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Ce rapport contient des r esultats classiques ou un peu moins classiques sur la complexit e d e K o l m o g o r o v, que l'on appelle aussi Th eorie Algorithmique de l'Information.

En e et, dans la litt erature, on ne trouve pas de recueil contenant a l a f o i s tous les th eor eme de base n ecessaire a l a c o m p r ehension s erieuse des principaux aboutissements de la complexit e de Kolmogorov, mais ne contenant que cela. On trouve dans la litt erature soit des introductions super cielles incompl etes et souvent inexactes, soit un livre de r ef erence tou u et exhaustif, voire di cile a lire 8], ou encore des livres orient es sur une probl ematique particuli ere de la complexit e de Kolmogorov 1 ] o u 1 7 ].

Notre but ici est d' etablir un discours coh erent a l l a n t de la complexit e de Kolmogorov de base, jusqu'aux d e nitions de la notion de suites al eatoires. Plus pr ecis ement, nous partons de la notion g en erale de codage et a travers elle, nous expliquons les sources du concept de complexit e de Kolmogorov. Intuitivement, la complexit e de Kolmogorov d'un objet est la plus petite quantit e d'information n ecessaire pour reconstruire cet objet algorithmiquement. Bien sur, toutes les notions introduites dans cette phrase comme la quantit e d'information, u n objet, plus petit et algorithmiquement doivent être d e nies avec pr ecaution car la th eorie que l'on peut faire apr es est susceptible de perdre tout son sens si l'on fait une erreur au niveau de ces d e nitions.

Dans la section 2, nous pr esentons un certain nombre de r esultats qui donnent son sens a c e t t e t h e o r i e e n t a n t que th eorie algorithmique de l'information. Cette th eorie est fortement renforc ee par ses liens avec l'al eatoire. En e et, comme expliqu e dans la section 4, on peut d e nir de fa con equivalente une suite al eatoire en utilisant di erentes approches, dont celle de la complexit e de Kolmogorov : une suite est al eatoire si et seulement s i e l l e e s t incompressible. Pour etablir ce th eor eme fondamental (Martin-l of pour les suites nies et Levin et Schnorr pour les suites in nies), il est n ecessaire d'utiliser des variantes de la complexit e de Kolmogorov dont o n explique les di erences et les similarit es dans la section 3.

Quelques mots sur l'historique de cette notion : Les premi eres avanc ees en mati ere d' etude de la compressibilit e e t d u c o n tenu en information sont les r esultats des travaux de Shannon en 1948 12], dans le cadre de la th eorie du signal. Toutefois, les aspects algorithmiques de la th eorie de l'information qui nous int eressent plus particuli erement ici n'ont et e d evelopp es que plus tard par R. Solomonoff (1964) et A.N. Kolmogorov et aussi ind ependamment par G.J. Chaitin en 1965. Les premiers r esultats de ce qui s'ap-pelle maintenant l a t h eorie de l'information algorithmique furent vite pos es. N eanmoins, ils ont soulev e un certain nombre de probl emes, qui montraient que la th eorie n' etait pas totalement satisfaisante. Ce n'est que quelques ann ees plus tard que l'on a r eussi a passer outre les di erentes di cult es, grâce aux di erentes versions introduites par L.A. Levin et encore ind ependamment par G.J. Chaitin. C e s d eveloppements ont nettement renforc es l'int erêt de la complexit e de Kolmogorov et expliquent le grand nombre des r esultats utilisant cette complexit e.

1 Notion de codage Supposons que l'on veuille communiquer avec un correspondant pour lui transmettre un choix que l'on a fait. Une premi ere observation que l'on peut se faire est que le temps durant lequel on devra correspondre ne d ependra pas forc ement d u c hoix que l'on fait : la r eponse \oui" ou \non" dure le même temps, quelque soit la question qui ait et e p o s ee. On peut en fait d egager un premier principe : la r eponse a une question d epend du nombre de possibilit es o ertes et non pas de la nature même de la question.

On ne va donc pas s'int eresser au sens des choix, mais a la \quantit e d'information" n ecessaire pour, connaissant les choix possibles, s a voir celui qui a et e fait.

Une donn ee, du point de vue du traitement de l'information, c'est un choix qui a et e fait parmi un ensemb l e d e v aleurs. Nous nous limiterons en g en eral aux donn ees enti eres, quoiqu'une partie porte sur les donn ees r eelles (vues comme une suite in nie de chi res). Un deuxi eme grand principe, et qui est a la base de la th eorie du codage, est que tout choix, et cons equemment toute donn ee, peut être repr esent e d e f a con unique, par un certain nombre de r eponses binaires a des questions. On va s e c o n c e n trer uniquement sur les transmissions bas ees sur ce principe les autres ne rel event pas du même domaine d' etude.

Toutefois, il reste quand même plusieurs possibilit es pour exprimer un seul et même choix. Par exemple, pour transmettre le nombre 1 372 073885 318 497 12791 074 758 162 987278 899 500 548 096, je peux envoyer une image noir et blanc, o u appara^ t l' ecriture manuelle du nombre. Je peux aussi envoyer les 49 caract eres ASCII `1', . . . , `6'. Et en n, je pourrai lui envoyer la phrase "L'exposant minimal de 14 d'au moins 49 chi res".

Parall element au premier principe, on voit donc que la fa con d'indiquer son choix peut de plus revêtir plusieurs formes. Il est egalement clair que le sens associ e aux objets a c hoisir ne contraint pas la description : au contraire, toute signi cation suppl ementaire d'un mot peut aider a l e d ecrire de fa con di erente, ce qui, selon le contexte, peut être une meilleure fa con de le d ecrire.

Comment v a s'appliquer tout ceci? On a un ensemble de choses a coder, un ensemble de signi cations. On a d'un autre côt e u n e n s e m ble de messages transmissibles. Pendant la premi ere partie de cette etude, on s'int eressera uniquement a u c a s o u les messages transmissibles seront d enombrables : ce seront (dans leur repr esentation la plus simple) des mots de longueur nie sur un alphabet ni. On identi era ainsi tous les messages a transmettre aux mots de f0 1g ? (ou aux entiers, ce qui revient a u m ême modulo une fa con d' ecrire les entiers ad equate), de même que les signi cations possibles. Un codage sera donc uniquement une fonction de f0 1g ? dans f0 1g ? , injective, et le code sera l'image du codage (on l'appelle l'ensemble des mots de code).

Les codes r ecursifs

Int eressons nous aux codages qui peuvent être r ealis es de fa con automatique. Pour cela, on utilise la notion de fonction r ecursive (i.e. calculable par algorithme). On consid erera dans le cas g en eral qu'un codage doit être d e ni par une fonction totale r ecursive E, mais pas forc ement une fonction d'image r ecursive. En e et, on peut supposer que le processus de codage et de d ecodage soient c o n cus en même temps : l'ensemble des messages ne serait donc pas a p r i o r i identi able. Par exemple, on peut coder le n-i eme mot dans une certaine enum eration par le num ero de la n-i eme Machine de Turing s'arrêtant sur l'entr ee vide (dans un ordre pas n ecessairement croissant). Il n'est pas possible a priori de d ecider si un mot donn e fait partie du code, mais il est possible de d ecoder un mot si on est sûr qu'il fait partie du code.

On d e nit ensuite D la fonction r eciproque de E, dite aussi fonction de d ecodage. Rappelons que l'image de E et donc le domaine de D est appel e le code. Int eressons nous maintenant a l'unicit e d u d ecodage.

Les codages agissent sur des objets. On s'occupe uniquement d'objets d enombrables, et pouvant d o n c être plong es indi eremment d a n s N ou dans f0 1g ? , ensemble des mots nis que nous noterons . On choisira plutôt le plongement dans qui o re l'avantage de proposer directement une ecriture des choses. On peut munir cet ensemble de plusieurs ordres, dont u n t o t a l (longueur-lexicographique), et un partiel (l'ordre pr e xe).

On d e nit aussi l'extension E d'un codage E aux suites de mots comme etant l'application de ? dans muni de l'op eration de concat enation `:' : E( ) = " suite vide de ? 8x 2 ? 8y 2 E(x (y)) = E(x):E(y) C'est une application, mais elle n'est pas injective a priori. P ar exemple, si on pose E = Id , E(00 00) = E(0 000) = 0000.

La notion de codage pr e xe

Le probl eme qui vient d ' être pos e m o n tre qu'un code soit d ecodable de fa con unique, c ' e s t -a-dire que l'extension du codage etendu aux suites nies de mots soit injective.

On parle aussi de la notion d'auto-d elimitation : un codage d'extension injective pourra être dit auto-d elimit e, car il contient en lui toutes les informations n ecessaires pour s eparer les mots de la suite d'origine.

Remarquons tout de suite qu'il existe d'autres fa cons de faire un codage d'une suite nie de mots que par l'extension d'un code. On peut notamment r ealiser un codage dynamique de la s equence d'objets on perd alors la propri et e de conservation par concat enation. Par exemple, le codage d'une suite de mots pourrait être r ealis e en ins erant un caract ere sp ecial (un blanc) entre les lettres, ou en r ep etant les lettres et en utilisant une s equence de lettres altern ees distinctes pour marquer la n des mots.

On On peut tout de suite tirer de la d e nition pr ec edente la proposition suivante :

Proposition 1 Tout code pr e xe injectif est uniquement d ecodable.

Preuve. En e et, puisque tout pr e xe d'un mot du code de fait pas partie du code, si l'on donne une concat enation de plusieurs mots, il en existe un unique pr e xe qui sera un et un seul mot de code. Il existe, car E(x 0 : :x n ) = E(x 0 ): :E(x n ), et E(x 0 ) est un mot du code il est unique de par la d e nition. Ainsi, il existe un unique E(x 0 ) possible et par r ecurrence imm ediate, la suite E(x 0 ) : : : E (x n ) est aussi unique. Par injectivit e, la suite x 0 : : : x n est donc aussi unique. 2

L'int erêt des ces codes-ci est que l'on peut prouver pour eux l'in egalit e d e Kraft. Cette in egalit e caract erise la convergence pour les codes pr e xes, ce qui aura des cons equences fondamentales dans l' etude des machines pr e xes. Ce ne sont pas les seules codes v eri ant cette in egalit e, mais tout code la v eri ant peut être transform e d e f a con a garder certaines propri et es, comme expliqu e par le th eor eme suivant :

Th eor eme 1 (In egalit e de Kraft) Ces deux propri et es sont vraies :

1. Pour tout code E d ecod a b l e d e f a con unique, X x2N 2 ;l(E(x)) 6 1 2. Pour tout suite de nombre v eri ant X i2N 2 ;l i 6 1, il existe un code pr e xe tel que l(E(i)) = l i .

1. La preuve de ce sens du th eor eme se fait sur les suites nies de mots.

Supposons que l'on ait N mots de codes utilisant des mots de codes de longueur au plus m. O n p o s e n i , 1 6 i 6 N les longueurs des mots de codes utilis es.

N X k=1 2 ;n k ! r = N X k 1 =1 2 ;n k 1 N X k 2 =1 2 ;n k 2 N X kr=1 2 ;n kr = N X k 1 =1 N X k 2 =1 N X kr=1 2 ;(n k 1 +n k 2 + +n kr )
Soit r i le nombre de mots de i lettres qui peuvent être obtenus en accolant r mots parmi les N. On applique l' egalit e p r ec edente, et on simpli e en regroupant les mots selon leur longueur nale : N X k=1 2 ;n k ! r = X r i 2 ;i Toutes les s equences de i lettres doivent être d ecodable de fa con unique, donc r i 6 2 i . De plus le nombre de r i non nuls est born e : on prend r mots en admettant que toutes les sommes de longueurs soient distinguables, on a un nombre de sommes possibles qui est au plus egal au nombre de fa con de r epartir r dans N cases, soit ; N+r;1 N . Ainsi, l' equation pr ec edente peut se r e ecrire en une in egalit e :

N X k=1 2 ;n k ! r 6 N + r ; 1 N ;! r!1 1
On en d eduit, par passage a la limite de r que l'in egalit e e s t v eri ee pour tout N et donc (par d e nition) l'in egalit e de Kraft est v eri ee pour tout code d ecodable de fa con unique. 2. On se donne une correspondance entre les intervalles ferm es a g a u c he et ouverts a d r o i t e d e 0 1) et les entiers. On identi e l'entier x a l'intervalle P x i 2 ;i P x i 2 ;i + 2 ;l(x) . Cette correspondance trans- forme l'ordre partiel d'inclusion sur les intervalles en l'ordre partiel de pr e xe sur les entiers (qui sont alors consid er es plus comme des mots de ).

Si une suite l i d'entiers v eri e la condition de Kraft, alors on peut choisir des intervalles disjoints chacun de largeur 2 ;l i dans 0 1). P ar la correspondance ci-dessus, on obtient u n e n s e m ble de mots qui v erient encore la propri et e d e p r e xe. On choisit un ordre quelconque de ces mots (ordre longueur-lexicographique par exemple). On construit a l o r s u n c o d e p r e xe en associant a l'entier i le mot de code repr esentant l ' i n tervalle choisi pour l i . On obtient alors un code pr e xe v eri ant les conditions demand ees.

