
HAL Id: hal-02102008
https://hal-lara.archives-ouvertes.fr/hal-02102008v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adding Data Persistence and Redistribution to NetSolve
Frédéric Desprez, E. Jeannot

To cite this version:
Frédéric Desprez, E. Jeannot. Adding Data Persistence and Redistribution to NetSolve. [Research
Report] LIP RR-2001-39, Laboratoire de l’informatique du parallélisme. 2001, 2+9p. �hal-02102008�

https://hal-lara.archives-ouvertes.fr/hal-02102008v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

SPI

Adding Data Persistence and Redistribution to
NetSolve

F. Desprez
E. Jeannot Décembre 2001

Research Report No 2001-39

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Adding Data Persistence and Redistribution to NetSolve

F. Desprez
E. Jeannot

Décembre 2001

Abstract

The implementation of Network Enabled Servers (NES) on grid en-
vironments requires to lower the cost of communications. NetSolve,
a NES environment developed at University of Tennessee Knoxville,
sends data back to the client at the end of every computation. This im-
plies unneeded communications when computed data are needed by
an other server in further computations. In this paper, we present the
modifications we made to the NetSolve protocol in order to overcome
this drawback. We have developed a set of new functions and data
structures that allow users to order servers to keep data in place and to
redistribute them directly to an other server when needed.

Keywords: Calcul distribuée client-serveur, serveurs accessibles via the réseau, NetSolve,
persistance de données, redistribution de données.

Résumé

L’implémentation de serveurs accessibles via the réseau (NES) sur des
environnements de type grille requiert une réduction du coût des com-
munications. NetSolve, un environnement de type NES développé à
l’Université du Tennessee Knoxville, renvoie les données vers le client à
la fin de chaque calcul. Ceci ajoute des communications inutiles lorsque
les données calculées doivent être réutilisées dans des calculs futurs.
Dans cet article, nous présentons les modifications que nous avons ap-
porté au protocole de NetSolve pour supprimer cet inconvénient. Nous
avons développé un ensemble de nouvelles fonctions et de structures
de données qui permettent aux serveurs de conserver les données sur
place et de les redistribuer directement vers un autre serveur lorsque
c’est nécessaire.

Mots-clés: client-server distributed computing, Network Enabled Servers, NetSolve, data
persistence, data redistribution.



Adding Data Persistence and Redistribution to NetSolve�

F. Desprez�, E. Jeannot�, �,

December, 2001

1 Introduction

Due to the progress in networking, computing intensive problems in several areas can now be
solved using networked scientific computing. In the same way that the World Wide Web has
changed the way that we think about information, we can easily imagine the types of applications
we might construct if we had instantaneous access to a supercomputer from our desktop. The
RPC approach [7, 8] is a good candidate to build Problem Solving Environments on the Grid.
Several tools exist that provide this functionality like Netsolve [5], NINF [10], NEOS [9], or RCS [1].
However, none of them do implement data persistence in servers and data redistribution between
servers. This means that once a server has finished its computation, output data are immediately
sent back to the client and input data are destroyed. Hence, if one of these data is needed for
another computation, the client has to bring it back again on the server. This problem as been
partialy tackled in NetSolve with the new request sequencing feature [2]. However, the current
request sequencing implementation does not allow to handle multiple servers. In this paper, we
show how we have modified the NetSolve protocol in order to implement data persistence and
data redistribution between servers.

The remaining of this paper is organized as follows. The NetSolve architecture and the objec-
tives of this work are described in Section 2. In Section 3.1, we describe the modifications made
to the server. Section 3.2 is dedicated to a new data structure that tells how to redistribute objects
from a server to an other server. In Section 3.3, we describe all the NetSolve functions involved
in data redistribution and data persistence operations. In Section 3.4, the modifications done to
NetSolve’s scheduler are described and a program example is presented in Section 4. Finally and
before some concluding remarks, we describe in Section 5 our experimental results.

