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Abstract

We design a new radix 2 digit on-line (i.e., serial, most significant digit first)
floating-point divider which performs its arithmetic operation in digit on-line
mode both for the exponent and the mantissa. We have performed parallel
discrete-event simulations of the circuit on a memory-distributed massively pa-
rallel computer.

Keywords: fine grain parallelisme, heterogeneous processing, digit on-line computation.

Résumé

Ce document décrit un diviseur “en-ligne” en virgule flottante fonctionant en
base 2. L’exposant comme la mantisse sont transmis chiffre a chiffre. Des si-
mulations paralleles d’évenements discrets du circuit ont eté effectuées sur une
machine parallele & mémoire distribuée.

Mots-clés: parallélisme & ganularité fine, calcul hétérogene, calcul en-ligne.
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Résumé

We design a new radix 2 digit on-line (i.e., serial, most significant digit first) floating-
point divider which performs its arithmetic operation in digit on-line mode both for the
exponent and the mantissa. We have performed parallel discrete-event simulations of
the circuit on a memory-distributed massively parallel computer.

1 Introduction

On-line arithmetic is a radical departure from conventional techniques for performing scien-
tific computations [2],[5],[6],[12]. In such arithmetic, the digits circulate serially, most signi-
ficant digit first. Since in classical (i.e. non redundant) number systems, carries are propa-
gated from the least significant digit to the most significant one, digit on-line computations
are not possible in these systems. Then, we need to use a redundant number system, which
enables carry-free computations. Here, we use the BS (“borrow save”) notation [7] which is
a special bit-level implementation of the binary signed-digit representation [1].

The digit on-line arithmetic operators are characterized by their delay, that is the number
6 such that p digits of the result are deduced from p+ ¢ digits of the input operands. When
successive digit on-line operations are performed in digit pipelined mode, the resulting de-
lay will be the sum of the individual delays of operations and communications, and the
computation of large numerical jobs can be executed in an efficient manner. Here, we will
assume that any communication has a delay of 1.

As we can see from figure 1, the computations in digit on-line mode can be described as a
dataflow graph, DFG. These graphs consist of nodes, which indicate operations executed on
arithmetic units, and edges from one node to another node, which indicate the flow of data
between them. A nodal operation can be executed only when the required information, a
digit from all the input edges is received. Typically a nodal operation requires one or two
operands and produces one result. Once the node has been activated and the computations
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related to the input digits inside the arithmetic unit performed (i.e. the node has fired),
the output digit is passed to the destination nodes. This process is repeated until all nodes
have been activated and the final result obtained. Of course, more than one node can be
fired simultaneously.

In this paper, we deal with the digit on-line floating-point implementation of the division.

/_\ (¢ 4+ 9)th digits of the inputs
ith digit of a X b+ ¢ X d

6y =3

K/ (¢ + 3)th digits of the products

Fig. 1 - Digit-level pipelining in digit on-line arithmetic

We shall assume that both the exponents and the mantissas of numbers circulate in digit on-
line mode and are represented in the BS system. We have already introduced digit on-line
floating-point adders and multipliers [3], [4]. Recently, Tu[10], [11] has studied floating-point
implementations of digit on-line operators, but in a slightly different manner: he assumes
that the exponents enter the operators in parallel.

2 The BS notation and the number format

2.1 The BS notation

An interesting implementation of a radix-2 carry-free redundant system is Borrow Save
notation, BS for short. In BS, the i** digit 2; of a number z is represented by two bits ;"
and @; with 2; = @/ — 27. Then 0 has two representations, (0 0) and (1 1). The digit 1
is represented by (10) and the digit —1 (or 1) by (0 1). Using the BS number system, the
addition can be computed without carry propagation [7]. Figure 2 shows some elementary

fixed-point BS circuits.

2.2 Floating-point number format

A BS floating-point number X with n digits of mantissa and p digits of exponent is repre-
sented by X = ma2°, where ma = Y7, ma,;2~% and ex = Y02, ex;2'. In our system the
exponents and the mantissas circulate in digit on-line mode, exponent first. See figure 3.

