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Abstract

In the framework of fully permutable loops� tiling has been extensively studied as a
source�to�source program transformation� However� little work has been devoted to the
mapping and scheduling of the tiles on physical processors� Moreover� targeting hetero�
geneous computing platforms has� to the best of our knowledge� never been considered�
In this paper we extend tiling techniques to the context of limited computational re�
sources with di�erent�speed processors� In particular� we present e�cient scheduling
and mapping strategies that are asymptotically optimal� The practical usefulness of
these strategies is fully demonstrated by MPI experiments on a heterogeneous network
of workstations�

Keywords� tiling� communication�computation overlap� mapping� limited resources� di�erent�
speed processors� heterogeneous networks�

R�esum�e

Dans le cadre des boucles totalement permutables� le partitionnement a �et�e intensive�
ment �etudi�e en tant que transformation de programme� Cependant� tr�es peu de travaux
ont concern�e l�ordonnancement et l�allocation des tuiles sur les processeurs physiques� et
aucun� �a notre connaissance� n�a consid�er�e un ensemble de processeurs h�et�erog�ene� Dans
ce rapport� nous �etendons les techniques de partitionnement au cadre des ressources
born�ees et des processeurs de vitesses di��erentes� En particulier� nous pr�esentons des
strat�egies d�ordonnancement et d�allocation asymptotiquement optimales� Nous d�e�
montrons l�int�er�et pratique de ces strat�egies par des exp�erimentations avec MPI sur un
r�eseau h�et�erog�ene de stations de travail�

Mots�cl�es� partitionnement� recouvrement calculs�communications� allocation� ressources lim�
it�ees� processeurs de vitesses di��erentes� r�eseau h�et�erog�ene�
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Abstract

In the framework of fully permutable loops� tiling has been extensively studied as a source�
to�source program transformation� However� little work has been devoted to the mapping and
scheduling of the tiles on physical processors� Moreover� targeting heterogeneous computing
platforms has� to the best of our knowledge� never been considered� In this paper we extend
tiling techniques to the context of limited computational resources with di�erent�speed pro�
cessors� In particular� we present e�cient scheduling and mapping strategies that are asymp�
totically optimal� The practical usefulness of these strategies is fully demonstrated by MPI
experiments on a heterogeneous network of workstations�
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sources� di�erent�speed processors� heterogeneous networks

� Introduction

Tiling is a widely used technique to increase the granularity of computations and the locality of
data references� This technique applies to sets of fully permutable loops 	

� ��� ��� The basic idea
is to group elemental computation points into tiles that will be viewed as computational units �the
loop nest must be permutable so that such a transformation is valid�� The larger the tiles� the more
e�cient are the computations performed using state�of�the�art processors with pipelined arithmetic
units and a multilevel memory hierarchy �this feature is illustrated by recasting numerical linear
algebra algorithms in terms of blocked Level � BLAS kernels 	��� ���� Another advantage of tiling
is the decrease in communication time �which is proportional to the surface of the tile� relative to
the computation time �which is proportional to the volume of the tile�� The price to pay for tiling
may be an increased latency� for example� if there are data dependencies� the �rst processor must
complete the whole execution of the �rst tile before another processor can start the execution of

�This work was supported in part by the National Science Foundation Grant No� ASC��������� by the Defense
Advanced Research Projects Agency under contract DAAH����������		
 administered by the Army Research O�ce�
by the O�ce of Scienti�c Computing
 U�S� Department of Energy
 under Contract DE�AC����OR������ by the
National Science Foundation Science and Technology Center Cooperative Agreement No� CCR������� by the
CNRS�ENS Lyon�INRIA project ReMaP� and by the Eureka Project EuroTOPS� Yves Robert�s work was conducted
while he was on leave from Ecole Normale Sup�erieure de Lyon and partly supported by DRET�DGA under contract
ERE ��������A����DRET�DS�SR�
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the second one� Tiling also presents load�imbalance problems� the larger the tile� the more di�cult
it is to distribute computations equally among the processors�

