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Abstract

Randomized algorithms are given for computing the rank of a matrix over a
field of characteristic zero. The matrix is treated as a black box. Only the
capability to compute matrix x column-vector and row-vector x matrix prod-
ucts is used. The methods are exact, sometimes called seminumeric. They are
appropriate for example for matrices with integer or rational entries. The rank
algorithms are probabilistic of the Las Vegas type; the correctness of the result
is guaranteed.

Keywords: Linear algebra, randomized algorithms, black box matrix,
matrix rank, seminumeric computation.

Résumé

Nous proposons deux algorithmes probabilistes pour le calcul du rang d’une
matrice sur un corps de caractéristique zéro. La matrice est vue comme
une boite noire. Les seuls opérations ou elle est impliquée sont des pro-
duits matrice x vecteur-colonne et vecteur-ligne x matrice. Les méthodes sont
exactes, appropriées aux matrices entiéres ou rationnelles par exemple. Les al-
gorithmes sont probabilistes de type Las Vegas c’est-a-dire que le résultat est
garanti.

Mots-clés: Algébre linéaire, algorithmes probabilistes, matrice boite noire,
matrice creuse, rang.
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Abstract

Randomized algorithms are given for computing the rank of a matrix over a field of
characteristic zero. The matrix is treated as a black box. Only the capability to compute
matrix X column-vector and row-vector xmatrix products is used. The methods are exact,
sometimes called seminumeric. They are appropriate for example for matrices with integer or
rational entries. The rank algorithms are probabilistic of the Las Vegas type; the correctness
of the result is guaranteed.

1 Introduction

The rank of an n x n matrix A over a field F' can be computed using an elimination method.
However, this may be excessively costly in time and/or space. Iterative “black box” methods are
an alternative to using elimination.

Several Monte Carlo black box methods for rank have been developed [5, 8]. They require
O(n) matrix-vector products. Note that the cost of a matrix-vector product may be much less
than n? field operations for a sparse or structured matrix. Also, the black box methods require
space for only O(n) additional field elements beyond the matrix storage, whereas elimination
usually requires O(n?). This improvement in space complexity is an important consideration for
large sparse matrices in practice. The black box methods depend on random preconditioners
and random vectors. In the likely event that these random choices produce preconditioners and
projection vectors with the desired properties, the rank is correctly computed. The methods
presented here can be used to remove the possibility of an erroroneous result in the case when F
is a field of characteristic zero.

We give two algorithms. Each requires an expected number of O(n) matrix-vector products and
additional O(n?) field operations to compute the correct rank of A. The first algorithm, presented
in Section 2, is based on minimal polynomial computation using Wiedemann’s algorithm [11]. The
second algorithm, presented in Section 3, is based on the Lanczos approach. Both of our algorithms
require that the field be of characteristic zero.

*Generously supported by the NSF, grant CCR-9712362 (Saunders).
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2 Rank Certificate using Trace

All matrices in this section are over a field F' of characteristic zero with conjugation operator.
The problem is to compute the rank of a given matrix A. We will reduce this problem to that of
computing the minimal polynomial of a square matrix B that possesses the following properties:

a B is diagonalizable, that is, the Jordan form of B can be written as
diag(A1, ..., Ar,0,...,0) where A, are the nonzero eigenvalues of B in the appropriate exten-
sion field. We will use the fact that in this case the rank of B equals 7.

b B is positive semi-definite, that is, A; > 0 for all 7,1 < i <.
With high probability B should possess also property:

¢ The minimal polynomial of B is zh(z) or h(z) where h(z) = [];_, (z — X;). We will use the
fact that this condition holds when A; # A; for i # j.

Such a matrix B can be constructed using the following fact and lemma. Note that we use A* to
mean the Hermitian transpose of A, the transpose of A with entries conjugated.

Fact 2.1 Let A € F™"*™ be given. Let D be a m X m diagonal matrixz with positive real entries
from F', so that D can be expressed as EE* for a diagonal matriz E in the algebraic closure of F.
Then B = ADA* has the same rank as A and possesses properties a and b.

Similar preconditioned forms such as DAA*D or DAA* are discussed in [4]. The ADA* has
the additional property that, when applied over a field of positive characteristic, the rank is likely
preserved [9] (with some exceptions [5]).

Proposition 2.2 Let B be as in Fact 2.1. If diagonal entries in D are chosen uniformly and
randomly from a subset of F'\ {0} with cardinality s then B possesses in addition property ¢ with
probability at least 1 — 2n?/s.

The Schwartz-Zippel Lemma [10, 12] states that if we evaluate a multivariate polynomial of
total degree d, with coefficients from F', each variable chosen uniformly and randomly from a subset
S of F of size s, then the probability that the result is nonzero is > 1 —d/s. Proposition 2.2 follows
as a corollary of the Schwartz-Zippel Lemma and the next result.