2 Background

2.1 NetSolve

Overview NetSolve is a NES environment for executing computations on remote servers. Its
architecture is based on the client-agent-server model which is composed of three components:

�This work has been supported in part by the ARC INRIA OURAGAN. URL:
http://www.ens-lyon.fr/˜desprez/OURAGAN/

�ReMaP, LIP-ENS Lyon. INRIA Rhône-Alpes, 46, allée d’Italie, 69364 Lyon cedex 07, France.
�Résédas, LORIA. 615, rue du Jardin Botanique, BP 101, 54602 Villers-Les-Nancy, cedex, France.
�Part of this work has been done while the author was in postdoc at LaBRI.

1



� the agent is the manager of the architecture. It knows the state of the system. Its main role is
to find servers that will be able to solve as efficiently as possible client requests,

� servers are computational resources. Each server registers to an agent and then waits for
client requests. Computational capabilities of a server are known as problems (matrix multi-
plication, sort, linear systems solving, . . . ). A server can be sequential (executing sequential
routines) or parallel (executing operations in parallel on several nodes),

� a client is a program that requests for computational resources. It asks the agent to find a
set of servers that will be able to solve its problem. Data transmitted between a client and
a server are called objects. Thus, an input object is a parameter of a problem and an output
object is a result of a problem.

The architecture works as follows. First, an agent is launched. Then, servers register to the
agent by sending a list of problems they are able to solve as well as the speed and the workload of
the machine on which they are running and the network’s speed (latency and bandwidth) between
the server and the agent. A client asks the agent to solve a problem. The agent scheduler selects
a set of servers that are able to solve this problem and sends back the list to the client. The client
sends the input objects to one of the servers. The server performs the computations and returns
the output objects to the client. Finally local server objects are destroyed.

Request Sequencing One of the new feature proposed since NetSolve 1.3 is the request sequenc-
ing [2]. Request sequencing consists in scheduling a sequence of NetSolve calls on one server. This
is a high level functionality since only two new sequence delimiters netsl_sequence_begin
and netsl_sequence_start are added in the client API. The calls between those delimiters are
evaluated at the same time and the data movements due to dependencies are optimized. How-
ever request sequencing has the following deficiencies. First it does not handle multiple servers
because no redistribution is possible between servers. An overhead is added for scheduling Net-
Solve requests. for loops are forbidden within sequences, and finally the execution graph must
be known at compile time and cannot depend on results computed within the sequence.

2.2 Goal of our Work

First, we should allow servers to keep objects in place to be able to use these objects again in a
new problem without sending them back and forth to and from the client. Secondly, we want to
enable inter-server communications to allow data redistribution between servers. We also want
to keep a backward compatibility. Data persistence and data redistribution require the client API
to be modified but we want standard clients to continue to execute normally. Moreover, we want
our modifications to be standalone. This means that we do not want to use an other software to
implement our optimizations. Hence, NetSolve users do not have to download and compile new
tools. Finally, we wanted our implementation to be very flexible without the restrictions imposed
by NetSolve’s request sequencing feature.

3 Modifications Done to NetSolve

3.1 Server Modifications

NetSolve communications are implemented using sockets. In this section, we give details about
the low level protocols that enable data persistence and data redistribution between servers.



3.1.1 Data Persistence

When a server has finished its computations, it keeps all the objects locally, listen to a socket and
waits for new orders from the client. So far, the server can receive five different orders.

1. Exit. When this order is received, the server terminates the transaction with the client, exits,
and therefore data are lost. Saying that the server exits is not completely correct. Indeed,
when a problem is solved by a server, a process is forked, and the computations are per-
formed by the forked process. Data persistence is also done by the forked process. In the
following, when we say that the server is terminated, it means that the forked process exits.
The NetSolve server is still running and it can solve new problems.

2. Send one input object. The server must send an input object to the client or to an other server.
Once this order is executed, data are not lost and the server is waiting for new orders.

3. Send one output object. This order works the same way than the previous one but a result is
sent.

4. Send all input objects. It is the same as “send one input object" but all the input objects are
sent.

5. Send all output objects. It is the same as “send one output object" but all the results are sent.

3.1.2 Data Redistribution

When a server has to solve a new problem, it has first to receive a set of input objects. These
objects can be received from the client or from an other server. Before an input object is received,
the client tells the server if this object will come from a server or from the client. If the object comes
from the client, the server has just to receive the object. However, if the object comes from an other
server, a new protocol is needed. Let call �� the server that has to send the data, �� the server that
is waiting for the data, and � the client.