1.3 Optimalit e e t e n tropie

Parmi les objectifs demand es lors du choix d'un codage, on s'attendra souvent a ce que le codage r ealis e v eri e une propri et e d e compacit e ou d'optimalit e. On peut en e et s'attendre a ce qu'une information suppl ementaire sur le texte a coder permette de choisir un codage dont les textes cod es seront globalement plus courts. On entend ici par codage d'un texte la concat enation du code de tous les composants atomiques d'un texte que nous appellerons ici mots (mais on peut aussi les voir comme etant les caract eres), ceux-ci pouvant être en nombre d enombrable (ou ni).

On va v oir que si on cherche a garder un codage d ecodable de fa con unique, et que l'on conna^ t la r epartition a p r i o r i des mots qui sont a coder, on peut trouver un lien entre la longueur moyenne des mots de codes et l'entropie classique, dite de Shannon, dont l a v aleur est exprim ee par la formule H(P) = ; P x P(x) log P(x), avec P(x) la probabilit e a priori d'un mot x. D e nition 2 Soit P une distribution de probabilit es sur l'ensemble des mots de . O n d e nit, pour tout code d ecodable de fa con unique, ayant E pour fonction de codage et D pour fonction de d ecodage, la longueur moyenne d'un mot de code par M E P = P

x P(x)l(E(x)). O n d e nit ensuite la longueur moyenne minimale comme etant : M P = min E fM E P Ed ecodable de fa con uniqueg: Tous les codes v eri ant M E P = M P seront dit optimaux.

Cette d e nition d'optimalit e fait appara^ tre l'ad equation entre la fr equence des mots qui apparaissent et la longueur choisie pour le code de ce mot. C'est a la base de beaucoup de codages, comme le codage de Hu mann ou de Lempel-Ziv. Enon cons donc le lien entre entropie et codages.

Th eor eme 2 (Codage parfait) On se xe P une distribution de probabilit es sur . H(P) = ; P x P(x) l o g P(x) est l'entropie (au sens de Shannon) de P. L a formule suivante est vraie : H(P) 6 M P 6 H(P) + 1 : Preuve.

M P 6 H(P) + 1

Soit l x = d; log P(x)e. P ar d e nition d'une distribution de probabilit e, 1 = P x P(x) > P x 2 ;lx . Ainsi, il existe un code pr e xe ayant pour longueurs de mots de codes fl i g i2N d'apr es l'in egalit e de Kraft (th eor eme 1). Donc : M P 6 X x P(x)l x 6 X x P(x)(; log P(x) + 1 ) 6 H(P) + 1 : 

:

Les i doivent être des coe cients positifs, le facteur P i i etant u n facteur de normalisation. On pose dans cette formule i = P(i) e t e a i = 2 ;l i P j 2 ;l j P(i) , et pour plus de commodit e o n ecrira S = P j 2 ;l j . Ainsi, l'in egalit e p r ec edente se r e ecrit (en tenant compte du fait que

P i P(i) = 1): Y i 2 ;l i SP(i) P(i) 6 X i P(i) 2 ;l i SP(i) = X i 2 ;l i S = S S = 1 :
On r e ecrit maintenant l ' i n egalit e e n s eparant le quotient, et en passant a l'oppos e du logarithme : Y i 2 Analysons la signi cation de ce th eor eme. En fait, il etablit une correspondance tr es forte entre la notion d'entropie et la notion de codage optimal, a condition que ce codage soit d ecodable de fa con unique. C'est cette notion qui par la suite, cr eera le besoin d'aller plus loin dans la complexit e de Kolmogorov en mettant e n a vant l'id ee du d ecodable de fa con unique et par l a de la complexit e auto-d elimit ee (cf x3).

Par contre, cette notion d'optimalit e a ses propres limites. En e et, il est n ecessaire de conna^ tre des donn ees sur le texte a coder a n d'atteindre cette optimalit e (puisque l'on utilise P(x) dans la construction du code v eri ant M E P 6 H(P) + 1. Existerait-il un codage qui aurait en plus la propri et e d e ne pas d ependre de la source?

C'est pour r epondre a cette question que A.N. Kolmogorov a c herch e a d e nir la complexit e i n trins eque d'une suite a n de vo i r s i o n p o u v ait faire une machine qui coderait toute suite au plus court possible. La r eponse est partiellement n egative, mais cette etude a eu beaucoup d'autres cons equences sur un grand nombre de domaines, en particulier l' etude des suites al eatoires (cf x4).

2 Information algorithmique 2.1 Hypoth eses Dans cette section, on commence par expliquer quels sont l e s c hoix et hypoth eses faits pour d e nir la complexit e de Kolmogorov. Il est important de bien les comprendre a n de ne pas se tromper dans les applications de la complexit e de Kolmogorov comme on le voit assez souvent dans la litt erature.

Entiers et mots On identi e les entiers aux mots de f0 1g ? en utilisant l' ecriture suivante pour un entier : 0 est ecrit ", 1 e s t ecrit 0, 2 est ecrit 1, 3 est ecrit 00, etc. Plus pr ecis ement, on va c o n s i d erer qu'un entier n est ecrit comme la neme cha^ ne correspondante de 0 et de 1 lorsque l'on classe les cha^ nes dans l'ordre longueur-lexicographique : une cha^ ne plus courte est inf erieure a une cha^ ne plus longue, puis on classe les cha^ nes de même longueur par ordre lexicographique. On d enotera toujours l'ensemble f0 1g ? par . Les objets que l'on va manipuler seront donc des mots, mais que l'on peut identi er avec des entiers correspondant a l e u r n um ero d'ordre par cet ordre qui est total.

Sous cette forme, si on note x 2 l' ecriture binaire classique de x auquel on enl eve le 1 initial, l' ecriture (compacte) de x est x + 1 2 . On retrouve e n tre autres que 0 s' ecrit ".

Notations La longueur d'une cha^ ne p est le nombre de caract eres n ecessaire a s o n ecriture, et est not ee l(p) ou parfois jpj. En particulier, si p repr esente un entier n, alors l(p) = blog 2 (p + 1 ) c.

On note n = 1 l(n) 0n.

On d e nit un codage not e h: :i de dans , fonction r ecursive totale bijective.

Ordre pr e xe On peut ordonner autrement qu'avec l'ordre longueurlexicographique, en utilisant la relation de pr e xe. Un mot est plus petit qu'un autre si et seulement si il en est un pr e xe. On obtient alors un ordre partiel qui sera utile dans certaines d emonstrations.

Universalit e Nous utilisons un mod ele de calcul qui, sur une entr ee x 2 , sait calculer une sortie y. On peut par ce mod ele de calcul calculer toutes les fonctions partielles partiellement r ecursives (fonctions p.p.r.). On peut enum erer les machines de ce syst eme sous la forme 0 1 : : : telle que l'on ait une machine universelle U v eri ant :

8 Uh i = ( ):
En n, on a une fonction s 1 

Propri et es principales

On ne peut pas arriver a la propri et e suivante : \il existe une machine qui soit plus e cace (en terme de longueur de codage) que toutes les autres | telle que les mots de codes obtenus soient toujours plus courts" mais on peut prouver une propri et e assez proche mais moins contraignante, qui n'est facilement utilisable que de fa con asymptotique. Plus pr ecis ement, l'obstacle est que l'on peut toujours construire une machine qui donne a n'importe quel mot une complexit e x ee, voire nulle : l'exemple le plus frappant est encore si l'on prend la machine P x qui ecrit x sur la sortie quelle que soit l'entr ee, alors la complexit e conditionnelle KS Px (xjy) = 0. En revanche, on peut obtenir un r esultat satisfaisant s i o n t r a vaille a une constante pr es, ce qui revient a regarder la complexit e d e f a con asymptotique. En e et : D e nition 4 (Programme additivement optimal) Un programme est additivement optimal pour une classe de programmes C si et seulement si il est tel que : 8 0 2 C 9c 0 8x y KS (xjy) 6 KS 0 (xjy) + c 0:

(1) Dans le cadre des machines de Turing, la donn ee d'un programme est la donn ee d'une machine.

On rappelle bri evement l a d e nition d'un syst eme acceptable de programmation. D e nition 5 On appelle syst eme acceptable de programmation une liste de programmes index ee p ar N f i g i2N telle que :

(i) toute fonction Turing-calculable soit calculable par au moins un des algorithmes i , (ii) il existe un programme universel Turing-calculable: 9u 2 N 8i j 2 N u hx yi = x (y), (iii) il existe une fonction de composition r ecursive totale c : 8i j i j = chi ji .

Th eor eme 3 (Solomono -Kolmogorov) Dans tout syst eme acceptable de programmation, il existe une machine additivement optimale. 2 Preuve. Pour faire cette preuve, on construit une machine qui v eri e cette in egalit e. On construit donc une machine telle que :

Mh p yi = hp yi:

On utilise un codage pour qui permet de reconna^ t r e l a n d e dans la concat enation p, donc il existe une machine qui transforme p en h hp yii. Notre machine ex ecute ensuite la machine universelle U sur cette donn ee. 2: Lorsqu'on ne pr ecise pas pour quelle classe la machine est additivement optimale, elle l'est pour la classe de tous les programmes du syst eme.

On d e nit la complexit e de Kolmogorov d'un mot x en utilisant une machine x ee, dite de r ef erence, additivement optimale. On note alors cette complexit e KS(xjy), le de r ef erence etant sous-entendu. Mais attention : on peut toujours trouver, quelles que soient l e s v aleurs y 1 et y 2 que l'on donne, une machine 1 et une machine 2 toutes les deux additivement optimales, telles que KS 1 (xjy 1 ) = KS 2 (xjy 2 ). La d e nition d'une telle fonction n'a de sens que lorsque l'on fait varier y en fonction de x, comme par exemple dans l'expression de la complexit e KS(xjl(x)) qui est employ ee dans plusieurs applications.

On a par ailleurs un corollaire qui lie entre elles les machines additivement optimales :

Corollaire 1 Soient deux machines 1 et 2 additivement optimales (v eriant l' egalit e 1 ) . A lors il existe une valeur c ne d ependant que de 1 et de deux valeurs c 1 et c 2 . On peut alors prendre c comme le plus grand de c 1 et c 2 .

2

Il existe une vision di erente, duale de celle qui consiste a xer une machine de r ef erence : on ne consid ere plus la complexit e de Kolmogorov que comme une complexit e de suite, d e nie a une constante additive p r es. Ainsi, on est sur d'observer que des comportements asymptotiques : dire KS(10001011j001001110) = 42 ne signi e rien en soi dire que la progression KS(x n jl(x n )) est logarithmique a par contre un sens qui donne r eellement une information sur la suite x n . T ravailler a constante pr es convient a la plupart des usage : le fait de xer additivement optimale ou de ne consid erer que les suites de valeurs (et ainsi des comportements asymptotiques) ne devrait donc pas gêner dans la suite. On rappellera toutefois aux moments essentiels que l'on travaille a une constante pr es.

On peut donc maintenant poser en toute qui etude la d e nition suivante, sachant q u e l e c hoix qui est fait ne change la fonction qu'en lui ajoutant ( o u retranchant) une fonction de x born ee (un O(1)) : D e nition 6 La c omplexit e ( c onditionnelle) de Kolmogorov de x sachant y est d e nie par KS (xjy), a v e c une machine additivement optimale x ee au pr ealable.

Comme on va souvent l'utiliser par la suite, on note de fa con particuli ere KS(xj"). Comme c'est ce qui correspond a ne donner qu'une information constante, eventuellement n ulle | mais on a vu pr ec edemment que c'est equivalent, on la d enomme complexit e (inconditionnelle) de Kolmogorov d e

x et on la note KS(x). On pourra aussi consid erer cette notation comme la d e nition d'une fonction de ! N en ordonnant totalement par l'ordre longueur-lexicographique on consid erera alors que la fonction de r ef erence a et e x e e . D e l a m ême fa con, on note KS (x) = KS (xj").

Un lemme fondamental prouve que l'on conna^ t une fonction majorant KS(x). On donne deux enonc es, un enonc e qui conserve la constante, et un enonc e plus simple et plus concis, a n de montrer quelle est la di erence dans la fa con de percevoir les choses. Preuve. On prouve l ' enonc e 1, l'autre etant imm ediat si l'on veut bien se souvenir que l'on travaille a constante pr es si l'on ne pr ecise pas explicitement la fonction de r ef erence. Soit la machine Print qui recopie l'entr ee sur la sortie. Il est facile de voir que KS Print (x) = l(x). La machine etant additivement optimale, on applique l' egalit e 1 a ces deux machines. Il en d ecoule exactement l'in egalit e r e c herch ee. L'interpr etation des deux r esultats pr ec edents est naturelle : la premi ere exprime que quelque soit la complexit e d'un objet, on pourra toujours le retrouver a partir de son ecriture, et donc que sa complexit e est asymptotiquement inf erieure a sa longueur. La deuxi eme traduit qu'une information suppl ementaire sur x | ou plutôt sur une suite de x | ne peut pas augmenter la complexit e d e x, mais seulement la diminuer.

Non-calculabilit e d e K S

L'un des r esultats majeurs de la th eorie de l'information algorithmique concerne l'e ectivit e d u c a l c u l d e KP, c'est-a-dire la r eponse a la question \connaissant x, puis-je calculer ou approcher la valeur de KP(x)? " .