2.3 Pseudo-normalization

In classical binary floating-point representation, a number is said normalized if its mantissa
belongs to [1/2,1[ or ]1,1/2]. Normalization of numbers leads to more accurate represen-
tations and consequently results. In BS representation, to check if a number is normalized
needs sometimes the examination of all its digits. For this reason, we adopt the concept of
pseudo-normalized numbers. A number is said pseudo-normalized if its mantissa belongs to
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[1/4,1] or |1,1/4]. Tt is easier and faster to ensure that a number is pseudo-normalized: it
suffices to forbid a mantissa beginning by 01, 01, 11 or 11. This pseudo-normalization is
performed in two steps:

1. A four state automaton examines two consecutives digits and transforms the couples
(11)and (11)into (0 1) and (0 1) respectively and leaves the other couples unchanged.
We call this operation an atomic pseudo-normalization. This automaton is shown in
figure 4.

2. The second step consists in counting the zeroes generated by the previous computation
and adding the same quantity to the exponent.

The divider could have a smaller delay if the divisor is guaranteed to be pseudo-normalized.
In this case the output of all arithmetic operators (adders, multipliers, dividers, etc), must
be pseudo-normalized.

But, as our principal goal is to perform computations in digit-level pipelined mode, it is
preferable to pseudo-normalizer the inputs of the divider internally.

Note that the first solution makes the subtraction a variable delay operation. The second
ones make the divider more complex, but allows the adders to have a fix digit on-line delay.
This last solution is preferable because the division is less frequent than the addition is
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Fig. 4 - The automaton of the pseudo-normalizer

scientific computation.

3 The digit on-line algorithm

The digit on-line floating-point division algorithm performs three operations: exponents
calculation, mantissas centring and calculation. A synchronization is performed between
the exponent and the mantissa. The algorithm part of mantissa computation is based on
the algorithm presented in [6]. Let us present the algorithm.

3.1 The algorithm

We want to compute @ = X/Y with X = ma2°, Y = my2%, Q = mq2°? and

1/4<my<1

[ma| < my

We will see how to deal with the cases of ma > my and negative divisor mantissa in the
next sections. The algorithm can be stated as follows:

Algorithm 1 (Digit on-line division algorithm)
Step 1 (Exponent computation)

1. Compute the subtraction of the exponents but its last two digits: eq,_q, - -,€qs.

Step 2 (Mantissas shifting and exponent computation)

1. MYy = ¥, my27
2. Ag = Z?:l ma; 27
3. if MY, <1/2 then MY, =2x MY,; else MY, = MY,;

if (|Ag| +1/32> MY, —1/32) then Ay = A,/2; else Ay = Ay;

.



5. if Ay = A, /2 then increment eq and compute eqi;

i

6. if (JAg|+1/32> MY, —1/32) then Ay = Ay/2; else Ay = Ay;
7. if Ay = Ay/2 or MY, =2x MY, then increment eq and compute eqp;

Step 3 (Mantissa computation)

1. for (j=0; j<n-1)

{

1.1 ¢f A; > 1/8 then mgj41 = 1;
else if A; < —1/8 then mgj11 = —1;
else mgj4q1 = 0;

1.2 if MY, <1/2 then
{
== MYj = MYj + my; 627975
== Ajpr =245 4 ma 6277 — mg MY — Qmy; 627

}

else

{

= MY;11 = MY; + my;627775;

== Ajpn =245 4 maj 6277 = map MYjp = Qymy; 46277
}

1.3 Qjp1 = Q; +mgj1127771
}
3.2 Proof of correctness
It is obvious that the computation of the exponent of the result is correct. On the other

hand, for the mantissas alignment and computation the situation is more complex. Let us
explain this.

