xed-point BS circuits.

Floating-point n umber format

A BS oating-point n umber X with n digits of mantissa and p digits of exponent is represented by X = mx2 ex , where mx = P n i=1 mx i 2 ;i and ex = P p;1 i=0 ex i 2 i . In our system the exponents and the mantissas circulate in digit on-line mode, exponent rst. See gure 3.

Pseudo-normalization

In classical binary oating-point representation, a number is said normalized if its mantissa belongs to 1=2 1 or]1 1=2]. Normalization of numbers leads to more accurate representations and consequently results. In BS representation, to check i f a n umber is normalized needs sometimes the examination of all its digits. For this reason, we adopt the concept of pseudo-normalized numbers. A number is said pseudo-normalized if its mantissa belongs to

- - + + - - - + + - + + + -- z =
x + 1 i f inc = 0 for all input z = x + 2 i f inc = 0 for all input digits but the last two. digits but the last one. z = x if inc = 0 for all input digits. z = x ; k, w h e r e k is a binary positive n umber. It is easier and faster to ensure that a number is pseudo-normalized: it su ces to forbid a mantissa beginning by 0 1 , 0 1, 11 or 11. This pseudo-normalization is performed in two steps:

1. A four state automaton examines two consecutives digits and transforms the couples (1 1) and (1 1) i n to (0 1) and (0 1) respectively and leaves the other couples unchanged.

We call this operation an atomic pseudo-normalization. This automaton is shown in gure 4. 2. The second step consists in counting the zeroes generated by the previous computation and adding the same quantity to the exponent.

The divider could have a smaller delay if the divisor is guaranteed to be pseudo-normalized.

In this case the output of all arithmetic operators (adders, multipliers, dividers, etc), must be pseudo-normalized. But, as our principal goal is to perform computations in digit-level pipelined mode, it is preferable to pseudo-normalizer the inputs of the divider internally. Note that the rst solution makes the subtraction a variable delay operation. The second ones make the divider more complex, but allows the adders to have a x digit on-line delay. This last solution is preferable because the division is less frequent than the addition is

The digit on-line algorithm

The digit on-line oating-point division algorithm performs three operations: exponents calculation, mantissas centring and calculation. A synchronization is performed between the exponent and the mantissa. The algorithm part of mantissa computation is based on the algorithm presented in 6]. Let us present the algorithm.

The algorithm

We w ant to compute Q = X=Y with X = mx2 ex , Y = my2 ey , Q = mq2 eq and 1=4 my < 1 jmxj my

We will see how to deal with the cases of mx > my and negative divisor mantissa in the next sections. The algorithm can be stated as follows:

Algorithm 1 (Digit on-line division algorithm)

Step 1 (Exponent computation)

1. Compute the subtraction of the exponents but its last two digits: eq p;1 e q 2 .

Step 2 (Mantissas shifting and exponent computation)

1. MY 0 0 = P 5 i=1 my i 2 ;i 2. A 00 0 = P 5 i=1 mx i 2 ;i 3. if MY 0 0 < 1=2 then MY 0 = 2 MY 0 0 else MY 0 = MY 0 0 4. if (jA 00 0 j + 1 =32 MY 0 ; 1=32) then A 0 0 = A 00 0 =2 else A 0 0 = A 00 0 5. if A 0 0 = A 00 0 =2 then increment eq and compute eq 1 6. if (jA 0 0 j + 1 =32 MY 0 ; 1=32) then A 0 = A 0 0 =2 else A 0 = A 0 0 7. if A 0 = A 0 0 =2 or MY 0 = 2 MY 0 0 then increment eq and compute eq 0

Step 3 (Mantissa computation)

1. for (j = 0 j n ; 1) f 1:1 if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0 1:2 if MY 0 0 < 1=2 then f --MY j+1 = MY j + my j+6 2 ;j;5 --A j+1 = 2 A j + mx j+6 2 ;5 ; mq j+1 MY j+1 ; Q j my j+6 2 ;4 g else f --MY j+1 = MY j + my j+6 2 ;j;6 --A j+1 = 2 A j + mx j+6 2 ;5 ; mq j+1 MY j+1 ; Q j my j+6 2 ;5 g 1:3 Q j+1 = Q j + mq j+1 2 ;j;1 g

Proof of correctness

It is obvious that the computation of the exponent of the result is correct. On the other hand, for the mantissas alignment and computation the situation is more complex. Let us explain this.