La complexit e de Kolmogorov est semi-calculable, c'est-a-dire que l'on peut l'approcher par valeurs sup erieures. Il sera montr e plus loin que cette approche n'est pas uniforme puisque la fonction KS n'est pas calculable. Proposition 4 Il existe une fonction totale r ecursive Sht :i convergeant simplement vers KS quant t tend vers l'in ni, telle que :

8t 2 N 8x 2 S ht xi > Sht + 1 x i > KS(x):
Preuve. On utilise le fait que la KS-complexit e est born ee par l(x) + c, proposition 2. On construit alors une machine qui simule la machine sur toutes les entr ees de longueur inf erieure ou egale a l(x) + c pendant un temps t, et on retient la meilleure solution qui existe ou bien l(x) + c si c'est plus petit que cette derni ere. Cette fonction v eri e bien l' egalit e annonc ee.
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Ce r esultat est important. Il limite, dans une certaine mesure, les propri et es de non-calculabilit e d e KS, et annonce les conditions que l'on utilisera plus tard pour faire des tests de caract ere al eatoire : on utilise des fonctions de la même \cat egorie" que KS, c'est-a-dire approximables mais non calculables.

Il a et e annonc e que KS n'est pas calculable. C'est une propri et e e s s e ntielle de KS qui a beaucoup de cons equences : si on s'int eresse par exemple a la compression de donn ees, ceci montre que l'on ne peut pas faire un programme de compression de donn ees qui soit optimal. Pour cela, on d e nit pour la dur ee de cette partie la fonction m(x), qui est la plus grande fonction monotone qui minore KS. M a t h ematiquement, m(x) = minfKS(y) y > xg, c'est-a-dire que la fonction cro^ t d es que et uniquement s i KS ne pourra plus redescendre en-dessous. On a d'abord un premier th eor eme, qui indique que la croissance de m est plus lente que toute fonction p.p.r. croissante vers l'in ni :

Th eor eme 4 (Kolmogorov) Pour toute fonction partielle partiellement r ecursive f, monotone qui tend vers +1, p our tout x 2 sauf un nombre ni, on a m(x) < f (x).

Preuve. Supposons qu'il existe une fonction p.p.r. f monotone tendant vers +1 e t q u e l e d o m a i n e R de f soit tel que pour une in nit e d e x 2 R, on ait f(x) 6 m(x). Il existe un ensemble R 0 r ecursif in ni contenu dans R.

On peut prolonger fj R 0 par continuit e en dehors de R 0 , par g(x) = 8 < :

f(x) pour x 2 R 0 f(y) avec y = maxfz : z 2 R 0 z< x g 0 si x < min R 0 Ainsi g est totale r ecursive puisque R 0 est r ecursif, et monotone croissante tendant v ers +1. De plus si m(x) > f(x), m(x) > f(y) p o u r y < x (puisque f est croissante), en particulier pour y = m a x fz : z 2 R 0 z< x g. Donc m(x) > g(x). Maintenant o n d e nit M(a) comme la plus grande valeur x telle que m(x) 6 a (cf gure 2.4). On v eri e instantan ement q u e M(a On sait exprimer de fa con plus pr ecise le caract ere calculable de KS. En fait, KS est non-calculable sur tout ensemble in ni r ecursivement enum erable. C'est un peu la contrepartie de la proposition 4, qui pr ecise que l'approximation que l'on peut en faire ne sera jamais exacte (et qui prouve aussi que la convergence ne peut pas être uniforme).

Th eor eme 5 La fonction KS(:) n'est pas partielle partiellement r ecursive.

De plus, aucune fonction partielle partiellement r ecursive ne co ncide avec elle sur un ensemble r ecursivement enum erable in ni de points.

Preuve. On suppose qu'il existe un ensemble r ecursivement enum erable A s u r l e q u e l o n a KS calculable, et on en extrait un ensemble r ecursif R in ni sur lequel KS v eri e la même propri et e. On d e nit pour cette ensemble R la fonction F suivante : Faisons ici une remarque importante. Il est possible en e et de trouver des fonctions r ecursives qui rencontrent KS en un nombre in ni de points mais dans ce cas, il n'est pas possible d' enum erer une famille in nie de points d'intersection ( a cause du th eor eme pr ec edent). C'est le cas par exemple de fonctions de la forme log(x) + c, qui sont proches de la majoration de KS(x), qui rencontrent toutes les donn ees peu compressibles. Pour cela, il su t d' etablir la proposition qui va suivre.

F(t) = m i n fx 2 R KS(x)

La complexit e sachant la longueur

Le concept de la complexit e mesur ee sachant la longueur correspond a une id ee naturelle. Lorsque l'on d ecrit un objet, une des informations les plus utilis ees est souvent sa longueur. Une des variantes de KS les plus utilis ees est donc la fonction KS(xjl(x)). Nous noterons cette fonction sous la forme KL. Cette fonction a beaucoup de propri et es communes avec KS. O n p e u t d emontrer facilement l e s i n egalit es suivantes : Proposition 5 8x 2 KL(x) 6 KS(x) 6 log(x) KS(x) 6 KL(x) + 2 KS(l(x) ; KL(x))

Preuve. La premi ere in egalit e est un corollaire evident de la proposition 2. Quant a la deuxi eme, elle se prouve en disant que l'on peut reconstruire x a partir d'un plus petit programme de taille KL(x) et de sa longueur, et que sa longueur peut-être d eduite de KL(x) et de la di erence entre la taille de x et KL(x). Or KL(x) p e u t être retrouv e a partir du plus petit programme (en mesurant sa taille).
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L'importance de la deuxi eme in egalit e est que pour tous les x dont l a complexit e selon la longueur est proche de log(x) ( a une constante x pr es par exemple), alors KL(x) e t KS(x) o n t des valeurs similaires. Or, comme va l e m o n trer le prochain r esultat, la majorit e d e s el ements de sont d a n s ce cas-l a.

Incompressibilit e relativement a K S

Tous les mots ne peuvent pas avoir de codages petits. Plus pr ecis ement, si on se xe une taille maximale, on sait majorer le nombre de mots dont l a complexit e est inf erieure a cette taille minimale : 

Information algorithmique auto-d elimit ee

Comme introduit pr ec edemment ( c f x1.2), la possibilit e de lire plusieurs mots a la suite se pr esente de fa con assez naturelle. Or si l'on ne veut pas employer de caract eres sp eciaux a v aleur de d elimiteurs (le caract ere blanc par exemple) pour marquer le d ebut et la n des mots, il faut recourir a une notion de codage d ecodable de fa con unique. Or si l'on consid ere le codage naturellement d eriv e d e KS qui a x associe x ? , l'un des plus petits programmes de longueur KS(x) permettant de retrouver x, o n v eri e que ce codage viole l'in egalit e de Kraft et n'est donc pas d ecodable de fa con unique (cf th eor eme 1). C'est pour pallier a c e probl eme que ind ependamment L . A . Levin 6], P. G acs 3] et aussi G.J. Chaitin 

F(u) # F(uv) # ) v = "
La notation F(x) # veut dire que la machine F converge sur l'entr ee x.

Une autre caract erisation possible sp eci e que si une machine s'arrête sur un mot, elle doit s'arrêter sur tous les mots dont i l e s t p r e x e , e t e n donnant e n p l u s l e m ême r esultat. C'est une vision o u l'on se dit qu'une machine peut avoir trop d'information, mais que dans ce cas, elle les ignore. On dit alors qu'elle est pr e xe cylindrique, car elle d ecoupe l'ensemble des mots en cylindres qui donnent l e m ême r esultat. D e nition 9 (Propri et e p r e xe cylindrique Q) On dit que F v eri e Q si et seulement si pour tout couple de mots (u v) F (u) #) F(uv) # et F(uv) = F(u).

On ne pr ecisera plus d esormais et l'existence d'une convergence, et sa valeur : l'a ectation f(x) = y a une fonction calcul ee par une machine implique la convergence de la machine sur l'entr ee x.

Il est assez intuitif que toute machine pr e xe peut être facilement c o n vertie en machine pr e xe cylindrique. Une machine pr e xe transform ee en pr e xe-cylindrique e ectue simultan ement les calculs sur le mot donn e e n entr ee et sur toutes ses abr eviations par un proc ed e diagonal comme suit : Elle calcule sur les n ; 1 p r e m i eres lettres, puis les n ; 2, . . . jusqu'au mot vide, en augmentant l e n o m bre de pas de calculs de 1 a c haque fois sur toutes les n entr ees. Elle s'arrête a la premi ere entr ee qui converge (et la seule, de par leur d e nition), et rend ce r esultat. Si la nouvelle machine ne converge pas, c'est qu'aucun des pr e xes du mot ne convergeait. On notera de plus que la machine sait alors quelle etait l'entr ee qui donnait la convergence.

On note M(x) = ? le fait que \la machine M diverge sur l'entr ee x".

Comme le prouve l e r esultat suivant, on ne peut pas faire la transformation inverse de fa con automatique : Proposition 7 Il n'existe pas de transformation : ! telle que si n est une machine pr e xe cylindrique, (n) (x) = n (x) si pour tout pr e xe strict u de x, n (u) = ? ? sinon On pose implicitement que si n (x) = ?, alors (n) (x) = ?.

Preuve. On rappelle d'abord un point important de calculabilit e : o n p o s e l'ensemble K d e ni par la formule K = fn 2 n (n) #g. O n s a i t q u e l e compl ementaire K de K n'est pas enum erable. On commence par transformer l'expression du syst eme d e nissant en l' ecrivant s o u s l a f o r m e s u i v ante :

Si n est pr e xe cylindrique, et que x s' ecrit ua u 2 ? a 2 , (n) (ua) = n (ua) si n (u) = ? ? sinon Il su t en fait de v eri er que le plus long pr e xe strict de x ne fait pas converger la machine n . Comme elle est pr e xe cylindrique, cela implique qu'aucun pr e xe plus petit ne fait converger n . On se construit une famille de machines qui vont nous permettre d' enum erer K si une telle fonction existe. Ainsi, on aura prouv e que ce n'existe pas. On d e nit donc la famille de machines M n :

M n (1 x 0u) = 8 > > < > > : ? si x < n 1 si x = n n 2 K ? si x = n n = 2 K
1 si x > n o u x est le nombre de 1 en d ebut de l'entr ee.

Observons que comme l'appartenance a K est semi-d ecidable, il existe une fonction f totale r ecursive telle que M n = f(n) . De plus, M n est pr e xe cylindrique. Ajouter quelque chose a la n d'un mot revient e n e e t a ( eventuellement) augmenter x o u a n e r i e n f a i r e , e t a partir d'une valeur 1 x 0 la machine converge toujours sur la même valeur. On peut donc regarder la valeur de f(n) (1 n+1 ). On a deux cas possibles :

{ S i n 2 K, f(n) (1 n ) converge puisque M n (1 n ) = 1 e t M n (1 n;1 ) = ?. Donc f(n) (1 n+1 ) diverge par la propri et e p r e xe. { S i n 2 K, f(n) (1 n ) diverge puisque M n (1 n ) = ?. Comme on sait que M n (1 n+1 ) = 1 f(n) (1 n+1 ) = 1 .
Il est possible d' enum erer tous les n pour lesquels f(n) (1 n+1 ) est convergente. D'apr es les observations pr ec edentes, il est donc possible d' enum erer K, ce qui est absurde. Preuve. On construit l'algorithme de transformation. On suppose donc que l'on part d'une machine F. On donne maintenant l'algorithme de calcul de G (la machine transform ee) sur l'entr ee x = x 1 x 2 : : : x n :

1. On pose z = ", u n e v ariable qui va servir d'entr ee a l a m a c hine F 2. On pose i = 0, un nombre d' etapes de calcul 3. On ex ecute l' etape 4 en donnant comme valeur a l a v ariable z 0 tous les mots de longueur inf erieure ou egale a i, par ordre croissant de longueur, puis par ordre lexicographique pour les mots de même longueur. D es que l'un des calculs de l' etape 4 donne un calcul convergent, on passe a l ' etape 5, sinon on recommence en incr ementant i 4. On r ep ete cette etape avec plusieurs valeurs de z 0 comme expliqu e ci-dessus. On simule l(z) + i ; l(z 0 ) etapes de calcul de F a partir de l'entr ee zz 0 . On note ensuite si cela a donn e un calcul convergent (c'est-a-dire si la machine s'est arrêt ee sur l'entr ee zz 0 en moins de l(z) + i etapes de calcul). 5. Quatre cas se pr esentent, selon que les valeurs de z et z 0 . S i z = x et que z 0 = ", alors la machine s'arrête et rend F(x) comme r esultat. Si l(z) < l (x) e t q u e z 0 = ", o n b o u c l e ( G(x) = ?). Si l(z) = l(x) e t z 0 6 = ", o n b o u c l e ( G(x) = ?), et en n si z = x et y 6 = ", o n p o s e z = x 1 : : : x l(z)+1 , et on recommence a l ' etape 5.