3.2.1 Mantissas shifting

We show why it may be necessary to shift A;’ and AE) one time each.
According to the algorithm it must be guaranteed that |m,| < m,. Then, as the shift must
be performed with only 5 digits of each mantissa, we may have the following situations:

H
_ ! [Ag] _ 011111 mz 0.11111---00 o
If MY, >1/2, My, = o1oo00 and, - may be equal to = ---===. A shift is necessary.
1
|40l _ 0.01111 o |40l _ 0.00111 : s
But as 372~ = $5000 another shift is necessary and then, MY = 010000 With this, it

is guaranteed that |m,| < m,.

~ If MY, < 1/2 then, MY, is shifted of one position. The worst case is: % = %
Then, it is enough to shift A, one position to guaranteed that |m,| < m,. With this

MY /2> 15/64. Where, MY is the mantissa of the divider.

Then, the exponent must be augmented in 0, 1 or 2.



3.2.2 Mantissa computation

To perform the division correctly, the values of mg;4, chosen in step 2 of the algorithm
must be compatibles with the Robertson’s conditions [9]. They are:

1. if MX; < —MY/2 then mg;;, = 1.

2. if =MY/2 < MX; <0 then mg;4; =1 or mg;j1; = 0.

3. if MX; = 0 then mg; 1, = 1 or mg;4, = 0 or mg;4, = 1.
4. if 0 < MX; < MY/2 then mg;41 = 0 or mg;4; = 1.

5. if MX; > MY/2 then mg;4; = 1.

The two following equations may be easily proved by induction.
If MY, >1/2:

i+5 j i+5
A = 27 [Z ma; 278 — (Z mqﬂ_i) (Z myiQ_i) ] (1)
i=1 i=1 i=1

else if MY, < 1/2:

C(4t5 ' J ' Jj+5 '
A; =2 [Z ma;27" — (Z mqﬂ_l) (Z myﬂ_l"’l) ] (2)
i=1 i=1 i=1

A; can be expressed also as:

Jj+5

Ay =2 [Z:mwﬂ_i — (Zi: mqﬂ_i) MY]] (3)

MY; is the shifted mantissa of the divisor at step j.
We define a sequence as:

MX, = mx (4)
MX]'+1 = QMX] — mqj+1MY

We find that:

MX; =2 [Zn:mwﬂ_i — (Zi: mqu_i)MY] (5)

i=1

MX; —A;j =2 [ Zn: ma; 27" — (Zi: mqﬂ—i) (MY — MYj) ] (6)

i=j+6

MY; =

I my; 27 if MY, >1/2
I my 27t i MY, < 1/2

We have:

J

Zn: 271 4 (Z; 2—2') <|MY — M}fj|) ] (8)

i=j+6 i=

IMX; — A; §2f[



277 /32 MY, >1/2
_ | < ) 0 =
MY = MY;| —{ 271 /16 MY, < 1/2 }
Then:

IMX; —A;| <1/32+1/16 =3/32 (10)
According to step 3 of the algorithm:

— if mgj41 = 1 then, A; > 1/8. From equation 10 we find that if A; > 1/8 then
M X; > 1/32. Robertson’s conditions 4 and 5 are satisfied.

— Similarly, if mg;4; = 1 then A; < 1/8. Then, M X; < 1/32. Robertson’s conditions 1
and 2 are satisfied.

— if mg; 41 = 0, then, 4/32 < A; < 4/32. From equation 10, we find that 7/32 < M X; <
7/32 and as, [MY]|/2 > 15/64 then, the Roberson’s conditions 2, 3 and 4 are satisfied.

Hence, the algorithm computes the division correctly.
However, this algorithm can be improved. The sequence of tests:

Test 1 (Test of A;)

-- if A; > 1/8 then mgj1q =1
else if A; < —1/8 then mgj4 = —1
else mgjy1 =0

needs the examination of all the digits of A; (i.e., j+5). This examination involves a needless
loss of time (the arithmetic operations on step 3 of the algorithm may be performed in
parallel, without carry propagation, using the BS number system). Therefore this sequence
of test is the most time-consuming part of the algorithm. In order to avoid this drawback,
we examine all the digits of A; between the most significant one and the digit which power
is 27°. Namely, A7 = Z?:o 27%a; ;'. Then, the test will be performed on A7 instead of A;
as following:

Test 2 (Test of A7)

-- if A7 > 1/8 then mqjq =1
else if A < —1/8 then mqj 1 = —1
else mgjy1 =0

The proof of the improved algorithm is similar to the previous one:
We obtain the obvious relation:

|4; — A7] < 1/32 (11)
Then, according to the modified Step 3 of the algorithm:

— if mgj;, = 1 then, A7 > 1/8. From equation 11 we find that if A7 > 1/8 then,
A; > 3/32 and from 10 we find that MX; > 0.