1. �� establishes a socket � on an available port �.

2. �� sends this port to � .

3. �� waits for the object on socket �.

4. � orders �� to send one object (input or output). It sends the object number, forward the
number of the port � to �� and sends the hostname of ��.

5. �� connects a socket to the port � of ��.

6. �� sends the object directly to �� on this socket: data do not go through the client.

3.2 Client Modifications

3.2.1 New structure for the client API

When a client needs a data to stay on a server, three informations are needed to identify this data.
(1) Is this an input or an output object? (2) On which server can it be currently found? (3) What is
the number of this object on the server?



We have implemented the structure ObjectLocation to describe these needed informations.
ObjectLocation has 3 fields:

1. request_id which is the request number of the non-blocking call that involves the re-
quested data. If request_id equals -1, this means that the data is available on the client.

2. type can have two values: INPUT_OBJECT or OUTPUT_OBJECT. It describes if the re-
quested object is an input object or a result.

3. object_number is the number of the object as described in the problem descriptor.

3.2.2 Modification of the NetSolve code

When a client asks for a problem to be solved, an array of ObjectLocation data structures is
tested. If this array is not NULL, this means that some data redistribution have to be issued. Each
element of the array corresponds to an input object. For each input object of the problem, we
check the request_id field. If it is smaller than 0, no redistribution is issued, everything works
like in the standard version of Netsolve. If the request_id field is greater than or equal to zero
then data redistribution is issued between the server corresponding to this request (it must have
the data), and the server that have to solve the new problem.

3.3 Set of New Functions

In this section, we present the modifications of the client API that uses the low-level server pro-
tocol modifications described above. These new features are backward compatible with the old
version. This means that an old NetSolve client will have the same behavior with this enhanced
version: all the old functions have the same semantic, except that when doing a non-blocking call,
data stay on the server until a command that terminates the server is issued. These functions have
been implemented for both C and Fortran clients. These functions are very general and can han-
dle various situations. Hence, unlike request sequencing, no restriction is imposed to the input
program.

3.3.1 Wait Functions

We have modified or implemented three functions: netslwt, netslwtcnt and netslwtnr.
These functions block until computations are finished. With netslwt, the data are retrieved and
the server exits. With netslwtcnt and netslwtnr, the server does not terminate and other
data redistribution orders can be issued. The difference between these two functions is that unlike
netslwtcnt, netslwtnr does not retrieve the data.

3.3.2 Terminating a Server

The netslterm orders the server to exit. The server must have finished its computation, local
object are then lost.

3.3.3 Probing Servers

As in the standard NetSolve, netslpr probes the server. If the server has finished its computa-
tions, results are not retrieved and data redistribution orders can be issued.



3.3.4 Retrieving Data

A data can be retrieved with the netslretrieve function. Parameters of this functions are the
type of the object (input or output), the request, the object number and a pointer where to store
the data.

3.3.5 Redistribution Function

netslnbdist, is the function that performs the data redistribution. It works like the standard
non-blocking call netslnb with one more parameter: an object location array, that describes
which objects are redistributed and where they can be found.

3.4 Agent Scheduler Modifications

We have modified the agent’s scheduler to take into account the new data persistence persistence.
The standard scheduler assumes that all data are located on the client. Hence, communication
costs do not depend on the fact that a data can already be distributed. We have modified the
agent’s scheduler and the protocol between the agent and the client in the following way. When
a client asks the agent for a server, it also sends the location of the data. Hence, when the agent
computes the communication cost of a request for a given server, this cost can be reduced by the
fraction of data already hold by the server. It also uses these informations for scheduling purpose.