Si F(u) c o n verge en t etapes et F(uv) c o n verge en t 0 etapes, deux cas se pr esentent :S o i tt 6 t 0 ; l(v), et la machine r esultante bouclera pour uv (lorsque z = u z 0 = " i = t), soit c'est le contraire, et dans ce cas la machine r esultante boucle lors du calcul de u (lorsque z = u z 0 = " i = t 0 ; l(v)). Donc, si l'on prend pour un mot qui fait converger F celle de ses continuations dont le calcul se fait en le moins de (temps ; longueur), on retrouve facilement la propri et e q u e G est pr e xe (puisque c'est soit l'un, soit l'autre qui convergera, mais pas les deux). On peut de plus noter que la fonction calcul ee par une machine v eri ant P n'est pas modi ee par cet algorithme. Le num ero de la machine n'est pas invariant : mais la fonction calcul ee est inchang ee.

Cette transformation est r ecursive, et donc toute machine de num ero i dans l' enum eration se verra transform ee en une autre machine (i). Il est maintenant imm ediat de voir que les fonctions p.p.r. pr e xes sont l e \point xe" de (au sens donn e dans l' enonc e). 

D e nition de la complexit e auto-d elimit ee

Le but est, a l'instar de ce que l'on a fait pour l'ensembles des machines, d'essayer de trouver une mesure de complexit e qui soit \universelle" pour la sous-classe des machines qui v eri ent P. T outefois, comme nos machines sont a deux arguments (l'entr ee est toujours de la forme hx yi), on consid ere en fait les machines qui v eri ent la propri et e P 0 suivante : Aid e d e c e r esultat, on montre qu'il existe une machine v eri ant P 0 additivement optimale pour la classe des machines v eri ant P 0 , d a n s l ' enonc e suivant :

Th eor eme 6 Il existe v eri ant P 0 , telle que 8 0 v eri ant P 0 9c 0 8x y KS (xjy) 6 KS 0(xjy) + c 0:

Preuve. On construit presque de la même fa con que dans la premi ere preuve l a m a c hine, en posant : Mh p yi = ( ) hp yi: La fonction est celle qui a et e d e nie plus haut. On s'assure aussi que si la donn ee ne correspond pas a d e s v aleurs correctement f o r m a t ees (de la forme p), M diverge. On peut construire cette machine, car on peut s eparer les trois donn ees , p et y puisque l'on a un codage pr e xe pour . On peut ensuite calculer hp yi, puis ex ecuter U sur ( ) et sur cette donn ee.

On v eri e que :

si Mh u wi # Mh uv wi # , alors ( ) hu wi # ( ) huv wi # donc v = ", puisque ( ) est pr e xe. Donc M v eri e bien P 0 .

Pour toute machine 0 il existe une machine ( ) qui calcule la même fonction d'apr es le th eor eme 9, et on a alors Mh p yi = 0 hp yi. D o n c e n particulier : 8x y KS M (xjy) 6 l( p) 6 l( ) + l(p):

Le th eor eme est donc prouv e a vec = M et c 0 = l( ). On remarquera que la constante est calculable en fonction du num ero de 0 puisqu'il su t de prendre la longueur auto-d elimit ee du code de 0 car 0 = ( ) ( egalit e des fonctions calcul ees).
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On a donc, de la même fa con qu'avec la complexit e de Kolmogorov, une notion de machine additivement optimale pour cette sous-classe des machines. On dit alors que cette sous-classe v eri e le th eor eme de Solomono -Kolmogorov. On peut ainsi d emontrer que pour tout couple de machines additivement optimales pour cette classes, la di erence entre les deux reste born ee. On peut donc choisir de la même fa con une machine parmi toutes les machines additivement optimales pour se xer un point d e r ef erence. Posons les d e nitions suivantes : D e nition 11 La c omplexit e a u t o -d elimit ee ( o u p r e xe) de x sachant y est egale a KS (xjy) avec une machine de r ef erence p r ealablement x ee, additivement optimale pour la classe des machines v eri ant P 0 . On note cette complexit e KP(xjy), l e etant alors sous-entendu.

La c omplexit e auto-d elimit ee d e x est egale a KP(xj"), et est not ee KP(x).

Lorsque est pr e xe, on convient de remplacer la notation KS (x) par KP p si(x), p our souligner le fait que est une machine pr e xe.

Encadrements de la complexit e auto-d elimit ee

On dispose maintenant de deux notions de complexit e distinctes, la complexit e de Kolmogorov (dite simple) et la complexit e auto-d elimit ee. Cette partie a pour but de donner des bornes pour la complexit e auto-d elimit ee, en essayant en particulier de la comparer a la complexit e de Kolmogorov. Proposition Preuve. Soit la machine F ;1 qui d ecode F, c'est-a-dire : F ;1 (F(x)) = x pour tout x 2 e t e ;1 (y) = ? si y ne s' ecrit pas e(x). Cette machine v eri e bien P 0 , puisque e est lui-mê m e u n c o d e p r e xe. Or KS e ;1 (x) = l(e(x)). Donc KP(x) 6 l(e(x)).
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Ceci permet une majoration presque optimale de la KP-complexit e : Corollaire 2 KP(x) 6 l(x) + l(l(x)) + : : : + l(: : : (l(x) : : : ) + 2 l ? (x) o u l ? (x) est le nombre de fois que l'on peut appliquer la fonction l (longueur) a x sans atteindre la valeur 1.

Preuve. On utilise l'encodage pr e xe suivant : e(x) = 1 l ? (x) 0l(: : : (l(x) : : : ) : : : l (x)x:

Cet encodage est bien pr e xe. Il correspond a l a c l ôture de la suite des codes pr e xes dont le premier terme serait 1 l(x) 0x, l e d e u x i eme terme serait 1 l(l(x)) 0l(x)x, e t c .
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La proposition suivante permet d' etablir des r esultats importants sur la compressibilit e d e s c ha^ nes via des machines pr e xes. La majoration donn ee est assez pr ecise, car la borne est atteinte pour toute longueur n, comme le prouve l e t h eor eme 7.

Proposition 12 KP(x) 6 KS(x) + KP(KS(x)):

Preuve. On construit une machine qui calcule x. O n s e d o n n e x ? v eri ant l(x ? ) = KS(x) un programme permettant de calculer x avec une machine additivement optimale f pour l'ensemble des machines p.p.r. et q un programme permettant de calculer l(x ? ) a vec une machine additivement optimale f p pour l'ensemble des machines v eri ant P 0 . O n construit une machine g v eri ant la propri et e P 0 qui calcule x a partir de qx ? : on transforme la machine f x ? en une machine pr e xe-cylindrique, qui retrouvera donc l(x ? ) et d'apr es une remarque faite au moment d e la d e nition de la transformation en machine pr e x e , o n p e u t egalement isoler q (cf x3). On sait donc s eparer q et x ? , donc on construit la machine g de fa con a ce qu'elle lise q, e n d eduise l(x ? ), puis ne lise que les mots de la forme qp, a vec l(p) = l(x ? ) de cette fa con elle v eri e P 0 . Il su t ensuite de simuler f sur l'entr ee x ? pour retrouver x. O n e n d eduit KP(x) 6 l(qx ? ) 6 KP(KS(x)) + KS(x).

2 Il existe un equivalent d u t h eor eme 6 pour la KP-complexit e : Th eor eme 7 Soit A n = fx l(x) = ng. On a alors :

1. max A fKP(x)g = n + KP(n) + O(1)

2. Card fx 2 A KP(x) 6 n + KP(n) ; rg 6 2 n;r+O (1) Preuve.

max A fKP(x)g = n + KP(n) + O(1)

On utilise la même m ethode que pr ec edemment, sauf que l'on utilise une entr ee de la forme qxau lieu de qp, a vec p un programme de longueur KS(x). La construction de la machine pr e xe est exactement pareille, et on obtient bien KP(x) 6 n + KP(n). La preuve q u e l a valeur est atteinte vient d e l a p a r t i e 2 d u t h eor eme.

2. Card fx 2 A KP(x) 6 n + KP(n) ; rg 6 2 n;r+O (1) Cette in egalit e est di cile a p r o u v er directement. On admettra donc l' egalit e suivante, qui provient d e l a s y m etrie de l'information autod elimit ee prouv ee, par exemple, dans 8] : KP(x) + KP(yjx KP(x)) = KP(y) + KP(xjy KP(x)) + O(1): Pour la signi cation de la notation KP(yjx KP(x)), on pourra se reporter au paragraphe 2.2.

On pose y = l(x) = n, et on obtient KP(njx KP(x)) = c. S i o n suppose que KP(x) 6 n + KP(n) ; r, alors KP(xjn KP(n)) 6 n ; r + c + O(1).

On conclut la preuve p a r d enombrement, au plus 2 n;r+O (1) programmes etant de longueur inf erieure ou egale a n ; r + O(1), au plus 2 n;r+O (1) peuvent donc v eri er cette egalit e. Th eor eme 8 La fonction KP(:) n'est pas partielle partiellement r ecursive.

De plus, aucune fonction partielle partiellement r ecursive ne co ncide avec elle sur un ensemble r ecursivement enum erable in ni de points.

Les preuves sont les mêmes que pour KS. 

Complexit e et sous-additivit e

On introduit dans cette partie la notion d'information algorithmique. On veut donner une mesure de ce qui dans un objet y re ete une information sur un autre objet x. On pose pour cela la d e nition suivante : Une question qui se pose naturellement est de savoir comment se combinent e n tre elles deux informations \ind ependantes". La m ethode naturelle qui vient a l'esprit consiste a comparer la complexit e de Kolmogorov d e l'un des objets selon que l'on fournit en entr ee l'autre cha^ ne ou non. Cette id ee, inspir ee d'une d emarche similaire dans l' etude de l'entropie de Shannon, am ene des r esultats etranges. On introduit ici la notion d'information algorithmique par la d e nition suivante : D e nition 12 L'information algorithmique contenue dans x a p r opos de y est la quantit e I(x : y) = KS(y) ; KS(yjx):

Assez etrangement, cette information mutuelle n'est pas sym etrique. Ceci rentre en contradiction avec l'intuition. Cette propri et e n'est d'ailleurs pas v eri ee pour la complexit e p r e xe, par exemple.

On peut prouver que la quantit e jI(x : y) ; I (y : x)j peut atteindre le logarithme de KS(x) o u d e KS(y). On utilise le th eor eme 6. De par ce th eor eme, pour tout n dans N, i l e x i s t e x n tel que l(x) = n et KS(x n jn) > n.

De par le même th eor eme, il existe un ensemble A in ni de n tels que KS(n) > l(n). Pour tout n 2 A, o n a KS(njx n ) = c 1 et KS(n) > l(n). Donc I(x n : n) > l(n) ; c 1 . D'autre part, KS(x n ) 6 l(x n ) + c 2 , e t KS(x n jn) > n. Donc jI(x n : n) ; I (n : x n )j > jl(n) ; (c 1 + c 2 )j:

Ceci se traduit asymptotiquement par jI(x n : n) ; I (n : x n )j > log(KS(n)):

En fait, l'exemple pr ec edent consiste a se dire que la seule information a propos d'une cha^ ne tr es al eatoire est nulle, alors que la cha^ ne tr es al eatoire contient toutes les donn ees n ecessaires pour reconstruire n. La di erence dans ce cas l a est alors de l'ordre du logarithme de n.

La th eorie algorithmique de l'information permet de prouve r q u e l e t h eor eme suivant ne peut pas être am elior e (il est impossible de supprimer le terme logarithmique) :

Th eor eme 9 Pour toute bijection C de dans :

KShx yi = KS(x) + KS(yjx) + O(log KS(x y)):

(2)

On a donc les r esultats suivants :

{ p our toute fonction p.p.r. f de 2 dans , p our tout x y tel que f(x y) converge, KS(c(x y)) 6 KS(x) + KS(y) + O(maxflog KS(x) log KS(y)g):

{ L a KS-complexit e n 'est pas sous-additive, c'est a d i r e que l'on a pas pour tout couple x y l'in egalit e suivante :

KShx yi 6 KS(x) + KS(y):

Preuve. Prouvons d'abord l' egalit e 2. Le premier sens que l'on prouve est l'existence d'une fa con de d ecrire le couple a partir des descriptions individuelles de x et de y.

Si l'on pose p et q comme etant des solutions permettant de calculer x et y sachant x de longueur respective KS(x) e t KS(yjx), on peut ecrire c(x y) sur l'entr ee l(p)pq. Or la longueur de cette cha^ ne est KS(x) + KS(yjx)+ log(KS(x)). Alternativement, on peut aussi utiliser l'entr ee l(q)qp, qui est de longueur KS(x) + KS(yjx) + log(KS(yjx)).

On prouve ensuite l'autre sens. On fait une d emonstration par l'absurde, en supposant donc que pour tout c, o n a : 9x y KS(yjx) > KShx yi ; KS(x) + cl(KShx yi):

On pose ensuite les ensembles suivants :

A = fhu zi : KShu zi 6 KShx yig A u = fz : KShu zi 6 KShx yig D'apr es le th eor eme 4, si l'on donne KShx yi, A est enum erable et si l'on donne KShx yi et u, A u est enum erable. Or y 2 A x : KS(yjx) 6 l(Card A x ) + 2 l(KShx yi) + c 0 : On peut donc en d eduire que pour toute constante c, il existe un couple x y pour lequel e = KShx yi ; KS(x) + c:l(KShx yi) e t v eri ant aussi Card A x > 2 e . Essayons de majorer KS(x). Etant donn e KShx yi et e, on peut enum erer les cha^ nes u v eri ant 2 e < A u . Cet ensemble U contient evidemment x. De plus, fhu zi : u 2 U z 2 A u g est inclus dans A. On a de plus une majoration de Card A : Card A < 2 KShx yi+1 . Ainsi, puisque pour chaque u dans U on a une minoration du cardinal de A u : dans , p our tout x y tel que c(x y) converge, KP(c(x y)) 6 KP(x) + KP(y):

Card U 6 Card A 2 e 6
Preuve. La preuve de la sous-additivit e d e l a KP-complexit e est similaire a celle de la KS-complexit e. Supposons donc que l'on ait comme pr ec edemment, deux versions auto-d elimit ees p et q de programmes qui permettent de calculer x et y, de longueur respective KP(x) e t KP(y).