Mantissas shifting

We show w h y i t m a y be necessary to shift A 00 0 and A 0 0 one time each.

According to the algorithm it must be guaranteed that jm x j m y . Then, as the shift must be performed with only 5 digits of each m a n tissa, we m a y h a ve the following situations:

{ I f MY 0 0 1=2, jA 00 0 j MY0 = 0:11111 0:10000 and, mx my may be equal to 0:11111 1 0:100001 1 . A shift is necessary. But as jA 0 0 j MY0 = 0:01111 0:10000 another shift is necessary and then, jA0j MY0 = 0:00111 0:10000 . With this, it is guaranteed that jm x j m y . { I f MY 0 0 < 1=2 then, MY 0 0 is shifted of one position. The worst case is: jA 00 0 j MY0 = 0:11111 1:0111 .

Then, it is enough to shift A 0 one position to guaranteed that jm x j m y . With this MY= 2 15=64. Where, MYis the mantissa of the divider.

Then, the exponent m ust be augmented in 0, 1 or 2.

Mantissa computation

To perform the division correctly, the values of mq j+1 chosen in step 2 of the algorithm must be compatibles with the Robertson's conditions 9]. They are:

1. if MX j < ;MY=2 then mq j+1 = 1. 2. if ;MY=2 MX j < 0 then mq j+1 = 1 o r mq j+1 = 0 . 3. if MX j = 0 then mq j+1 = 1 o r mq j+1 = 0 o r mq j+1 = 1 . 4. if 0 < M X j MY= 2 then mq j+1 = 0 o r mq j+1 = 1 . 5. if MX j > M Y = 2 then mq j+1 = 1 .

The two following equations may be easily proved by induction.

If MY 0 0 1=2:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i j+5 X i=1 my i 2 ;i 9 > > > > (1)
else if MY 0 0 < 1=2:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i j+5 X i=1 my i 2 ;i+1 9 > > > > (2)
A j can be expressed also as:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i MY j 9 > > > > (3)
MY j is the shifted mantissa of the divisor at step j.

We de ne a sequence as:

(MX 0 = mx MX j+1 = 2 MX j ; mq j+1 MY [START_REF] Duprat | On the simulation of pipelining of fully digit on-line oatingpoint adder networks on massively parallel computers[END_REF] We nd that:

MX j = 2 j 8 > > > > : n X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i MY 9 > > > > (5) MX j ; A j = 2 j 8 > > > > : n X i=j+6 mx i 2 ;i ; j X i=1 mq i 2 ;i MY; MY j 9 > > > > (6)
As:

MY j = (P j+5 i=1 my i 2 ;i if MY 0 0 1=2 P j+5 i=1 my i 2 ;i+1 if MY 0 0 < 1=2)

We h a ve: jMX j ; A j 2 j 8 > > > > : n X i=j+6 2 ;i + j X i=1 2 ;i jMY; MY j j 9 > > > > [START_REF] Guyot | Janus, an on-line multiplier/divider for manipulating large numbers[END_REF] As:

jMY; MY j j (2 ;j =32 ifMY 0 0 1=2 2 ;j =16 ifMY 0 0 < 1=2)

Then:

jMX j ; A j j 1=32 + 1=16 = 3=32 (10) According to step 3 of the algorithm: { i f mq j+1 = 1 then, A j 1=8. From equation 10 we nd that if A j 1=8 then MX j 1=32. Robertson's conditions 4 and 5 are satis ed. { Similarly, i f mq j+1 = 1 then A j 1=8. Then, MX j 1=32. Robertson's conditions 1 and 2 are satis ed.