Lemma 2.3 Let A be an n x m matriz over F with n < m. Let D = diag(y1,-..,ym) be a
diagonal matriz of indeterminants. Write the characteristic polynomial det(zI,, — ADA*) of AD A*
as 2" 'g(z) where g(z) € Flyi,...,ym][z] has a nonzero constant coefficient with respect to x.
Then [ is the rank of A and the discriminant of g with respect to x is not the zero polynomial in

Yis-+ s Ym. This discriminant will have total degree bounded by 2n2.

Proof:Let r be the rank of A. Then there exists a symmetric 7 x r minor of ADA* with rank r.
Without loss of generality, assume the principal r X r minor has rank r. Consider the specialization
of £"~!g if we substitute y,.1 =+ = y,, = 0. We get

det(zl, — Adiag(y1,-.-,¥r,0,...,004%) = 2" "det(xl, — ADA*)
— :L,TL—Tg
where D = diag(yi,...,yr) and A is the principal r x r submatrix of A. The trailing degree of
z""lg cannot be less than the specialization "~"g. Since ADA* is nonsingular we get [ < r. To
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see that [ > r, note that the coefficient of z"~% (1 < i < n) in 2" !g is the sum of all symmetric
7 X 1 minors of the rank r matrix ADA*. Since ADA* has rank r, these coefficients must be zero
for i > r.

At this point we have degg = degg where g is equal to g but with some indeterminates set
to zero. Thus, to show that ¢ is squarefree it will be sufficient to show that g is squarefree. Note
that ADA* is similar to A*AD and that A*A has each principal minor nonzero. From a result of
Wiedemann [11, last lemma on page 59] it follows that that the discriminant of det(zI, — A*AD)
with respect to z is not identically zero. The degree bound is easy to derive. |

Lemma 2.4 [/, Theorem 4.7] Let B be as in Fact 2.1.If diagonal entries in D are chosen uniformly
and randomly from a subset of F'\ {0} with cardinality s then B possesses in addition property c
with probability at least 1 — 2n?/s.

The minimal polynomial of B can be recovered using the following result.

Lemma 2.5 [11] Let B € F™*™. There exists a Monte Carlo probabilistic algorithm that recovers
the minimal polynomial of B using O(n) matriz-vector products involving B plus additional O(n?)
field operations. The output will always be a monic factor of the minimal polynomial of B.

Suppose B possesses property a with nonzero eigenvalues Ay, ..., A,.. Then r is the rank of B.
Let g(z) = 27+ g127' +--- + g, (94 # 0) be such that the minimal polynomial of B is equal
to g(x) or zg(x). Let f(z) = 2P + fiaP~' + -  + f, (f, # 0) be a monic factor of g(x). Thus
f(z)|g(z)|h(z) where h(z) = [I;_,(z — \;) = 2" + hiz" '+ lower order terms. Then p < ¢ <r
and, up to reordering of the A;, we have fi = —(A1 + -+ XAp), 1 = —(AM +--- + ;) and
hi = —(\ +---+ A). Now suppose that B possesses also property b. Then f; = g; if and only
if p = ¢. Similarly, g1 = hy if and only if ¢ = r. Using the fact that A; +--- + A, = trace(B) we
get the following result:

Lemma 2.6 Let B possess property a and b. Let f(x) = 2P + fia? L + ...+ f, (fp #0) be a
monic factor of the minimal polynomial of B. Then — fi = trace(B) if and only if p is the rank of
B.

We can now give our first algorithm for rank.

Algorithm Rank-certificate-using-trace

Input: Ae Frxm,
Output: rank A or “failed”.

1. Construct B as in Fact 2.1such that B possesses property ¢ with
probability at least 3/4.

2. Compute a monic factor of the minimal polynomial of B which is with
probability at least 3/4 the minimal polynomial.

3. Express the factor as f(x) or zf(z) where
f(z) =P + fraP~' + .- + f, with f, #0.

4. If — f; = trace(B) return p otherwise return “failed” (or start over).

Repetition of algorithm Rank-certificate-using-trace is required with probability less than 1 —
(3/4)? < 1/2. Note also that a matrix vector product involving B requires one matrix-vector
and one vector-matrix product involving A plus additional n field multiplications, n the column
dimension of A. We get the following result as a corollary to all of the above.
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Proposition 2.7 Let A € F"*™. The Las Vegas algorithm rank-certificate-using-trace works as
announced using O(n) matriz-vector and vector-matrix products involving A plus O(nm) additional
field operations.

3 Rank Certificate using Orthogonalization

Our second rank certificate is based on vector norms, rather than on an identity involving the
trace of the matrix, We assume that A € F"*™ has presumed rank r. We will use the same
preconditioning as in section 2 to apply Lemma 2.4 and thus consider B = ADA* for a random
diagonal matrix D. Given a basis uy, ..., u, of the (presumed) range space V of B, to certify that
the rank of B is r can be done by showing that all the column vectors by,...,b, of B are in V.
For F a field as specified, we may equivalently show that the projections b; = b; — > i V=145 of

the b;’s onto Y+ are zero. It is equivalent to certify that:
Ti:<bi,l_)i>:0, ].SZSTL