On fait une machine V qui lit les deux arguments par une technique de cylindrique-pr e xe, et qui applique c sur le r esultat de U appliqu ee a c hacun de ces deux arguments. V est une machine v eri ant P 0 . D o n c o n a bien KP(c(x y)) 6 KP(x) + KP(y) a une constante pr es.

4 D e nition de l'al eatoire

Lorsque l'on se pose la question de savoir ce que doit être une suite al eatoire, un certains nombres de crit eres apparaissent : egalit e approximative des fr equences de caract eres, impossibilit e de deviner quel est le caract ere suivant, etc. La formalisation de cette th eorie connut plusieurs approches dont la premi ere fut, historiquement, celle de Von Mises. Les deux approches expos ees dans cette partie furent celles du su edois P. Martin-l of (que l'on peut trouver dans 9] et 10]) et celles de A.N. Kolmogorov.

Pr esentons ces deux approches. L'approche de la repr esentativit e (anglais typicalness) est celle de Martin-l of. Elle utilise la notion de test. Un \test", dans cette optique, est une m ethode de s eparation des mots nis, qui donne une \note" plus ou moins elev ee selon la repr esentativit e de la suite qui est pr esent e, mais qui ne donne pas de notes trop elev ees. Par exemple, compter le nombre de 0 en tête du mot est un test acceptable . Une suite al eatoire ne doit pas pouvoir être retenue par un test : ces tests el ementaires d etectent les r egularit es, et ces caract eres sont a exclure des suites al eatoires.

L'approche de Kolmogorov consiste a utiliser la notion de r egularit e, qui est captur e p a r l e s c ha^ nes compressibles. Si une cha^ ne est compressible, il est possible de rep erer des r egularit es qui ne conviennent p a s a une suite al eatoire.

Le r esultat principal de cette partie est le th eor eme de Levin-Schnorr, qui etablit l' equivalence de ces deux notions pour les suites nies. On s'int eresse ensuite a la caract erisation des suites in nies al eatoires, pour constater la di erence dans les deux points de vue. Il est important de noter qu' a ce jour, ces approches de la d e nition de l'al eatoire sont parmi les plus convaincantes, contrairement a l'approche stochastique (cf 14]).

L'al eatoire par la repr esentativit e

Le premier imp eratif, selon cette approche, pour manipuler la \quantit e d'al eatoire" dans une donn ee est de formaliser la notion d'être typique de n'importe quelle majorit e r aisonnable, et donc en premier, d'être typique d'une majorit e. Ce que l'on va imposer a un crit ere de s election (les tests evoqu es plus haut) est de retenir au moins la moiti e des mots d'une certaine longueur comme etant parfaitement t ypique. Toutefois, si on se limite a c e t t e condition, on se rend parfaitement compte que cela ne su t pas, car cela manque de nesse il n'y a alors que deux degr es, et on ne peut pas esp erer faire un crit ere g en eral qui prenne tous ces tests en compte en etant d e l a même nature. P. Martin-l of a donc propos e d'it erer le proc ed e e n r eit erant le proc ed e : parmi les suites qui ne sont pas tout a f a i t t ypiques, la moiti e d'entre elles devront être plus typiques on leur attribue alors une note de 1, tandis que les premi eres avaient une note de 0 (tout a fait typiques), et les autres au moins 2. On r eit ere ainsi le proc ed e. La d emarche de Martin-l of a ensuite et e de donner comme d e nition du degr e d'al eatoire d'une valeur le degr e donn e par un test maximal, a yant une valeur qui est globalement aussi elev ee qu'avec tous les autres tests.

Notons bien que l'on ne pourra jamais faire de distinction franche, pour un mot ni, entre al eatoire et non-al eatoire. Il su t de voir que le changement individuel de chaque lettre d'un mot al eatoire par celle d'un mot non-al eatoire ne fait jamais passer a lui seul le mot dans la cat egorie non al eatoire. Par contre, on peut essayer de caract eriser l'al eatoirit e 3 cette valeur n'aura alors qu'une valeur relative, la valeur pr ecise important peu (car cela d ependra d'un choix de r ef erence). D e nition 13 Soit P une distribution r ecursive de probabilit e s u r . U n e fonction totale : ! N est un P-test si et seulement si :

1. est approximable par au-dessous, i.e. l'ensemble V = f(m x) : (x) > mg est un ensemble r ecursivement enum erable.

2. 8n 2 N 8m 2 N X (x)>m l(x)=n P(xjn) 6 2 ;m (condition dite des sections critiques).

Un P-test est donc un test qui attribue un coe cient de raret e (ou plus exactement d'atypicit e) a tous les mots, mais qui ne d ecr ete pas que tout le monde est atypique. En fait, l'ensemble des mots de même longueur ayant un coe cient s u p erieur a m ne doit pas avoir une mesure sup erieure a 2 ;m .

Par exemple, le test qui consiste a compter le nombre de 0 en tête d'un mot est bien un L-test, si on pose L la distribution de probabilit e uniforme. 4 Un test n'est pas forc ement une fonction r ecursive. Un test pourra être vu, d'un point de vue calculatoire, comme une fonction qui produit les valeurs qui sont i n f erieures a (x) s a n s p r eciser s'il s'arrête. Ce sont d o n c des fonctions approximables par au-dessous.

On peut se demander pourquoi on a fait ce choix plutôt que de faire le choix d'une fonction totale r ecursive. Une importante propri et e sous-jacente de ces tests est qu'ils sont enum erables, ce qui ne serait pas le cas si on les avait consid er es comme r ecursifs : Proposition 17 Il existe une enum eration e ective des P-tests.

Preuve. Pour faire une enum eration e ective, il faut associer a c haque mot n une description de l'objet. La description choisie est une fonction r ecursive qui va enum erer les paires mot/entier (x m) telle 3: Ce mot n'existe pas, mais il faut un mot pour d esigner la ( (quantit e d ' a l eatoire) ) d'un mot.

4: La distribution uniforme de probabilit e d'un mot x est 2 ;2l(x) .

que (x) > m. Cette description peut facilement être transform ee en une description o u une fonction r ecursive accepte un argument x et donne des valeurs de m inf erieures a (x).

On part d'une enum eration des fonctions p.p.r. de N ! N, e t o n transforme cette enum eration e ective en une autre enum eration e ective de fonctions p.p.r. ayant la propri et e d ' être d e nie sur tous les segments initiaux (phase 1) et ensuite en une enum eration e ective d e s P-tests sous la forme donn ee plus haut (phase 2). La preuve sera alors termin ee parce que l'on aura elimin e (dans la phase 2) tout et seulement ce qui n'est pas un P-test, et que tous les ensembles r ecursivement enum erables sont r e p r esent es avant la phase 2, en particulier ceux qui repr esentent l e s P-tests.

1. On a une enum eration de toutes les fonctions p.p.r. et on veut la transformer en une enum eration de fonctions d e nies sur les segments initiaux, c'est-a-dire que si f(n) c o n verge, alors f(n ; 1) converge aussi. Cette transformation va être r ecursive, pour que ce soit bien une enum eration e ective. On suppose donc que l'on veut calculer g(n), o u g est la transform ee de f. O n f a i t a l ' etape n (n;1)+m+1n etapes de calcul de f sur l'entr ee m. Le premier calcul convergent d e ces etapes de calcul est g(0), le deuxi eme est g(1), etc. Il est a noter que l'ensemble fg(x) x 2 Dom gg est egal a ff (x) x 2 Dom fg. E n particulier, tout les ensembles f(m x) : (x) > mg pour un P-test sont b i e n enum er es.

2. On utilise l'algorithme suivant, qui va enum erer, pour un P-test, tous les ensembles f(m x) : (x) > mg. L'algorithme va aussi m emoriser la valeur maximale obtenue pour m dans les couples (m x) pour chaque x. C'est faisable, car a tout moment on aura evalu e un nombre ni de couples. On suppose donc que g est une fonction d e nie sur un segment initial, et on cherche a d ecrire une fonction .

Plus pr ecis ement, on n' enum ere pas les couples de la forme (0 x ) etant suppos ee être une fonction totale, il n'est pas besoin de le faire entrer dans la description. (a) A tout moment dans l'algorithme si (x) n'a jamais et e mis en m emoire, on suppose qu'il va u t 0 . O n p o s e i = 0 . i va compter les couples (m x) produits par g. (b) On pose i = i + 1. On calcule ensuite g(i ; 1) et on obtient u n couple (m i x i ). Si i ; 1 = 2 Dom g, alors on a ni de d ecrire .

Remarquons tout de suite que l'on ne sait pas de fa con r ecursive quand la description est termin ee.

(c) Si la nouvelle fonction o u o n d e nirait (x i ) = m i n'est plus un P-test, alors aller a l ' etape 2e. On peut le tester parce que la distribution de probabilit e P est r ecursive. Sinon aller a l ' etape 2d.

(d) Enum erer (m i x i ). Poser ensuite (x i ) = m i si (x i ) 6 m i . R ecommencer a l ' etape 2b. ( e ) O n n e c o n tinue pas le calcul de . On s'arrange pour que le graphe de soit coh erent, c'est a dire que pour tous les x o u est d e ni, on enum ere tous les couples (m x) a vec m 6 (x) puis on boucle.

Notons bien que si g est un test, alors le calcul ne s'arrête pas, et l'algorithme approximera bien par au-dessous. Si g diverge a u n m o m e n t, alors reste inchang ee et comme lorsque i = 0 , est un test, une r ecurrence imm ediate nous garantit que la fonction est un P-test si elle ne l'est pas, alors a un moment la condition de l' etape 2c nous garantit que l'on enregistre pas la modi cation nale, et que l'on ne touche plus a l a d e nition interne de .

2

On peut maintenant d e nir ce que serait un P-test universel : D e nition 14 Un test universel du caract ere a l eatoire a u s e n s d e M a r t i n -L of pour la distribution r ecursive de probabilit e P, o u e n r accourci un P-test universel, est un P-test 0 tel que pour tout P-test , il existe une constante c, telle que pour tout x, 0 (x) > (x) ; c.

Dans la litt erature, on trouvera parfois en lieu et place du mot \universel" le mot \maximal".

Bien sûr, cette d e nition est non e ective et ne prouve pas qu'il existe un tel P-test. On construit donc maintenant directement u n e n s e m ble r ecursivement enum erable qui est un P-test universel.

Th eor eme 11 Soit 1 2 : : :une enum eration e ective des P-tests. Alors 4. On enum ere tous les couples entre ( 0 (x i ) + 1 x i ) e t ( m i ; n x i ). On pose ensuite 0 (x i ) = m i ; n. On recommence ensuite a l ' etape 2.

Cette m ethode est bien constructive, on a donc une description e ective de 0 . P ar construction, on v eri e aussi la condition d' enum erabilit e p o u r les P-tests. V eri ons maintenant la condition dite des sections critiques qui prouvera que 0 est bien un P-test : 2 ;m;y = 2 ;m Donc 0 est bien un P-test. Or par d e nition, on a 0 (x) > y (x);y, d o n c 0 est bien un P-test universel. 2

Le lien avec la complexit e de Kolmogorov

Une des d ecouvertes importantes, et un des sous-produits de l' etude de la th eorie de l'information algorithmique, est la corr elation entre l'approche de Kolmogorov du hasard et l'approche de Martin-l of. C'est cette egalit e dans les approches qui fait que cette d e nition algorithmique du hasard est peut-être celle qui correspond le mieux a l'id ee intuitive d u hasard selon les quatre approches classiques : stochasticit e, repr esentativit e, compressibilit e et impossibilit e de deviner (pas de martingale gagnante). La stochasticit e est la premi ere approche : une suite al eatoire doit respecter des conditions de fr equence d'apparition des chi res dans la suite et dans certaines sous-suites. La repr esentativit e est l'approche de Martin-l of, o u une suite al eatoire doit faire partie de toute majorit e raisonnable. L'approche par la compressibilit e est celle de Kolmogorov, o u une suite al eatoire est une suite incompressible. En n, l'approche par martingales est encore etudi ee par Muchnik 11]. Si l'approche stochastique n'est pas satisfaisante | elle viole certaines lois statistiques (cf 14]) |, la conjonction de la repr esentativit e et de la compressibilit e est un indice encourageant, et la d ecision d ependra de l' egalit e (probl eme encore ouvert) avec l'approche par martingale (une inclusion existe d ej a, a s a voir que les suites al eatoires au sens de l'incompressibilit e sont incluses 14, 1 3 ]). On peut trouver de nombreuses r ef erences dans la litt erature, en particulier 18].