4 Code Example

We show a code that illustrates the features described in this paper. It executes 3 matrix mul-
tiplications: c=a*b, d=e*f, and g=d*a, where a is redistributed from the first server and d is
redistributed from the second one. We will suppose that matrices are correctly initialized and
allocated. In order to simplify this example we will suppose that each matrix has n rows and n
columns and test of requests are not shown.

netslmajor("Row");
trans=’N’;
alpha=1;
beta=0;

/* c=a*b */
request_c=netslnb("dgemm()",&trans,&trans,n,n,n,&alpha,a,n,b,n,&beta,c,n);

/* d=e*f */
request_d=netslnb("dgemm()",&trans,&trans,n,n,n,&alpha,e,n,f,n,&beta,d,n);

/* COMPUTING REDISTRIBUTION */

/* 7 input object for dgemm */

nb_objects=7;
redist=(ObjectLocation*)malloc(nb.objects*sizeof(ObjectLocation));

/* All objects are first supposed to be hosted on the client */



for(i=0;i<nb_object;i++)
redist[i].request.id=-1;

/* We want to compute g=d*a */

/* d is the input object No 3 of dgemm and the output object No 0 of request_d */

redist[3].request_id=request_d;
redist[3].type=OUTPUT_OBJECT;
redist[3].object_number=0;

/* a is the input object No 4 of dgemm and the input object No 3 of request_c */

redist[4].request_id=request_c;
redist[4].type=INPUT_OBJECT;
redist[4].object_number=3;

request_g=netslnbdist("dgemm()",redist,&trans,&trans,n,n,n,&alpha,
NULL,n,NULL,n,&beta,g,n);

5 Experiments

Scilab is a tool heavily used in the mathematic community [6]. As Matlab, it allows to execute
scripts for engineering and scientific computations. However, it has some limitations since it is
not parallelized. The goal of Scilab�� [4], developed in the OURAGAN project1is to allow an
efficient and transparent execution of Scilab in a grid environment. Various approaches have been
implemented in order to meet these objectives. One of these is to execute Scilab computations
on dedicated servers distributed over the Internet. In order to achieve this goal, we chose to use
NetSolve [3, 5] as a middleware between the Scilab console and our computational servers.

Figures 2 and 3 show our experimental results using NetSolve as a NES environment for solv-
ing matrix multiplication problems in a grid environment.

dba e

fc

g

c=a*b
f=d*e
g=c*f

Figure 1: Matrix multiplications program task graph.

In Figure 2, we ran a NetSolve client that performs 3 matrix multiplications using 2 servers.
The client, agent, and servers are in the same LAN and are connected through Ethernet. Computa-
tions and task graphs are shown in Figure 1. The first two matrix multiplications are independent
and can be done in parallel on two different servers. We see that the time taken by Scilab is about

1http://www.ens-lyon.fr/~desprez/OURAGAN



200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

+ + +
+

+

+

+

+

+

+

× × ×
×

×

×

×

×

×

×

◊ ◊ ◊
◊

◊

◊

◊

◊

◊

◊

3 DGEMM with NetSolve+
3 DGEMM with NetSolve and 2 in parallel×
3 DGEMM with Scilab◊

T
im

e 
in

 s
ec

on
d 

3 Matrix Multiplications 

Matrix size 

Figure 2: Matrix multiplications using NetSolve on a cluster of PCs.

the same than the time taken using NetSolve when sequentializing the three matrix multiplica-
tions. When doing the first two ones in parallel on two servers using the redistribution feature,
we see that we gain exactly one third of the time, which is the best possible gain. These results
show that NetSolve is very efficient in distributing matrices in a LAN and that non-blocking calls
to servers are helpful for exploiting coarse grain parallelism.

Then, we have performed a matrix multiplication (Figure 3). The client and agent were lo-
cated in one University (Bordeaux) but servers were running on the nodes of a cluster located in
Grenoble2. The computation decomposition done by the client is shown in Figure 3. Each matrix
is decomposed in 4 blocks, each block of matrix � is multiplied by a block of matrix � and con-
tributes to a block of matrix � . The first two matrix multiplications were performed in parallel.
Then, input data were redistributed to perform matrix multiplications 3 and 4. The last 4 matrix
multiplications and additions can be executed using one call to the level 3 BLAS routine DGEMM
and requires input and output objects to be redistributed. Hence, this experiment uses all the
features we have developed. We see that with data persistence (input data and output data are
redistributed between the servers and do not go back to the client), the time taken to perform the
computation is more than twice faster than the time taken to perform the computation without
data persistence (in that case, the blocks of �, �, and � are sent back and forth to the client). This
experiment demonstrates how useful the data persistence and redistribution features that we have
implemented within NetSolve are.