1. by now let us assume that A} can be represented as a 6 digits expression.



— Similarly, if mg;4, = T then, A7 < 1/8. Then, A; < 3/32 and M X; <0.

— if mgj41 = 0, then, 1/8 < A5 < 1/8. As A¥ is a multiple of 1/32, we have: 3/32 <
A% < 3/32. From equation 11 we find: 4/32 < A; < 4/32 and, from equation 10, we
find that 7/32 < M X; < 7/32.

3.2.3 Pseudo-normalization

If the inputs of the floating-point divider are pseudo-normalized then its output is also
pseudo-normalized. Let us prove that:

— If MY, > 1/2 then, the worst case is: X — odolees

v S and the quotient is pseudo-
normalized.

Ll

~ If MY, < 1/2 then the worst case is: Xl = 010l

. - T and the quotient is pseudo-
normalized.

e

4 The architecture

The floating-point divider consists of several blocks (figure 5):

— A serial circuit to compute the difference between the exponents.
— A serial augmenter to increase the exponent by 0, 1 or 2.

— A serial automaton that computes the absolute value of Y.

— A serial overflow detector.

— A pseudo-normalizer, which ensures that 1/4 <Y < 1.

— A serial shifter/synchronizer for the mantissas.

— A serial divider for the mantissas.

—= delay ex overflow

stop subtraction augmenter | | g
ey detector
R

mx

mantissa augmentation Ag -
Y absolute read shiftin " . ={| sisn dela;
— ] value M and synchronizer| | shift serial divider inverte mq

pseudo- m
normalizey Y mx

FiGc. 5 - The on-line floating-point divider



The first two computations are performed with the circuits of figure 2.

The automaton that computes the absolute value of Y is shown in figure 6. The sign inverter
changes the sign of the mantissa of the result if the state of the maximum value automaton
is 1.

The detection of the overflow is done at the output of the incrementer. A small automaton

1/1
Initial
state

1/1 0/0
0/0
1/1

F1a. 6 - The absolute value automaton

tries to find a representation of the exponent so that to have the carry digit equal to 0 (in
order to keep the p exponent of the format). Figure 7 shows this automaton.

Initial
state

1/x 0/z

0/x
1/z

N

(ete

1/1

2, 5,6 are overflow states!

FiGc. 7 - The overflow detector automaton

The shifter /synchronizer guarantees that if shifts have been performed, then the exponent
is augmented and otherwise the exponent remains unchanged. We will explain with more
detail the pseudo-normalizer, the shifter/synchronizer and the serial divider.

4.1 Pseudo-normalizer

The pseudo-normalizer is shown in figure 8. The automaton is shown in figure 4. A binary
counter stores the number that the exponent must be decreased. A zero tester is used to
avoid the delay of the serial circuit when the subtraction of the exponents is not performed.
The overflow detector is similar to the ones shown in figure 7. The delay of the pseudo-
normalizer (6,,,) is variable and depends on the degree of pseudo-normalization of the
operands. If le is the number of digits of the exponent and lbs the number of digits to



represent the floating-point number, then:
le+1 <6, <Ilbs+1 (12)

Then the delay of the normalizer may be, in the worst case, as great as the length of the
number representation plus 1. On the other hand, if the input operand is already pseudo-
normalized, é,,, has its minimum value. Figure 9 shows an example.