Pour faire le lien avec la complexit e de Kolmogorov, on utilise une distribution r ecursive de probabilit e particuli ere, la distribution uniforme de probabilit e L. La probabilit e selon L d'obtenir x est egale a 2 ;2l(x) , e t l a probabilit e conditionnelle d'obtenir x sachant sa longueur n est exactement 2 ;n , c'est a dire que l'on a une r epartition equiprobable sur les el ements de même longueur.

Alors pour cette longueur-l a, on v eri e une equation simple :

Th eor eme 12 (Martin-L of) La fonction f(x) = l(x); KL(x); 1 est un L-test universel.

Preuve. Il faut montrer que f remplit trois conditions : celle sur l' enum erabilit e, celle sur les sections critiques, et celle sur l'universalit e.

1. On utilise la proposition 4 pour prouver que l'ensemble des (m x) tels que (f(x) > m est enum erable. En e et, on peut majorer aussi pr ecis ement que l'on veut KL(x), et donc minorer aussi pr ecis ement que l'on veut f. L(xjl(x)) = X f(x)>m l(x)=n 2 ;n 6 2 n;m 2 ;n 6 2 ;m Donc f v eri e bien la condition sur les sections critiques, et f est donc bien un L-test. 3. On nit la preuve e n m o n trant q u e f est L-test universel. Pour cela, on construit une d e nition de x qui fera que KL(x) 6 l(x) ; y (x) ; 1 + c(y) pour tout y et tout x. O n a a i n s i f(x) > y (x) ; c(y). D e nissons d'abord l'ensemble des objets de même longueur que x (puisqu'on la conna^ t) et tels que y (z) > y (x) pour tout el ement de l'ensemble. Par d e nition d'un L-test, on peut enum erer cet ensemble si on conna^ t y (x) et, bien sûr, y et l(x). x appartient a c e t ensemble, et on peut donc le d ecrire par son index dans cet ensemble (appelons le j), y, y (x) e t l(x). Revenons sur j : i l p e u t être major e par 2 l(x); y(x) , puisque l'on a : 8z 2 n L (zjn) = 2 ;n X f(z)>f(x) l(z)=n L(zjn) 6 2 ;f(x) 9 > = > ) Card fzjl(z) = n f(z) > f(x)g 6 2 n;m Donc j est major e, et on peut donc ecrire une cha^ ne s de taille exactement l(x) ; (x) + 1, qui commence par des 0 en nombre ad equats ( eventuellement aucun), puis un 1, puis l' ecriture de j. Ainsi, a p a rtir de s et l(x), on peut retrouver (x) e t j. Si on ajoute y, o n p e u t donc retrouver x. On peut donc retrouver x sachant l(x) e t l a c ha^ ne 2

Toutefois, cette d e nition n'est pas satisfaisante. Le prochain th eor eme essaye de poser un test universel qui ne d ependrait pas si fortement de la distribution de probabilit e admise puisqu'en l'occurence, L est une distribution tr es particuli ere. La preuve d e c e t h eor eme est omise mais l'on montrera par la suite pourquoi le cas ci-dessus n'en etait qu'un cas particulier.

Ce qui est int eressant d e v oir, c'est que l'on ne va plus utiliser KS, m a i s une variante de KP. On arrive aux limites des possibilit es de la complexit e simple de Kolmogorov, qui n'est pas elle capable d'exprimer cette nuance ( a ce jour). D e nition 15 On pose KP(x kjy) = m i n fi KP(xjk ; i y) 6 ig.

(pas n ecessairement p r e xe) T q u i f a i t l e c a l c u l d e l a m a c hine de r ef erence pr e xe sur l'entr ee ht hn ; 1 y ii lorsqu'on lui pr esente une entr ee de longueur n de la forme 0 i;l(t) 1t. S i o n p o s e t = x ?(i) , o n a bien une description de x, d o n c KS(xjy) 6 i + O(1) (car la machine T ne d epend pas de i) [START_REF] Acs | On the symmetry of algorithmic information[END_REF]. KS(xjy) > KP(xjKS(xjy) y ): On applique la même preuve que pr ec edemment en posant i = KS(x y), ce qui nit la preuve. On a bien la condition l(x ? ) 6 KS(x y) + O(1).

Cette preuve v i e n t d e 7 ] . L'ensemble de ce que l'on vient d e v oir s'applique en fait aux suites nies de mots. Mais, comme l'explique une remarque dans la section 4, le fait de pouvoir d e nir clairement la qualit e d ' être al eatoire pour une suite nie n'appara^ t pas possible. Toutefois, cette s eparation semble beaucoup plus logique si on consid ere une source de lettres. Une source est, dans le cadre de cette etude, une fa con de produire une suite (potentiellement) in nie de caract eres, etant eux-mêmes en nombre nis. On se limitera comme toujours au cas ou les caract eres sont a u n o m bres de 2. Martin-l of s'est aussi attaqu e a ce probl eme, et a d e ni une notion de P-test s equentiel qui permet de caract eriser les sources al eatoires. Mais tout d'abord, il faut etudier une proposition, qui montre que la notion de P-test n'est pas su sante. Pour cela, on va utiliser l' equivalence entre KS-complexit e e t a l eatoire au sens de Martin-L of, et montrer que la d e nition qui para^ t naturelle d'une source al eatoire | a s a voir que si on regarde les premiers termes de la suite, quelque soit le nombre que l'on en regarde, ils sont t o u s a l eatoires a un certain degr e (constant, ou variant lin eairement en fonction de la longueur) | ne convient pas.

Mais pour cela, il va d'abord falloir une notation pour les sections initiales d'une source in nie. Une source etant une suite in nie de 0 et de 1, on l'identi era a u n el ement d e f0 1g 1 : D e nition 16 Une source in nie ! est un el ement appartenant a f0 1g 1 , les suites in nies de 0 et de 1. O n d e nit les sections initiales par ! 1:n les n premiers bits de la source ( l(! 1:n ) = n). L'ensemble f0 1g 1 sera d esormais not e .

Caract erisation de Martin-L of

La proposition suivante donne un minorant de l'amplitude des oscillations. On s'int eresse aux fonctions (presque) totales dont l a s erie de terme g en eral 2 ;f(n) diverge (par exemple, les fonctions constantes, logarithmiques, polynomiales).

Proposition 21 Soit f une fonction de Nnf0g dans N r ecursive totale telle que P 1 n=1 2 ;f(n) diverge. Alors :

8! 2 9A N Card A = 1 8n 2 A KL(! 1:n ) 6 n ; f(n):
Preuve. On construit d'abord une fonction qui majore f, et dont la di erence avec f cro^ t arbitrairement, mais qui permet de se d ebarrasser d'un terme constant par la suite. On ajoute a f la valeur :

F(n) = $ log n X i=1 2 ;f(i) !%
On peut observer que P 2 ;g(n) = 1. P our prouver cela, minorons d'abord P F(n)=m 2 ;f(n) . Remarquons bien que F(n) = m tant l'on s'assure que 2 m 6 P n i=1 2 ;f(n) < 2 m+1 . S o i t n 0 le premier n v eri ant ceci, et n 1 le dernier.

> >

> > < > > > > : n 0 ;1 X i=1 2 ;f(n) < 2 m n 1 +1 X i=1 2 ;f(n) > 2 m+1 ) n 1 +1 X i=n 0 I n A n Γ x ω ω 1:n 0 ω 1:n 0 Fig. 2 -Interpr etation g eom etrique X n>1 2 ;g(n) = X m>1 X F(n)=m 2 ;(f(n)+m) > X m>1 2 ;m (2 m ; 1) > 1
On utilise maintenant cette divergence pour montrer la proposition. On d e nit deux familles d'intervalles modulo 1 :

I n = " n;1 X i=1 2 ;g(i)
n;1 X i=1 2 ;g(i) ! ; x = h X x i 2 ;i X x i 2 ;i + 2 ;l(x)

A n = fx 2 l (x) = n ; x \ I n 6 = g G eom etriquement ( v oir sur la gure 5.2), on dispose sur un cercle un trajet qui sera, de par la divergence de P 2 ;g(n) parcouru un nombre in ni de fois. De plus, on associe chaque mot a une tranche du cercle (la tranche associ ee a un mot contiendra exactement toutes les tranches associ ees a tous ses su xes). A n contient l'ensemble de toutes les continuations possibles associ ees a I n . Supposons qu'il existe un nombre ni de n tels que ! 1:n 2 A n . Cela voudrait dire que I n n'intersecte plus l'intervalle ; n 0 , pour un certain n 0 . Or la somme divergeant, c'est impossible. Donc il existe A N de cardinal in ni, tel que pour tout n 2 A, ! 1:n 2 A n . E n d ecrivant ! 1:n par son indice dans l'ensemble A n , on obtient (pour n assez grand, le O(1) dispara^ t a cause du terme F(n) qui tend vers l'in ni dans la di erence entre g et f) : KL(! 1:n ) 6 log Card A n + O(1) 6 log g(n) Preuve. On reprend les notations de la preuve de la proposition 21. Soit p une description de ! 1:n sachant n, de longueur minimale n ; g(n) + O(1). Soit q un programme qui calcule n a partir de n ; f(n). D'apr es un argument d ej a utilis e, pour n su samment grand, l(qp) < n ; f(n). Donc on peut compl eter qp en q0 n;f(n);l(qp);1 1p. Ce mot de longueur n ; f(n) est bien une description de ! 1:n car on peut d'abord retrouver q de q, e n d eduire n puisque la longueur du mot est n ; f(n) e t a vec p en d eduire ! 1:n . Ce qui prouve le corollaire. 2

Analysons ce que nous avons d emontr e: a cause de ce qui est appel e l e s oscillations de la complexit e, il n'existe pas de suite dont toutes les sections initiales sont de haute complexit e, c'est-a-dire c-incompressibles. Donc on ne peut pas dire que la d e nition qui semblait pourtant naturelle d'une suite in nie al eatoire puisse être utilis ee.

Nous allons donc prendre en compte une autre mesure pour la quanti cation de l'al eatoire, qui essaye de mieux saisir l'id ee d'in ni en utilisant l a n otion d'espace continu. On retrouvera ainsi l'id ee exprim ee dans des preuves pr ec edentes, qui associe a un mot non pas un seul point, mais toutes ses continuations possibles. Par l'introduction de ce nouveau concept, on donne ensuite une d e nition viable du caract ere al eatoire d'une suite in nie. D e nition 17 Le cylindre ; x associ e a un mot x est l'ensemble de toutes les suites in nies de qui commencent par x.

On peut alors se donner une mesure de probabilit e sur l'espace ainsi d e ni. On pose, a l'instar de la distribution uniforme de probabilit e L, l a mesure uniforme de probabilit e (x) = 2 ;l(x) . On peut bien sûr par la suite caract eriser les mesures r ecursives. D e nition 18 Soit une mesure r ecursive de probabilit e d e . Une fonction totale de dans N f 1 g est un -test s equentiel si :

1. (!) = s u p n2N f (! 1:n )g, o u est une fonction approximable par audessous 2. f! (!) > mg 6 2 ;m , p our tout m positif. On notera V l'ensemble de tous les -tests s equentiels. Un -test s equentiel est donc l' equivalent exact d'un P-test, sauf que l'on ne consid ere plus les mêmes objets. Le th eor eme qui suit utilise d'ailleurs exactement les mêmes arguments pour d emontrer qu'il existe un -test s equentiel qui soit additivement optimal.

Proposition 22 Il existe un -test s equentiel universel , c'est-a-dire v er i a n t l a c ondition : La suite des cylindres (on adopte la repr esentation g eom etrique des suites in nies par le segment 0 1]) est en fait r eunie par niveaux (on laisse la valeur de i constante), et la mesure de cette union ne doit pas d epasser une certaine valeur, qui est arbitrairement petite. La notion de constructivement nul est di erente de la notion d'être de mesure nulle par le fait que la progression vers la mesure nulle doit être faite par l'interm ediaire d'une fonction enum erable.

L'avantage de cette d e nition est qu'elle enl eve la notion de note et de graduation, pour ne plus laisser que la di erence entre les suites r eguli eres a l'in ni et les suites qui n'ont qu'une quantit e nie de r egularit e.

Dans cette optique, on peut red e nir ce qu'est un -test universel. C'est l'ensemble de toutes les suites qui passent tous les tests. C'est donc toute suite qui n'appartient pas a l'union de tous les ensembles constructivement nuls. Cet ensemble, union de toutes les suites qui ne passent pas les tests, est appel e l'ensemble maximal de mesure constructivement n ulle. Martin-l of a m o n tr e que ces deux d e nitions etaient equivalentes, c'est-a-dire qu'une suite passant un test s equentiel universel est un test qui n'appartient a l ' e nsemble maximal de mesure constructivement n ulle. Une id ee g en erale est que presque toutes les suites sont a l eatoires. D ej a pr ec edemment, on avait retrouv e cette id ee (puisque presque toutes les suites sont incompressibles comme expliqu e a u t h eor eme 6. On retrouve ce fait, avec une justi cation encore plus absolue, lorsque l'on quali e les suites in nies de : Proposition 23 L'ensemble de tous les el ements de qui sont -al eatoires est de mesure 1 ( r elativement a ).