2Grenoble and Bordeaux are two French cities separated by about 500 miles.



0 400 800 1200 1600 2000 2400

0

200

400

600

800

1000

1200

+ + + + +
+

+
+

+
+

+

+
+

+

+ +

× ×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

Matrix multiplication with data persistence+
Matrix multiplication without data persistence×

T
im

e 
in

 s
ec

on
d 

Matrix Multiplication 

Matrix size 

1. ��� � ������

2. ��� � ������

3. ��� � ������

4. ��� � ������

5. ��� � ��� �������

6. ��� � ��� �������

7. ��� � ��� �������

8. ��� � ��� �������

Figure 3: Matrix multiplication using block decomposition.

6 Conclusion and future work

In this paper, we have presented how we added data persistence and data redistribution to Net-
Solve. Our contributions are the following. We have modified the server in order to be able to
keep data in place on servers after computation. The server waits for orders from the client and is
able to redistribute data to an other server when needed. We have modified the client API in order
to simply write client programs involving data persistence and data redistribution. Then, we have
modified the agent’s scheduler. Allocation decisions take into account the fact that some data may
already be distributed. These modifications keep the backward compatibility with old Netsolve
clients. Finally, these features are standalone and there is no need to download or compile an other
software.

Future work are directed towards the following directions. First, we want to implement new
functionalities such as deleting data on a server. Second, we need to enhance the scheduler to be
able to take more accurate decisions. Third, we are aware that using data persistence and data
redistribution requires to rewrite NetSolve client programs. We would like to simplify the client
API in order to increase the transparency of the proposed features. Finally, we want to implement
data redistribution and data persistence for parallel servers. This last development requires the
development of a data redistribution routine between servers that will be able to transfer huge
distributed data sets.



References

[1] P. Arbenz, W. Gander, and J. Moré. The Remote Computational System. Parallel Computing,
23(10):1421–1428, 1997.

[2] Dorian C. Arnold, Dieter Bachmann, and Jack Dongarra. Request Sequencing: Optimizing
Communication for the Grid. In A. Bode, T. Ludwig, W. Karl, and R. Wismuller, editors,
Euro-Par 2000 Parallel Processing, 6th International Euro-Par Conference, volume 1900 of Lecture
Notes in Computer Science, pages 1213–1222, Munich Germany, August 2000. Springer Verlag.

[3] Dorian C. Arnold and Jack Dongarra. The NetSolve Environment: Progressing Towards the
Seamless Grid. In International Conference on Parallel Processing (ICPP-2000), Toronto Canada,
August 2000.

[4] E. Caron, S. Chaumette, S. Contassot-Vivier, F. Desprez, E. Fleury, C. Gomez, M. Goursat,
E. Jeannot, D. Lazure, F. Lombard, J.M. Nicod, L. Philippe, M. Quinson, P. Ramet, J. Roman,
F. Rubi, S. Steer, F. Suter, and G. Utard. Scilab to Scilab�� , the OURAGAN Project. To appear
in Parallel Computing, 2001.

[5] H. Casanova and J. Dongarra. NetSolve: A Network-Enabled Server for Solving Computa-
tional Science Problems. International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11(3):212 – 213, Fall 1997.

[6] Claude Gomez, editor. Engineering and Scientific Computing with Scilab. Birkhäuser, 1999.

[7] S. Matsuoka and H. Casanova. Network-Enabled Server Systems and the Com-
putational Grid. http://www.eece.unm.edu/~dbader/grid/WhitePapers/
GF4-WG3-NES-whitepaper%-draft-000705.pdf, July 2000. Grid Forum, Advanced
Programming Models Working Group whitepaper (draft).

[8] S. Matsuoka, H. Nakada, M. Sato, , and S. Sekiguchi. Design Issues of Network
Enabled Server Systems for the Grid. http://www.eece.unm.edu/~dbader/grid/
WhitePapers/satoshi.pdf, 2000. Grid Forum, Advanced Programming Models Work-
ing Group whitepaper.

[9] NEOS. http://www-neos.mcs.anl.gov/.

[10] NINF. http://ninf.etl.go.jp/.