If the zero tester is not used a simplified design is obtained, but the minimum value of the
delay will be augmented by 1. The serial subtraction can be replaced also by its parallel
version.

shift register demux [ serial || oeverflow
I=+subtraction detector

y pseudo-normalized

mantissa read
count|

zero tester
input

automaton
cutput shift registe

FiG. 8 - The pseudo-normalizer

Input . . [ ] mantissa pseudo-normalized”
operands |€,_ 1 "€ ™1 ™2 M3 Mg my -
77777 . 77777777777777777777/’/’7777717777777777777777777777777
ubtraction ePep—l ‘e eD
Overtlow eip_l cieg
detector l
Output ep_1 - eq m3 My mp 00
Fic. 9 - Frample of the internal synchronization on the pseudo-normalizer (my =

0.0010- - )

4.2 Shifting the mantissas

The circuit performs the comparisons of the mantissas. The comparison on MYOI is perfor-
med before the comparison with max. A second comparison delays mz of 1 or 2 cycles if
necessary. None digit of ma is lost, but delayed. It is assumed that these operations can be
performed in one cycle.

4.3 The serial divider

The serial divider is shown in figure 11. The upper part of it computes the term mg; 1 MY, ;4.
Similarly, the lower ones computes );m; 6. The BS four-input parallel adder computes the
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FiG. 10 - The circuit for shifting the mantissas

term A;. It is made up with 3 2-input BS parallel adders. A 2-input parallel adder is
proposed in [7]. The format control is very simple and requires only the test of the digit
with power 2. If the value of this digit is different form zero, then the digit with power 2°
is inverted (remember, |A;| < 3/8). This technique was originally proposed by Kla [8]:

—Let Z =z, - -2120.2_12_ = Nz1zy.K such that | 7] < 1.
ifz;=0= 72 =2.Kelse Z=7%,.K

e e o S o S o L - . S - D=
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—4 2 e 2
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Fra. 11 - The serial divider



4.4 Internal synchronization of the floating-point divider

cycles—
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

output of (¥, OV, o€V, e, 4V, eV, GOV, o ceVy e¥y €Yy e¥y €Y e¥y MY; my; myy my, myg myg myr; -
Ezi?ﬂd;l;zer 1" 1" 1" 1" 1" 1" 1" 2 T T R Y R VR Y R 1Y N Y R 77 N 17 R 1 N 1T 17
nonmeie er e, el ST, L. jeD eT. el el eX. eT, er) eXy M, ML, ML MT, MI ML ML
X 1 1" weooan [T TR 1" %
Subtractios °p  Cp_1 eq € €5 €4 €3 €5 € e
mantissas alignment = augmenftation
i / / m i
Augmenter sl P Cpoi el eg
overflow
edp_1 e eq1 eqp
detector }
Mantissas
mqy maqg
divider l
OQutput €dp—1 e €q] €4qp q1 *

FiGg. 12 - The internal synchronization on the on-line floating-point divider

As we can see from figure 12, the decision on augmenting or not the exponent can be taken
when their last two digits go through the incrementer. As the last two digits of the exponent
are outputting, the first five digits of the mantissas are available, and then it is possible to
subtract 0, 1, or 2 from the exponent of the result. Using figures 9 and 12 we obtain the
interval values of the digit on-line delay of the floating-point divider (44, ):

Note that if the inputs are guaranteed to be pseudo-normalized, the delay of the divider
would be 6.

5 Conclusion

We have described a new radix 2 digit on-line divider. This arithmetic unit has a variable
digit on-line delay which depends on the pseudo-normalization degree of the divisor.

This architecture is fully simulated using parallel discrete-event simulations. It works on
MaPar MP-1, a memory-distributed massively parallel computer, where several operators
work in parallel.

With this operator and the adders and multipliers already introduced, it is possible to per-
form in a digit-level pipelined mode, complex computations such as the Gauss elimination
algorithm to solve linear equations.

We are working in a project to simulate and to build a digit on-line machine called CA-
RESSE, the french abbreviation of Serial Redundant Scientific Computer, that will made
up of heterogeneous digit on-line arithmetic units.
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