{ i f mq j+1 = 0, then, 4=32 < A j < 4=32. From equation 10, we nd that 7=32 < M X j < 7=32 and as, jMYj=2 15=64 then, the Roberson's conditions 2, 3 and 4 are satis ed.

Hence, the algorithm computes the division correctly. However, this algorithm can be improved. The sequence of tests:

Test 1 (Test of A j)

--if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0 needs the examination of all the digits of A j (i.e., j+5). This examination involves a needless loss of time (the arithmetic operations on step 3 of the algorithm may be performed in parallel, without carry propagation, using the BS number system). Therefore this sequence of test is the most time-consuming part of the algorithm. In order to avoid this drawback, we examine all the digits of A j between the most signi cant one and the digit which p o wer is 2 ;5 . Namely, A j = P 5 i=0 2 ;i a j i 1 . Then, the test will be performed on A j instead of A j as following:

Test 2 (Test of A j) --if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0

The proof of the improved algorithm is similar to the previous one:

We obtain the obvious relation: jA j ; A j j 1=32 (11) Then, according to the modi ed Step 3 of the algorithm: { i f mq j+1 = 1 then, A j 1=8. From equation 11 we nd that if A j 1=8 then, A j 3=32 and from 10 we nd that MX j 0.

1: by n o w let us assume that A j can be represented as a 6 digits expression.

{ Similarly, i f mq j+1 = 1 then, A j 1=8. Then, A j 3=32 and MX j 0. { i f mq j+1 = 0, then, 1=8 < A j < 1=8. As A j is a multiple of 1=32, we h a ve: 3=32 A j 3=32. From equation 11 we nd: 4=32 A j 4=32 and, from equation 10, we nd that 7=32 MX j 7=32.

Pseudo-normalization

If the inputs of the oating-point divider are pseudo-normalized then its output is also pseudo-normalized. Let us prove that:

{ I f MY 0 0 1=2 then, the worst case is: jXj Y = 0:101 1 0:1 1 = 1 4 and the quotient is pseudonormalized.

{ I f MY 0 0 < 1=2 then the worst case is: jXj Y = 0:101 1 1:00011 1 = 1 4 and the quotient is pseudonormalized. [START_REF] Duprat | On the simulation of pipelining of fully digit on-line oatingpoint adder networks on massively parallel computers[END_REF] The architecture The oating-point divider consists of several blocks (gure 5): { A serial circuit to compute the di erence between the exponents. { A serial augmenter to increase the exponent b y 0 , 1 o r 2 .

{ A serial automaton that computes the absolute value of Y . { A serial over ow detector.

{ A pseudo-normalizer, which ensures that 1=4 Y < 1.

{ A serial shifter/synchronizer for the mantissas. { A serial divider for the mantissas. The rst two computations are performed with the circuits of gure 2.

The automaton that computes the absolute value of Y is shown in gure 6. The sign inverter changes the sign of the mantissa of the result if the state of the maximum value automaton is 1. The detection of the over ow is done at the output of the incrementer. A small automaton

1 0=0 1=1 0=0 1=1 1=1 0=0 1=1 1=1 1=1 Initial 1 state
Fig. 6 -The absolute value automaton tries to nd a representation of the exponent s o t h a t t o h a ve the carry digit equal to 0 (in order to keep the p exponent of the format). Figure 7 shows this automaton. The shifter/synchronizer guarantees that if shifts have been performed, then the exponent is augmented and otherwise the exponent remains unchanged. We will explain with more detail the pseudo-normalizer, the shifter/synchronizer and the serial divider.