Preuve. On utilise un argument simple. Pour tout -test s equentiel , o n a par d e nition : 0 @ \ m>1 f! (!) > mg 1 A = 0 :

Ceci correspond a l a d e nition de ce que l'on appelle un ensemble constructivement nul. Donc pour aussi, ce qui conclue la preuve puisque cet ensemble est exactement l'ensemble des ! qui ne sont p a s -al eatoires. Proposition 24 Soit f une fonction telle que P n 2 ;f(n) soit une s erie r ecursivement convergente (c'est-a-dire que c'est une s erie convergente et qu'il existe une suite d'indices n m telle que le reste de la s erie a p artir du meme terme est major e p ar 2 ;m . S i ! est -al eatoire, alors KS(! 1:n jn) > n;f(n) a p artir d'un certain rang.

Preuve. On suppose que f donne naissance a une s erie r ecursivement convergente, et on veut montrer que les s equences -al eatoires v eri ent l a condition KS(! 1:n jn) > n ; f(n) a partir d'un certain rang. Pour cela, on construit un -test s equentiel qui ne sera pass e que par les el ements de qui v eri ent la condition du th eor eme. Comme les suites al eatoires passent tous les -tests s equentiels, ils passeront en particulier celui-ci.

On pose pour tout !, (!) = supfm 9n > n m KS(! 1:n jn) 6 n ; f(n)g: Expliquons un peu la construction, avant d'en v eri er la validit e. A t o u t moment, l'ensemble V m des suites telles que (!) > m est (g eometriquement) construit comme l'union des intervalles ; ! 1 :n pour ! et n qui satisfait les conditions du th eor eme. Ces ensembles vont rejeter toutes les suites ! qui pr esenteront comme particularit e d'avoir une complexit e qui n'est pas assez elev ee. Prouvons donc que c'est un -test s equentiel. De par la proposition 4, et parce que f donne naissance a une s erie r ecursivement convergente, V m est r ecursivement enum erable pour tout m. L e nombre de mots de KP-complexit e inf erieure ou egale a n ; f(n) est major e par 2 n;f(n) , donc la mesure de V m est major ee par 2 ;f(n) , ce qui est bien plus petit que 2 ;m . Donc notre test est bien un -test s equentiel, ce qui conclut cette preuve. Preuve.

1. Ce petit lemme permet en fait de renforcer les enonc es suivants on utilisera alors dans la preuve la condition KL(! 1:n ) > n ; c au lieu de KS(! 1:n ) > n ; c. Le sens de l'implication est le seul a prouver, l'autre d ecoulant de la proposition 3. On utilise une m ethode de padding. O n c herche une description de l'objet, et on se sert de 0 exc edentaires pour coder d'autres informations. Un description de ! 1:n peut être une description optimale du plus petit programme x ? d ecrivant ! 1:n sachant n, que l'on pr ec ede de 0 n;KL(! 1:n ) 1. A partir de 0 n;KL(! 1:n ) 1x ? , on peut en e et retrouver n (qui est la longueur moins 1) et donc ! 1:n (avec x ? ). Donc : KS(! 1:n ) 6 2l(n ; KL(! 1:n )) + KL(! 1:n ) + c 1 :

Supposons que ! v eri e les conditions de l' enonc e. On peut donc majorer A = n ; KL(! 1:n ) par c + c 1 + 2 l(n ; KS(! 1:n jn)) pour tous les n tels que KS(! 1:n ) > n ; c. On a donc A 6 c + c 1 + 2 l(A). Et cela n'est possible que si A est born e, donc si KS(! 1:n jn) 6 n ; c 2 . 

Un

  introduit la d e nition suivante : D e nition 1 Un code pr e xe est un code v eri ant la propri et e suivante : pour tout mot de code (l'image d'un mot par la fonction de codage), il n'existe aucun mot pr e xe propre d e c e mot de code qui fasse aussi partie du code.

V

  eri ons maintenant l'in egalit e. On prend une machine F = . O n a d'apr es la construction pr ec edente l' egalit e Mh p yi = Fhp yi. D o n c e n particulier, pour p tel que Fhp yi = x : 8x y KS M (xjy) 6 l( p) 6 l( ) + l(p):La derni ere in egalit e indique juste que la longueur de deux cha^ nes concaten ees est la somme des deux longueurs. La premi ere indique juste que KS M (xjy) est un minimum. Cette in egalit e etant v eri ee en particulier pour le p qui r ealise le minimum dans le calcul de KS F (xjy), l' egalit e ( 1 ) est v eri ee en prenant la constante egale a l( ). Attention, il convient de remarquer que cette machine M n'est pas universelle au sens du calcul. En e et, elle ne v eri e pas Mh xi = (x).

2

 2 

Proposition 2 (

 2 Enonc e 1 ) Pour toute machine additivement optimale , il existe une constante c, telle que pour tout x et tout y : KS (xjy) 6 l(x) + c: Proposition 2 ( Enonc e 2 ) Pour tout x et tout y : KS(xjy) 6 l(x):

2

  Avant d'aller plus loin dans l' etude de KS en tant que fonction, observons que les complexit es conditionnelles sont l i ees aux complexit es inconditionnelles par la proposition suivante : Proposition 3 Pour tout x et tout y : KS(xjy) 6 KS(x): Preuve. Il faut bien faire attention que pour la d emonstration, il y a implicitement un terme en O(1) dans l' egalit e. Pour la preuve, on construit a partir de la fonction de r ef erence (additivement optimale) la machine F qui v eri e Fhx yi = hx "i. Cette fonction induit une complexit e conditionnelle KS F qui est ( a une constante additive p r es) minor ee par KS , c'est-a-dire que KS(xjy) 6 KS F (xjy) + c. Comme en tout point Fhx yi = hx "i, KS(xj") = KS F (xjy) (il n'y a pas de constante, car on compare l a deux fonctions compl etement d e nies). Donc KS(xjy) 6 KS(x).
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 2 

Fig. 1 -

 1 Fig. 1 -Repr esentation des fonctions
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 2 

  > tg: Cette fonction est r ecursive totale parce que KS est calculable sur R. Elle prend aussi des valeurs qui sont arbitrairement grandes. Par d e nition de F, o n a KS(F(m)) > m. M a i s e n m ême temps, KS(F(m)) 6 l(m) + c, c e qui n'est pas possible.
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2 3. 1 D

 21 e nition d'une machine pr e xe On dispose donc maintenant de deux propri et es sur les machines. Dans la suite de cet expos e, nous allons utiliser la propri et e P les propri et e d emontr ees pour la complexit e d e nie avec cette notion resteront l e s m êmes qu'avec la propri et e Q, mais les preuves s'en trouvent a l l eg ees car il existe une meilleure caract erisation de la classe des machines de Turing qui v erient P. I l s e t r o u v e que les fonctions calcul ees par les machines v eri ant c e t t e propri et e s o n t l e p o i n t xe d'une fonction particuli ere. Pour la propri et e Q et la d e nition de complexit e qui en d ecoule (appel ee complexit e monotone), on peut trouver la preuve dans 15]. Proposition 8 Il existe une fonction de N dans N telle que une machine F v eri ant la propri et e P est transform ee en une machine G calculant la même fonction, et telle que toute machine soit transform ee en une machine v eri ant P. En termes plus concis, le point xe de calcule l'ensemble des fonctions pr e xes.
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D e nition 10 (

 10 Propri et e p r e xe P 0 ) Une fonction F v eri e P 0 si et seulement si pour tout triplet de mots u v w :Fhu wi # Fhuv wi # ) v = "Cette notion est tr es similaire a celle qui a et e expliqu ee en d etail pr ec edemment, et la même d emonstration permet de montrer l'existence d'un v eri ant l e r esultat suivant : Proposition 9 Il existe une fonction de dans telle que une machine F v eri ant la propri et e P 0 est transform ee en une machine G calculant la même fonction, et telle que toute machine soit transform ee en une machine v eri ant P 0 .

2

  On peut aussi proposer un lien entre codages pr e xe et complexit e p r exe. Tout codage r ecursif induit en e et une majoration de la complexit e comme suit :Proposition 11 Etant donn e u n c ode pr e xe F, o n a KP(x) 6 l(F(x)).

2 3. 4

 24 Autres propri et es de la KP-complexit eLa KP-complexit e poss ede un grand nombre de propri et es, tr es similaires a l a KS-complexit e, et dont l a p r e u v e e s t i d e n tique o u e n d ecoule. On donne ici ces propri et es, car elles sont importantes pour la compr ehension g en erale de la th eorie de l'information algorithmique. Proposition 13 Pour tout x et tout y : KP(xjy) 6 KP(x): Proposition 14 Il existe une fonction totale r ecursive Sht xi convergeant vers KP(x) quant t tend vers l'in ni, telle que : 8t 2 S ht xi > Sht + 1 x i > KP(x): Proposition 15 Soit m(x) = m i n fKP(y) y> xg. Pour toute fonction partielle partiellement r ecursive f, monotone qui tend vers +1, p our tout x 2 sauf un nombre ni, on a m(x) < f (x).

  29

  globale ys. O n e n d eduit que KS(xjl(x) 6 l(ys) ce qui se d eveloppe en KS(xjl(x) 6 l(x) ; (x) + 2 l(y) + 2. En posant c(y) = 2 l(y) + 3 , on r epond bien a ce qui etait demand e.

2 5

 2 Caract ere al eatoire des suites in nies 5.1 Probl ematique des mots in nis

8 2 V

 2 9c 2 N 8! 2 (!) > ; c Preuve. La preuve est exactement identique a la preuve utilis ee pour les P-tests, proposition 17 et th eor eme 11. En e et, l'existence d'une enum eration e ective d e s -tests s equentiels s'obtient par la même m ethode ( a partir des enum erations des fonctions approximables par au-dessous) en changeant simplement l e t e s t d e n a la phase 2c de la preuve d e la proposition 17 il est en e et possible en temps born e d e v eri er si une fonction a support ni est un -test s equentiel. Ensuite, on d enit (!) = sup i2N f i (!) ; ig. est bien approximable par en dessous, puisque chacun des i l'est et pour la deuxi eme condition, on v eri e que : d emonstration de l'universalit e e s t evidente si on regarde la d enition de : en e et, 8i 2 N 8! 2 (!) > i ; i ce qui conclut la preuve. 2 On peut donner une autre d e nition de ce qu'est un -test s equentiel. Cette d e nition est assez naturelle, et apporte certains avantages. C'est la d e nition bas es sur les ensembles de mesure constructivement n ulle : D e nition 19 On appelle ensemble de mesure c onstructivement nulle relativement a la mesure un ensemble A tel qu'il existe une fonction calculable f(i j) de N N (i j) On dit qu'une suite in nie ! 2 passe le test associ e a A si et seulement si ! = 2 A.

  On a donc d esormais une notion solide de ce que peut-être un -test s equentiel, et Martin-l of a a l o r s p o s e l a d e nition d'un el ement -al eatoire. Un -test s equentiel d etecte jusqu' a quel point on peut trouver une r egularit e dans une suite in nie !, simplement en regardant progressivement l a cha^ ne ! 1:n , d e f a con a s'arrêter d es qu'il y a une rupture de r egularit e. Si on ne s'arrête pas, on dit alors que ! echoue au test . L'existence d'un -test s equentiel universel, qui en quelque sorte majore tous les tests prouve que l'on peut faire passer a une suite ! tous les tests en même temps. Il est alors naturel d'appeler non-al eatoires les suites pr esentant une quelconque r egularit e, et de d ecr eter que toutes les autres suites sont -al eatoires. D e nition 20 Une suite ! 2 est -al eatoire (au sens de Martin-L of) si et seulement si (!) < 1. Il est a noter que cette d e nition ne d epend absolument pas du choix du -test s equentiel universel. En e et, il se distinguent t o u s a u p l u s p a r u n terme born e, d ependant des deux -tests universels choisis.

2 5. 3

 23 Caract erisation par la complexit e de KolmogorovOn veut maintenant caract eriser la notion d'al eatoire par la complexit e.Deux approches vont suivre | une pour la KS-complexit e et une pour la KP-complexit e |, mais elles ne s'int eresseront qu'au cas du -al eatoire.En e et, il semble que l'on ne pourra pas obtenir directement une relation simple entre al eatoire et KS-complexit e o u KP-complexit e si on a des probabilit es biais ees d'obtenir un caract ere plutôt qu'un autre. En même temps, la mesure uniforme (ou mesure de Lebesgue) sur appara^ t moins s elective que pouvait appara^ tre la distribution uniforme sur , car il n'y a plus que equiprobabilit e pour les mots de même longueur, et plus de quanti cation sur la longueur (on xe P(xjl(x)) = 2 ;l(x) sans donner de contraintes sur P(x)). La KS-complexit e n e m ene pas directement a une caract erisation convenable en revanche, la KP-complexit e donne une relation el egante et imm ediate entre les suites KP-incompressibles et les suites -al eatoires.
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  Proposition 25 Soit ! 2 . 1. Soit ! 2 . Il existe une constante positive c telle que KS(! 1:n ) > n;c pour une in nit e d e n si et seulement si il existe une constante positive c telle que KL(! 1:n ) > n ; c pour une in nit e d e n. 2. Si il existe une constante c telle que KS(! 1:n ) > n;c pour une in nit e de n, a l o r s ! est -al eatoire 3. L'ensemble des ! 2 , tel qu'il existe c et une in nit e d e n tel que KS(! 1:n ) > n ; c est de -mesure 1 .