or
n n
dori=Y (bibi) =0 (1)
i=1 i=1
since the dot products must be positive. The orthogonalized vectors will be computed @ la Lanczos.
We introduce K, a n x r matrix whose columns form a Krylov basis of the (presumed) range
space of B. Such a matrix can be computed from a random vector v € F™ and u = Bv which
is therefore a random vector in the range space of B. By Lemma 2.4, with high probability the
minimum polynomial of B has degree r (when A is invertible) or  + 1 and we know from [11,
section VI] — where the minimum polynomial of a matrix is computed from a Krylov basis (see
also Lemma 2.5) — or from [7, section 2|, that with high probability, K, = [u, Bu, B>u ..., B"~!u]
has rank r. The matrix H, = K K, which is square Hankel of dimension r is thus invertible with
high probability. The b; are projected onto V* using the matrix P € F™™ such that:

H,P=K!K,P=K:B

or equivalently, such that
K(B—-K,P)=0.

Taking V equal to the range space of K, the columns of B — K, P are the b;’s and we see that the
test dot products of (1) are the diagonal entries of

B(B — K, P). (2)

The cost of the rank certification thus amounts to the following. The matrix P may be com-
puted as H,'(K}B). The construction of the Krylov matrix K, and and of KB require O(n)
products of B by vectors. The matrix H,, is computed in O(n?) and since it is Hankel one may
check its invertibility in O(nlog? n) and compute the product H; ' (K:B) in O(n?logn) arithmetic
operations [3, 2] (see also [1, sections 2.5-2.7]). The computation of the diagonal entries of (2) then
needs O(n) products of B by vectors to get the diagonal entries of B2 and to get the matrix BK,,.
In O(n?) final operations the diagonal entries of BK, P and thus the target scalar products are
known. This leads to:
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Algorithm Rank-certificate-using-orthogonalizations

Input: A e Fnxm,
r, the presumed rank of A.
Output: rank A or “failed”.

1. Let B:= ADA*. *  Preconditioning *

2. Choose a random vector v. Let u := Bu.

3. Apply B iteratively to compute K, and K = BK,,.

4. If det H, = det KK, = 0 then return “failed” (or start over).
otherwise use a Hankel solver for P := H'(K!)*.

5. Apply B to compute B};, 1 <i <n.

6. LetT;, = BiQ,i - <(K;)i7.,P.7i>, 1 < i <n.

7. If Y, 7 = 0 then return r otherwise return “failed” (or start over).

If r is the actual rank of A, the algorithm will certify the value with a probability arbitrarily
close to zero if the entries of v are chosen uniformly and independently from a subset of F' containing
sufficiently many elements (see Lemma 2.4 and [11, 7]). If the input 7 is not the rank then the
algorithm will always fail. Indeed, if r is too small then some column of B, say the j-th one, will
not belong to the range space of K,, and will lead to 7; # 0. If r is larger than the rank, H,, will be
singular. The cost of the algorithm could be made rank sensitive if r linearly independent, columns
are known by testing only n — r dot products. We have proven:

Proposition 3.1 Let A € F"*™. The Las Vegas algorithm rank-certificate-using-orthogonalizations
works as announced using O(n) matriz-vector and vector-matriz products involving A plus O(nm+
n%logn) additional field operations.

This second certificate is asymptotically more expensive by a log factor than the one in section 2.
It is proposed for possible insights in finding a certificate for any field. Also, although we have
in mind exact (symbolic) computation here, it’s greater stability properties may be relevant in
some contexts. We may also notice that the two certificates are related each other: the test
trace(B) + g1 = 0 may be compared to the test ) . 7; = 0.

4 Conclusions

We have provides two algorithms of Las Vegas type for exact computation of the rank of a matrix
over a field of characteristic zero.

For a number of applications it would be desirable to efficiently certify the rank of a matrix over
a field with positive characteristic, in particular over a finite field. Our methods don’t work in this
setting, the essential problem being the existence of self-orthogonal vectors. It may be hoped that
one or the other of these two algorithms will provide insight useful in solving that open problem.

The probability estimates for the Monte Carlo rank algorithms typically require random choice
from a set whose size is a small multiple n2. When n > 2'6 or so, this can force modular methods
to choose large finite fields requiring multiple computer words to store each individual field element
and requiring relatively expensive arithmetic costs. In practice, the rank is correctly found, even
when the random values are from a much smaller set, say of size O(n). The algorithms of this
paper can be used over finite fields as heuristics to strengthen confidence in the result. For instance,
naively, one would suppose that if the trace corresponds to the first coefficient of the purported
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minimal polynomial of a preconditioned matrix, it is a strong indicator that the polynomial is in
fact the minimal polynomial. However we have no argument to quantify the probability here.

Algorithm Rank-certificate-using-trace can be adapted to the case of a dense integer matrix
A € 2", Construct B = ADAT € Z™ " as in Fact 2.1 and Proposition 2.2. The baby-
step/giant-step approach of Kaltofen [6] can be used to construct a monic factor of the minimal
polynomial of B (which will with high probability be the minimal polynomial of B) using an
expected number of O(n®?(log||A4]||2)?) bit operations.
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