Pseudo-normalizer

The pseudo-normalizer is shown in gure 8. The automaton is shown in gure 4. A binary counter stores the number that the exponent m ust be decreased. A zero tester is used to avoid the delay of the serial circuit when the subtraction of the exponents is not performed. The over ow detector is similar to the ones shown in gure 7. The delay of the pseudonormalizer (pno) i s v ariable and depends on the degree of pseudo-normalization of the operands. If le is the number of digits of the exponent and lbs the number of digits to represent the oating-point n umber, then: le+ 1 pno lbs+ 1 (12) Then the delay of the normalizer may be, in the worst case, as great as the length of the number representation plus 1. On the other hand, if the input operand is already pseudonormalized, pno has its minimum value. Figure 9 shows an example. If the zero tester is not used a simpli ed design is obtained, but the minimum value of the delay will be augmented by 1. The serial subtraction can be replaced also by its parallel version.

Shifting the mantissas

The circuit performs the comparisons of the mantissas. The comparison on MY 0 0 is performed before the comparison with mx. A second comparison delays mx of 1 or 2 cycles if necessary. None digit of mx is lost, but delayed. It is assumed that these operations can be performed in one cycle.

The serial divider

The serial divider is shown in gure 11. The upper part of it computes the term mq j+1 MY j+1 .

Similarly, the lower ones computes Q j m j+6 . T h e BS four-input parallel adder computes the . The format control is very simple and requires only the test of the digit with power 2 1 . If the value of this digit is di erent form zero, then the digit with power 2 0 is inverted (remember, jA j j 3=8). This technique was originally proposed by Kla 8]:

{ L e t Z = z n z 1 z 0 :z ;1 z ;k = Nz 1 z 0 :K such that jZj 1. if z 1 = 0) Z = z 0 :K else Z = z 0 :K . . . 2 ;6 2 ;5 2 0 2 ;2 2 ;1 2 ;3 2 ;n 2 1 2 0 2 ;1 2 ;2 2 ;3 2 ;4 2 ;5 2 ;6 . . . eq p;1 eq 1 eq 0 mq 1 mq 2 eq p;1 eq 1 eq 0 mq 1

) augmentation Augmenter As we can see from gure 12, the decision on augmenting or not the exponent can be taken when their last two digits go through the incrementer. As the last two digits of the exponent are outputting, the rst ve digits of the mantissas are available, and then it is possible to subtract 0, 1, or 2 from the exponent of the result. Using gures 9 and 12 we obtain the interval values of the digit on-line delay of the oating-point divider (div): le+ 7 div lbs+ 7

(13) Note that if the inputs are guaranteed to be pseudo-normalized, the delay of the divider would be 6.

3 = 6 Fig. 1 -

 361 Fig. 1 -Digit-level pipelining in digit on-line arithmetic

Fig. 2 -Fig. 3 -

 23 Fig. 2 -Some elementary xed-point BS circuits

Fig. 4 -

 4 Fig. 4 -The automaton of the pseudo-normalizer

Fig. 5 -

 5 Fig. 5 -The on-line oating-point divider

Fig. 7 -

 7 Fig. 7 -The over ow detector automaton

Fig. 9 -

 9 Fig. 8 -The pseudo-normalizer

Fig. 10 -

 10 Fig. 10 -The circuit for shifting the mantissas

Fig. 12 -

 12 Fig. 12 -The internal synchronization on the on-line oating-point divider

Conclusion

We h a ve described a new radix 2 digit on-line divider. This arithmetic unit has a variable digit on-line delay which depends on the pseudo-normalization degree of the divisor. This architecture is fully simulated using parallel discrete-event s i m ulations. It works on MaPar MP-1, a memory-distributed massively parallel computer, where several operators work in parallel. With this operator and the adders and multipliers already introduced, it is possible to perform in a digit-level pipelined mode, complex computations such as the Gauss elimination algorithm to solve linear equations. We are working in a project to simulate and to build a digit on-line machine called CA-RESSE, the french abbreviation of Serial Redundant Scienti c Computer, that will made up of heterogeneous digit on-line arithmetic units.