6 2

 6 -test s equentiel universel est d e ni par une fonction approximable par au-dessous . Il est alors facile de voir que pour = la mesure de Lebesgue, est aussi un L-test universel (avec L la distribution uniforme de probabilit e). En e et, c'est bien une fonction enum erable par dessous de dans N, et elle v eri e aussi les conditions sur les sections critiques. Si l'on consid ere maintenant f le L-test universel egal a l(x) ; KL(x) ; 1, de par son universalit e, f(x) + c 0 > (x). Si ! v eri e la condition du th eor eme, alors pour une in nit e d e n et d'apr es la premi ere partie du th eor eme:(! 1:n ) 6 f(! 1:n ) + c 0 + c 6 c:Observons maintenant que l'on peut poser sans contraintes que est monotone croissante. En e et, si l'on dispose d'une fonction approximable par au-dessous , la fonction 0 (x) = s u p i6x f (i)g est bien aussi une fonction approximable par au-dessous, d e nissant eventuellement l e m ême -test s equentiel. Ainsi, si on suppose monotone croissante, (! 1:n ) est born e p a r c, et donc (!) 6 c. Donc ! est bien al eatoire, ce qui prouve l e th eor eme.3. On calcule la mesure de l'ensemble des ! v eri ant la condition du th eor eme. Soit X c n = fx 2 l (x) = n KL(x) > n ; cg et les sections critiques V c n = S x2Xc n ; x . D e p a r l e t h eor eme 6, Card X c m Puisque ceci ne d epend pas de m, o n a ;T m>1 S n>m V c n > 1;2 ;c . Comme V c+1 n V c n , on peut ecrire : n d enote exactement l'ensemble des ! 2 tel qu'il existe c, tel que pour une in nit e d e n on ait KL(! 1:n ) > n ; c. C'est aussi valable donc si on enl eve la constante.

  1 r ecursive totale qui v eri e la propri et e sui-

	Nous utilisons la notation KS o u K est pour ( (Kolmogorov) ) et x pour ( (simple) ). N o u s d e nirons ult erieurement d e s v ariantes de cette complexit e. Dans la litt erature, cette valeur est aussi not ee, selon les auteurs, C ou K 1 . Une autre notation qu'il convient de retenir : lorsque plusieurs argu-ments viennent prendre la place de y, comme par exemple dans l'expression KS(x ? jx KS(X)), on consid ere x e a u p r ealable une bijection de n dans , o u n est le nombre d'arguments (2 dans l'exemple). On utilise ha bi pour n = 2 et n'importe quelle extension au-del a. La complexit e conditionnelle est donc une fonction a deux arguments qui d epend d'une machine. C'est pour cela que l'on va essayer de se d ebarrasser de cette d ependance en trouvant une machine universelle non pas au sens de la calculabilit e, mais au sens o u elle donne une complexit e aussi petite que toutes les autres. Pour se d ebarrasser de cette ambigu t e d e v ocabulaire, on dira plutôt qu'elle est additivement optimale.
	vante :		
	8	h	i = s 1 1 h i ( ):
	2.2 D e nition de la complexit e de Kolmogorov
	D e nition 3 On d e nit la complexit e ( c onditionnelle) de Kolmogorov de x sachant y selon la machine par la formule suivante :
	KS (xjy) = m i n fl(p) hp y i = xg:
	Tr es exactement, cette complexit e r e p r esente la taille de la donn ee mini-male (ici p) qu'il faut fournir a l a m a c hine pour qu'elle nisse par trouver le r esultat x. L e m o t y est une connaissance e x t erieure dont o n n e d o i t p a s tenir compte dans la mesure de cette taille : d'o u le calcul hp yi au lieu d'un simple (p). Si aucun calcul utilisant y ne donne x comme r esultat, alors on pose KS (xjy) = + 1.

  Proposition 6 Soit c un entier positif. Pour tout , p our tout y, t o u t e nsemble ni A a m el ements a au moins m(1 ; 2 ;c ) + 1 el ements x tel que KS (xjy) > log m ; c. Un programme produit au plus un mot. D'o u le nombre de programmes de longueur sup erieure ou egale a l o g m ; c qui est de m ; 2 log m;c + 1, soit m(1 ; 2 ;c ) + 1 .2

	Preuve. C'est une preuve c o m binatoire. Le nombre de programmes de longueur inf erieure strictement a l o g m ; c est P log m;c;1 0 2 i , soit exacte-ment 2 log m;c ; 1.

En particulier, pour c = 0 , e t A l'ensemble des mots de longueurs n, il existe au moins un mot dans A tel que KS(x) > log n. Remarquons toutefois que, contrairement aux enonc es pr ec edents, on ne consid ere pas ici les in egalit es a constante additive p r es: il est donc exact de dire qu'il existe un el ement x dont la complexit e est au moins le logarithme de sa longueur, et de consid erer donc la valeur de la complexit e pour un objet individuel.

Cette remarque fonctionne aussi pour KL(x), puisque la longueur des objets consid er es est une une constante. Cela permet de d e nir la notion de compressibilit e : D e nition 7 Un mot x 2 est dit c-incompressible si et seulement si KL(x) > l(x) ; c.

  2] ont p r o p o s e de restreindre les fonctions utilisables non pas aux fonctions partielles partiellement r ecursives, mais a un sous-ensemble de ces fonctions qui v erient la propri et e d ' être pr e xes (et donc d'induire des codages uniquement d ecodables). Il est a noter que des cas plus g en eraux d'extension de ces propri et es ont et e etudi ees dans 15]. Les preuves sont d a n s 1 6 ]. La premi ere propri et e, que nous utiliserons ici, stipule que toute machine qui s'arrête sur un mot ne doit pas s'arrêter sur un mot commen cant p areil qui serait plus long. Ces machines d ecrivent donc des arbres in nis qui correspondent au domaine de d e nition : D e nition 8 (Propri et e p r e xe P) On dit qu'une fonction F v eri e P si et seulement si pour tout couple de mots u v :

  On revient sur la sous-additivit e. Si KS etait sous-additive, il serait imm ediat de constater que la quantit e jI(x : y) ; I (y : x)j serait major e par une constante, puisque la r e ecriture de KShx yi ; KShy xi n'ajouterait pas de terme non born e. Or on a montr e qu'il existe un ensemble de couples (n x n ) qui di erent par un terme non born e. Donc KS ne peut pas être sous-additive.

	Preuve. De l' equation 2, on va tirer ais ement l a
	proposition, en remarquant q u e jKShx yi ; KShy xij 6 c et en le r e ecri-vant :
	jKShx yi ; KShy xij 6 c jKS(x) + KS(yjx) ; KS(y) ; KS(xjy)j 6 O(log minfKS(x) KS(y)g) jKS(x) ; KS(xjy) ; KS(y) + KS(yjx)j 6 O(log minfKS(x) KS(y)g) jI(x : y) ; I (y : x)j 6 O(log minfKS(x) KS(y)g)
	2 KShx yi+1 2 e
	Puisque x 2 U, on peut donc reconstruire x a partir de son index dans U, de e et de KShx yi. Donc :
	KS(x) 6 2l(KShx yi) + 2 l(e) + KShx yi ; e + c 00 KS(x) 6 2l(KShx yi) + 2 l(e) + KShx yi + c 00 ;(KShx yi ; KS(x) + cl(KShx yi)) KS(x) 6 (2 ; c)l(KShx yi) + 2 l(e) + KS(x) + c 00 KS(x) 6 (4 ; c)l(KShx yi) + 2 l(cl(KShx yi)) + KS(x) + c 00 0 6 2 l o g ( t) ; t + c 00 t = ( c ; 4)l(KShx yi)
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Th eor eme 10 On a l'in egalit e suivante : Pour toute fonction p.p.r. c de

2 

  Pour compl eter ce r esultat, qui r epond d ej a a notre question (en posant f(n) = c, on constate qu'il n'existe pas de suite dont t o u s l e s p r e xes sont c-incompressibles, quelque soit la constante c), on montre un r esultat plus fort, mais qui restreint l eg erement les conditions sur f | m a i s Martin-l of a m o n tr e que l'on pouvait même se passer de cette condition. Ce r esultat utilise le fait que n peut-être retrouv e a partir de n par un programme de taille constant (condition qui ne serait donc pas n ecessaire). Alors dans ce cas, c'est la courbe KS(! 1:n ) qui descend un nombre in ni de fois sous la courbe de n ; f(n).

	2 ;n + O(1) 6 n ; g(n) + O(1) 6 n ; f(n)	2

Corollaire 3 Soit f une fonction telle que la s erie P n 2 ;f(n) diverge et que KS(njn ; f(n)) = O(1) (comme par exemple f(n) = log n). Alors pour une in nit e d e n, KS(! 1:n ) 6 n ; f(n).

Preuve. Sous cette forme, ce th eor eme est attribu e a B . M c Millan dans 5]. Il avait et e prouv e auparavant pour la classe plus restreinte des codes pr e xes.

1: auquel cas la complexit e p r e xe (une des variantes) est not ee K (respectivement H ). C'est pour eviter cette ambigu t e que l'on utilise une notation a deux lettres.

, telle que pour tout couple x y : jKS 1 (xjy) ; KS 2 (xjy)j 6 cPreuve. Ce corollaire est un des premiers pas dans l'application de la th eorie de l'information algorithmique. On utilise l' egalit e 1 deux fois, une fois en prenant 1 comme machine additivement optimale, et 2 comme fonction majorante, et une autre fois en les echangeant, ce qui donnent

t peut prendre des valeurs arbitrairement grandes | ce qui est absurde, et prouve l ' egalit e. On prouve ensuite l'in egalit e d u t h eor eme, qui se d eduit ais ement de l'un des sens de l' egalit e (en utilisant l a m ême construction). En e et, comme KS(y) 6 KS(yjx) + c, et que pour tout a, KS(f(a)) 6 KS(a) + c f , l'in egalit e est vraie.La preuve que la complexit e KS n'est pas sous-additive n ecessite l'utilisation de l'information algorithmique (voir la preuve dans la proposition suivante). 2 Proposition 16 jI(x : y) ; I (y : x)j = O(minflog KS(x) log KS(y)g):

(x) = max y>1 f y (x) ; yg est un P-test universel.

Preuve. La preuve s e f a i t e n q u a t r e t e m p s :

;f(n) > 2 m+1 ; 2 m ) n 1 X i=n 0 2 ;f(n) > 2 m ; 1On peut maintenant v eri er que g v eri e toujours la condition de divergence :

En calquant la preuve, on obtient aussi la proposition suivante :

Proposition 20 A u n e c onstante additive pr es, l' egalit e suivante est v eriee :

KP(x kjk) = KS(xjk):

En rempla cant la derni ere expression obtenue dans le cas de la distribution uniforme de probabilit e, on obtient bien l' egalit e des deux tests universels.

2

On a donc r eussi a cerner l'ensemble des suites in nies -al eatoires au sens de Martin-L of. On n'en a pas une caract erisation exacte, toutefois, mais on sait que c'est une ensemble de mesure 1, et on a trouv e une caract erisation exacte d'un sous-ensemble de mesure 1. Toutefois, il est possible de prouver que ces inclusions sont strictes. Alors, on regarde une autre caract erisation qui sera, elle, exacte et plus simple, la caract erisation par la complexit e pr e xe.

Proposition 26 Un el ement ! de est -al eatoire si et seulement si il existe une constante c telle que KP(! 1:n ) > n ; c, p our tout n.

Preuve. On suppose d'abord que ! est al eatoire, et on construit un test particulier , tel que si (!) < 1, alors il existe une constante c telle que KP(! 1:n ) > n ; c, pour tout n.

On d e nit le test par la donn ee de ses sections critiques, c'est-a-dire l'ensemble des ! 2 tels que (!) > k. On pose donc c 0 une constante qui sera x ee ult erieurement e t : D'apr es la proposition 14, chacun des V k est bien r ecursivement enum erable, et par cons equent, il ne reste plus qu' a v eri er que (V k ) 6 2 ;k . O n s epare donc V k en regroupant les y de même longueur. D'apr es le th eor eme 7, et en choisissant correctement c 0 , l e n o m bre de y de longueur n tels que KP(y) 6 l(y) ; k ; c 0 est inf erieur ou egal a 2 n;K(n);k . On peut donc ecrire les in egalit es suivantes :

2 n;KP(n);k 2 ;n 6 2 ;k X n2N 2 ;KP(n) 6 2 ;k La derni ere in egalit e provient de l'in egalit e de Kraft appliqu ee au codage dont l a m a c hine de r ef erence pour la KP-complexit e est la fonction de d ecodage. est donc un -test s equentiel et si ! est -al eatoire, (!) < c , donc KP(! 1:n ) 6 n ; c pour tout n.

On suppose maintenant q u e ! n'est pas une suite -al eatoire, et on montre que dans ce cas, il n'existe pas de constante c qui soit telle que KP(! 1:n ) > n ; c pour tout n. Or (!) = 1, donc pour tout k il existe n telle que ! 1:n 2 A 2k , c e q u i veut dire que KP(! 1:n ) 6 n ; k + c. Donc n ; KP(! 1:n ) n'est pas born e, ce qui nit de prouver le th eor eme.
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