Tiling has been studied by several authors and in di�erent contexts �see� for example� 	��� ���

�� ��� �� 
� �� ��� �� �� ��� �� �
��� Rather than providing a detailed motivation for tiling� we
refer the reader to the papers by Calland� Dongarra� and Robert 	�� and by H�ogsted� Carter� and
Ferrante 	�
�� which provide a review of the existing literature� Brie�y� most of the work amounts to
partitioning the iteration space of a uniform loop nest into tiles whose shape and size are optimized
according to some criterion �such as the communication�to�computation ratio�� Once the tile shape
and size are de�ned� the tiles must be distributed to physical processors and the �nal scheduling
must be computed�

A natural way to allocate tiles to physical processors is to use a cyclic allocation of tiles to
processors� Several authors 	��� �
� �� suggest allocating columns of tiles to processors in a purely
scattered fashion �in HPF words� this is a CYCLIC��� distribution of tile columns to processors��
The intuitive motivation is that a cyclic distribution of tiles is quite natural for load�balancing com�
putations� Once the distribution of tiles to processors is �xed� there are several possible schedul�
ings� indeed� any wavefront execution that goes along a left�to�right diagonal is valid� Specifying a
columnwise execution may lead to the simplest code generation�

When all processors have equal speed� it turns out that a pure cyclic columnwise allocation
provides the best solution among all possible distributions of tiles to processors 	���provided that
the communication cost for a tile is not greater than the computation cost� Since the communication
cost for a tile is proportional to its surface� while the computation cost is proportional to its volume��

this hypothesis will be satis�ed if the tile is large enough��

However� the recent development of heterogeneous computing platforms poses a new challenge�
that of incorporating processor speed as a new parameter of the tiling problem� Intuitively� if the
user wants to use a heterogeneous network of computers where� say� some processors are twice as
fast as some other processors� we may want to assign twice as many tiles to the faster processors�
A cyclic distribution is not likely to lead to an e�cient implementation� Rather� we should use
strategies that aim at load�balancing the work while not introducing idle time� The design of such
strategies is the goal of this paper�

The rest of the paper is organized as follows� In Section 
 we formally state the problem of tiling
for heterogeneous computing platforms� All our hypotheses are listed and discussed� and we give a
theoretical way to solve the problem by casting it in terms of a linear programming problem� The
cost of solving the linear problem turns out to be prohibitive in practice� so we restrict ourselves to
columnwise allocations� Fortunately� there exist asymptotically optimal columnwise allocations� as
shown in Section �� where several heuristics are introduced and proved� In Section � we provide MPI
experiments that demonstrate the practical usefulness of our columnwise heuristics on a network
of workstations� Finally� we state some conclusions in Section ��

� Problem Statement

In this section� we formally state the scheduling and allocation problem that we want to solve� We
provide a complete list of all our hypotheses and discuss each in turn�

�For example
 for two�dimensional tiles
 the communication cost grows linearly with the tile size while the com�
putation cost grows quadratically�

�Of course
 we can imagine a theoretical situation in which the communication cost is so large that a sequential
execution would lead to the best result�






��� Hypotheses

�H�� The computation domain �or iteration space� is a two�dimensional rectangle� of size N��N��
Tiles are rectangular� and their edges are parallel to the axes �see Figure ��� All tiles have
the same �xed size� Tiles are indexed as Ti�j �  � i � N��  � j � N��

�H�� Dependences between tiles are summarized by the vector pair��
�
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In other words� the computation of a tile cannot be started before both its left and upper
neighbor tiles have been executed� Given a tile Ti�j � we call both tiles Ti���j and Ti�j�� its
successors� whenever the indices make sense�
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Figure �� A tiled iteration space with horizontal and vertical dependencies�

�H�� There are P available processors interconnected as a �virtual� ring�� Processors are numbered
from  to P ��� Processors may have di�erent speeds� let tq the time needed by processor Pq
to execute a tile� for  � q � P � While we assume the computing resources are heterogeneous�
we assume the communication network is homogeneous� if two adjacent tiles T and T � are
not assigned to the same processor� we pay the same communication overhead Tcom� whatever
the processors that execute T and T ��

�H�� Tiles are assigned to processors by using a scheduling � and an allocation function proc
�both to be determined�� Tile T is allocated to processor proc�T �� and its execution begins
at time�step ��T �� The constraints� induced by the dependencies are the following� for each
tile T and each of its successors T �� we have�

��T � � tproc�T � � ��T �� if proc�T � � proc�T ��
��T � � tproc�T � � Tcom � ��T �� otherwise

�In fact
 the dimension of the tiles may be greater than �� Most of our heuristics use a columnwise allocation

which means that we partition a single dimension of the iteration space into chunks to be allocated to processors�
The number of remaining dimensions is not important�

�The actual underlying physical communication network is not important�
�There are other constraints to express �e�g�
 any processor can execute at most one tile at each time�step�� See

Section ��� for a complete formalization�
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The makespan MS��� proc� of a schedule�allocation pair ��� proc� is the total execution time
required to execute all tiles� If execution of the �rst tile T��� starts at time�step t � � the makespan
is equal to the date at which the execution of the last tile is executed�

MS��� proc� � ��TN��N�
� � tproc�TN��N�

��

A schedule�allocation pair is said to be optimal if its makespan is the smallest possible over all
�valid� solutions� Let Topt denote the optimal execution time over all possible solutions�

��� Discussion

We survey our hypotheses and assess their motivations� as well as the limitations that they may
induce�

Rectangular iteration space and tiles We note that the tiled iteration space is the outcome
of previous program transformations� as explained in 	��� ��� 
�� ��� ��� The �rst step in
tiling amounts to determining the best shape and size of the tiles� assuming an in�nite grid
of virtual processors� Because this step will lead to tiles whose edges are parallel to extremal
dependence vectors� we can perform a unimodular transformation and rewrite the original
loop nest along the edge axes� The resulting domain may not be rectangular� but we can
approximate it using the smallest bounding box �however� this approximation may impact
the accuracy of our results��

Dependence vectors We assume that dependencies are summarized by the vector pair V �
f��� �t� �� ��tg� Note that these are dependencies between tiles� not between elementary
computations� Hence� having right� and top�neighbor dependencies is a very general situa�
tion if the tiles are large enough� Technically� since we deal with a set of fully permutable
loops� all dependence vectors have nonnegative components only� so that V permits all other
dependence vectors to be generated by transitivity� Note that having a dependence vector
�� a�t with a � 
 between tiles� instead of having vector �� ��t� would mean unusually long
dependencies in the original loop nest� while having �� a�t in addition to �� ��t as a depen�
dence vector between tiles is simply redundant� In practical situations� we might have an
additional diagonal dependence vector ��� ��t between tiles� but the diagonal communication
may be routed horizontally and then vertically� or the other way round� and even may be
combined with any of the other two messages �because of vectors �� ��t and ��� �t��

Computation�communication overlap Note that in our model� communications can be over�
lapped with the computations of other �independent� tiles� Assuming communication�compu�
tation overlap seems a reasonable hypothesis for current machines that have communication
coprocessors and allow for asynchronous communications �posting instructions ahead� or us�
ing active messages�� We can think of independent computations going along a thread while
communication is initiated and performed by another thread 	���� An interesting approach
has been proposed by Andonov and Rajopadhye 	��� they introduce the tile period Pt as the
time elapsed between corresponding instructions of two successive tiles that are mapped to
the same processor� while they de�ne the tile latency Lt to be the time between corresponding
instructions of two successive tiles that are mapped to di�erent processors� The power of this
approach is that the expressions for Lt and Pt can be modi�ed to take into account several
architectural models� A detailed architectural model is presented in 	��� and several other
models are explored in 	
�� With our notation� Pt � ti and Lt � ti � Tcom for processor Pi�
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Finally� we brie�y mention another possibility for introducing heterogeneity into the tiling
model� We chose to have all tiles of same size and to allocate more tiles to the faster processors�
Another possibility is to evenly distribute tiles to processors� but to let their size vary according to
the speed of the processor they are allocated to� However� this strategy would severely complicate
code generation� Also� allocating several neighboring �xed�size tiles to the same processor will have
similar e�ects as allocating variable�size tiles� so our approach will cause no loss of generality�

��� ILP Formulation

We can describe the tiled iteration space as a task graph G � �V�E�� where vertices represent the
tiles and edges represent dependencies between tiles� Computing an optimal schedule�allocation
pair is a well�known task graph scheduling problem� which is NP�complete in the general case 	���

If we want to solve the problem as stated �hypotheses �H�� to �H���� we can use an integer linear
programming formulation� Several constraints must be satis�ed by any valid schedule�allocation
pair� In the following� Tmax denotes an upper bound on the total execution time� For example�
Tmax can be the execution time when all the tiles are given to the fastest processor� Tmax �
N� �N� �min��i�P ti�

We now translate these constraints into equations� In the following� let i � f�� � � � � N�g denote
a row number� j � f�� � � � � N�g a column number� q � f� � � � � P � �g a processor number� and
t � f� � � � � Tmaxg a time�step�

� Number of executions� Let Bi�j�q�t be an integer variable indicating whether the execution
of tile Ti�j began at time�step t on processor q� if this is the case� then Bi�j�q�t � � � and
Bi�j�q�t �  otherwise� Each tile must be executed once� and thus starts at one and only one
time�step� Therefore� the constraints are

�i� j� q� t� Bi�j�q�t �  and �i� j�
P��X
q	�

TmaxX
t	�

Bi�j�q�t � ��

� Execution place and date� Using Bi�j�q�t� we can compute the date Di�j at which tile �i� j�
starts execution� We can also check which processor q processes tile �i� j�� The �� result is
stored in Pi�j�q�

�i� j� Di�j �
P��X
p	�

TmaxX
t	�

t �Bi�j�q�t and �i� j� q� Pi�j�q �
TmaxX
t	�

Bi�j�q�t�

� Communications� There must be a communication delay between the end of execution of
tile �i � �� j� �resp� �i� j � ��� and the beginning of execution of tile �i� j� if and only the
two tiles are not executed by the same processor� that is� if and only if there exists q such
that Pi�j�q �� Pi���j�q �resp� Pi�j�q �� Pi�j���q�� The boolean result is stored in vi�j �resp� hi�j���
vi�j � � if tiles �i � �� j and �i� j� are not executed by the same processor� and vi�j � 
otherwise� We have a similar de�nition for hi�j� suing tiles �i� j� � and �i� j�� The equations
are�

�i � 
� j� q� vi�j � Pi�j�q � Pi���j�q � vi�j � Pi���j�q � Pi�j�q

�i� j � 
� q� hi�j � Pi�j�q � Pi�j���q� vi�j � Pi�j���q � Pi�j�q

Note that if a communication delay is needed between the execution of tile �i� �� j� and that
of tile �i� j�� then vi�j will impose one� If none is needed� vi�j may still be equal to �� as long
as this does not increase the total execution time�
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�����������������������

min
�
DN��N�

�
P

q PN��N��qtq

	
Pt

t�	t�tq��

P
i�j Bi�j�q�t� � �  � q � P � �� tq � � � t � Tmax

Di�j � Di���j � vi�jTcom �
P

q Pi���j�qtq 
 � i � N�� � � j � N�

Di�j � Di�j�� � hi�jTcom �
P

q Pi�j���qtq � � i � N�� 
 � j � N�

vi�j � Pi�j�q � Pi���j�q 
 � i � N�� � � j � N��  � q � P � �
vi�j � Pi���j�q � Pi�j�q 
 � i � N�� � � j � N��  � q � P � �
hi�j � Pi�j�q � Pi�j���q � � i � N�� 
 � j � N��  � q � P � �
hi�j � Pi�j���q � Pi�j�q � � i � N�� 
 � j � N��  � q � P � �
Pi�j�q �

P
tBi�j�q�t � � i � N�� � � j � N��  � q � P � �

Di�j �
P

q

P
t tBi�j�q�t � � i � N�� � � j � N�P

q

P
tBi�j�q�t � � � � i � N�� � � j � N�

Bi�j�q�t �  � � i � N�� � � j � N��  � q � P � ��  � t � Tmax

Figure 
� Integer linear program that optimally solves the schedule�allocation problem�

� Precedence constraints� The execution of tile �i� �� j� �resp� �i� j� ��� must be �nished�
and the data transferred� before the beginning of execution of tile �i� j��

�i � 
� j� Di�j � Di���j � vi�jTcom �
P��X
q	�

Pi���j�qtq

�i� j � 
� Di�j � Di�j�� � hi�jTcom �
P��X
q	�

Pi�j���qtq

� Number of tiles executed at any time�step	 A processor executes �at most� one tile at
the time� Therefore processor q can start executing at most one tile in any interval of time
tq �as tq is the time to execute a tile by processor q��

�q� tq � � � t � Tmax�

tX
t�	t�tq��

N�X
i	�

N�X
j	�

Bi�j�q�t� � �

Now that we have expressed all our constraints in a linear way� we can write the whole linear
programming system� We need only to add the objective function� the minimization of the time�
step at which the execution of the last tile TN��N�

is terminated� The �nal linear program is
presented in Figure 
� Since an optimal rational solution of this problem is not always an integer
solution� this program must be solved as an integer linear program�

The main drawback of the linear programming approach is its huge cost� The program shown
Figure 
 contains more than PN�N�Tmax variables and inequalities� The cost of solving such a
problem would be prohibitive for any practical application� Furthermore� even if we could solve
the linear problem� we might not be pleased with the solution� We probably would prefer �regular 
allocations of tiles to processors� such as columnwise or rowwise allocations�

Nevertheless� such allocations can lead to asymptotically optimal solutions� as shown in the
next section�

�



� Columnwise Allocation

Before introducing asymptotically optimal columnwise �or rowwise� allocations� we give a small
example to show that columnwise allocations �or equivalently rowwise allocations� are not optimal�

��� Optimality and Columnwise Allocations

Consider a tiled iteration space with N� � 
 columns� and suppose we have P � 
 processors such
that t� � �� t�� the �rst processor is �ve times faster than the second one� Suppose for the sake
of simplicity that Tcom � � If we use a columnwise allocation�

� either we allocate both columns to processor � and the makespan is MS � 
N�t�

� or we allocate one column to each processor� and the makespan is greater than N�t� �a lower
bound time for the slow processor to process its column�

The best solution is to have the fast processor execute all tiles� But if N� is large enough� we can
do better by allocating a small fraction of the �rst column �the last tiles� to the slow processor�
which will process them while the �rst processor is active executing the �rst tiles of the second
column� For instance� if N� � �n and if we allocate the last n tiles of the �rst column to the slow
processor �see Figure ��� the execution time becomes MS � ��nt� �

��

 N�t�� which is better than

the best columnwise allocation�


5n

6n

P

P

i

0

1

j

Figure �� Allocating tiles for a two�column iteration space�

This small example shows that our target problem is intrinsically more complex than the in�
stance with same�speed processors� as shown in 	��� a columnwise allocation would be optimal for
our two�column iteration space with two processors of equal speed�

��� Heuristic Allocation by Block of Columns

Throughout the rest of the paper we make the following additional hypothesis�

�H
� We impose the allocation to be columnwise�� all tiles Ti�j � � � i � N�� are allocated to the
same processor�

�This is not the best possible allocation
 but it is superior to any columnwise allocation�
�Note that the problem is symmetric in rows and columns� We could study rowwise allocations as well�

�



We start with an easy lemma to bound the optimal execution time Topt�

Lemma �

Topt �
N� �N�PP��

i	�
�
ti

�

Proof Let xi be the number of tiles allocated to processor i�  � i � P � Obviously�
PP��

i	� xi �
N�N�� Even if we take into account neither the communication delays nor the dependence con�
straints� the execution time T is greater than the computation time of each processor� T � xiti
for all  � i � P � Rewriting this as xi � T�ti and summing over i� we get N�N� �

PP��
i	� xi �

�
PP��

i	�
�
ti
�T � hence the result�

The proof of Lemma � leads to the �intuitive� idea that tiles should be allocated to pro�
cessors in proportion to their relative speeds� so as to balance the workload� Speci�cally� let
L � lcm�t�� t�� � � � � tP���� and consider an iteration space with L columns� if we allocate L

ti
tile

columns to processor i� all processors need the same number of time�steps to compute all their tiles�
the workload is perfectly balanced� Of course� we must �nd a good schedule so that processors do
not remain idle� waiting for other processors because of dependence constraints�

We introduce below a heuristic that allocates the tiles to processors by blocks of columns whose
size is computed according to the previous discussion� This heuristic produces an asymptotically
optimal allocation� the ratio of its makespan over the optimal execution time tends to � as the
number of tiles �the domain size� increases�

In a columnwise allocation� all the tiles of a given column of the iteration space are allocated
to the same processor� When contiguous columns are allocated to the same processor� they form a
block� When a processor is assigned several blocks� the scheduling is the following�

�� Block are computed one after the other� in the order de�ned by the dependencies� The
computation of the current block must be completed before the next block is started�


� The tiles inside each block are computed in a rowwise order� if� say� � consecutive columns
are assigned to a processor� it will execute the three tiles in the �rst row� then the three tiles
in the second row� and so on� Note that �given ��� this strategy is the best to minimize the
latency �for another processor to start next block as soon as possible��

The following lemma shows that dependence constraints do not slow down the execution of two
consecutive blocks �of adequate size� by two di�erent�speed processors�

Lemma � Let P� and P� be two processors that execute a tile in time t� and t�� respectively�
Assume that P� was allocated a block B� of c� contiguous columns and that P� was allocated the
block B� consisting of the following c� columns� Let c� and c� satisfy the equality c�t� � c�t��

Assume that P�� starting at time�step s�� is able to process B� without having to wait for any
tile to be computed by some other processor� Then P� will be able to process B� without having to
wait for any tile computed by P�� if it starts at time s� � c�t� � Tcom�

Proof P� �resp� P�� executes its block row by row� The execution time of a row is c�t� �resp�
c�t��� By hypothesis� it takes the same amount of time for P� to compute a row of B� as for P� to
compute a row of B��

Since P� is able to process B� without having to wait for any tile to be computed by some other
processor� it �nishes computing the ith row of B� at time s� � ic�t��

�



P� cannot start processing the �rst tile of the ith row of B� before P� has computed the last
tile of the ith row of B� and has sent that data to P�� that is� at time�step s� � ic�t� � Tcom�

Since P� starts processing the �rst row of B� at time s�� where s� � s� � c�t� � Tcom� it
is not delayed by P�� Later on� P� will process the �rst tile of the ith row of B� at time
s� � �i � ��c�t� � s� � �i � ��c�t� � s� � c�t� � Tcom � �i � ��c�t� � s� � ic�t� � Tcom� hence
P� will not be delayed by P��

We are ready to introduce our heuristic�

Heuristic

Let P�� � � � � PP�� be P processors that respectively execute a tile in time t�� � � � � tP��� We allocate
column blocks to processors by chunks of C � L �

PP��
i	�

�
ti
� where L � lcm�t�� t�� � � � � tP���

columns� For the �rst chunk� we assign the block B� of the �rst L�t� columns to P�� the block B�

of the next L�t� columns to P�� and so on until Pp�� receives the last L�tp columns of the chunk�
We repeat the same scheme with the second chunk �columns C � � to 
C� �rst� and so on until all
columns are allocated �note that the last chunk may be incomplete�� As already said� processors
will execute blocks one after the other� row by row within each block�

Lemma � The di�erence between the execution time of the heuristic allocation by columns and the
optimal execution time is bounded as

T � Topt � �P � ��Tcom � �N� �N� � ��lcm�t�� t�� � � � � tP����

Proof Let L � lcm�t�� t�� � � � � tP���� Lemma 
 ensures that� if processor Pi starts working at
time�step si � i�L�Tcom�� it will not be delayed by other processors� By de�nition� each processor
executes one block in time LN�� The maximal number of blocks allocated to a processor is

n �



N�

L�
PP��

i	�
�
ti

�
�

The total execution time� T � is equal to the date the last processor terminates execution� T can be
bounded as follows��

T � sP� � n� LN��

On the other hand� Topt is bounded below by Lemma �� We derive

T � Topt � �P � ���L� Tcom� � LN�



N�

L�
PP��

i	�
�
ti

�
�
N� �N�PP��

i	�
�
ti

�

Since dxe � x� � for any rational number x� we obtain the desired formula�

Proposition � Our heuristic is asymptotically optimal� letting T be its makespan� and Topt be the
optimal execution time� we have

lim
N����

T

Topt
� ��

�Processor PP�� is not necessarily the last one
 because the last chunk may be incomplete�

�



The two main advantages of our heuristic are �i� its regularity� which leads to an easy imple�
mentation� and �ii� its guarantee� it is theoretically proved to be close to the optimal� However� we
will need to adapt it to deal with practical cases� because the number C � L�

PP��
i	�

�
ti
of columns

in a chunk may be too large�

� Practical Heuristics

In the preceding section� we described a heuristic that allocates blocks of columns to processors in a
cyclic fashion� The size of the blocks is related to the relative speed of the processors� However� the
execution time variables ti are not known accurately in practice� and a straightforward application
of our heuristic would lead to di�culties� as shown next in Section ���� We explain how to modify
the heuristic �computing di�erent block sizes� in Section ��
�

��� Processor Speed

To expose the potential di�culties of the heuristic� we conducted experiments on a heterogeneous
network of eight Sun workstations� To compute the relative speed of each workstation� we used
a program that runs the same piece of computation that will be used later in the tiling program�
Results are reported in Table ��

Name nala bluegrass dancer donner vixen rudolph zazu simba

Description Ultra � SS �� SS � SS � SS � SS �� SS� 	
�� SS� 	
��

Execution time ti �� �� �� �� � 	� �� ���

Table �� Measured computation times showing relative processor speeds�

To use our heuristic� we must allocate chunks of size C � L
P�

i	�
�
ti

columns� where L �
lcm�t�� t�� � � � � t�� � ��� ��� 
�� We compute that C � �� ���� ��� columns� which would require
a very large problem size indeed� Needless to say� such a large chunk is not feasible in practice�
Also� our measurements for the processor speeds may not be inaccurate� and a slight change may
dramatically impact the value of C� Hence� we must devise another method to compute the sizes
of the blocks allocated to each processor �see Section ��
�� In Section ���� we present simulation
results and discuss the practical validity of our modi�ed heuristics�

��� Modi�ed Heuristic

Our goal is to choose the �best block sizes allocated to each processor while bounding the total
size of a chunk� We �rst de�ne the cost of a block allocation and then describe an algorithm to
compute the best possible allocation� given an upper bound for the chunk�

�	�	� Cost Function

As before� we consider heuristics that allocate tiles to processors by blocks of columns� repeating
each chunk in a cyclic fashion� Consider a heuristic de�ned by C � �c�� � � � � cP���� where ci is the
number of columns in each block allocated to processor Pi�

�The  workstations were not dedicated to our experiments� Even though we were running these experiments
during the night
 some other users� processes might have been running� Also
 we have averaged the results
 so the
error margin roughly lies between �� and ����

�



De�nition � The cost of a block size allocation C is the maximum of the computation times �citi�
of each block divided by the total number of columns computed in each chunk�

cost�C� �
max��i�P�� citiP

��i�P�� ci

Considering the steady state of the computation� all processors work in parallel inside their
block� so that the computation time of a whole chunk is the maximum of the computation times
of the processors� During this time� s �

P
��i�P�� ci columns are computed� Hence� the average

time to compute a single column is given by our cost function� When the number of columns is
much larger than the size of the chunk� the total computation time can well be approximated by
C �N�� the product of the average time to compute a column by the total number of columns�

�	�	� Optimal Block Size Allocations

As noted before� our cost function correctly models reality when the number of columns in each
chunk is much smaller than the total number of columns of the domain� We now describe an
algorithm that returns the best �with respect to the cost function� block size allocation given a
bound s on the number of columns in each chunk�

We build a function that� given a best allocation with a chunk size equal to n � �� computes a
best allocation with a chunk size equal to n� Once we have this function� we start with an initial
chunk size n � � compute a best allocation for each increasing value of n up to n � s� and select
the best allocation encountered so far�

First we characterize the best allocations for a given chunk size s�

Lemma � Let C � �c�� � � � � cP��� be an allocation� and let s �
P

��i�P�� ci be the chunk size� Let
m � max��i�p citi denote the maximum computation time inside a chunk� If C veri�es

�i�  � i � P � �� tici � m � ti�ci � ��� ���

then it is optimal for the chunk size s�

Proof Take an allocation verifying the above condition �� Suppose that it is not optimal� Then
there exists a better allocation C� � �c��� � � � � c

�
P��� with

P
��i�P�� c

�
i � s� such that

m� � max
��i�P��

c�iti � m�

By de�nition of m� there exists i� such that m � ci	ti	 � We can then successively derive

ci	ti	 � m � m� � c�i	ti	

ci	 � c�i	

�i�� ci� � c�i�

�
because

X
��i�P��

ci � s �
X

��i�P��

c�i

	

ci� � � � c�i�
ti��ci� � �� � ti�c

�
i�

m � m� �by de�nition of m and m��

which contradicts the non�optimality of the original allocation�

There remains to build allocations satisfying Condition ���� The following algorithm su�ces�

��



� For the chunk size s � � take the optimal allocation �� � � � � � ��

� To derive an allocation C� verifying equation ��� with chunk size s from an allocation C
verifying ��� with chunk size s� �� add � to a well�chosen cj one that veri�es

tj�cj � �� � min
��i�P��

ti�ci � ��� �
�

In other words� let c�i � ci for  � i � P � �� i �� j� and c�j � cj � ��

Lemma 
 This algorithm is correct�

Proof We have to prove that allocation C�� given by the algorithm� veri�es Equation ����
Since allocation C veri�es equation ���� we have tici � m � tj�cj � ��� By de�nition of j from

Equation �
�� we have

m� � max
��i�P��

tic
�
i � max

�
tj�cj � ��� max

��i�q�i�	j
tici

�
� tjc

�
j �

We then have tjc
�
j � m� � tj�c

�
j � �� and

�i �� j� � � i � q�

tic
�
i �tici � m�m� �tjc

�
j � min

��i�P��
ti�ci � �� � ti�ci � �� � ti�c

�
i � ���

so the resulting allocation does verify Equation ����

To summarize� we have built an algorithm to compute �good block sizes for the heuristic
allocation by blocks of columns� One selects an upper bound on the chunk size� and our algorithm
returns the best block sizes� according to our cost function� with respect to this bound�

The complexity of this algorithm is O�Ps�� where P is the number of processors and s� the
upper bound on the chunk size� Indeed� the algorithm consists of s steps where one computes a
minimum over the processors� This low complexity allows us to perform the computation of the
best allocation at runtime�

A Small Example	 To understand how the algorithm works� we present a small example with
P � �� t� � �� t� � �� and t� � �� In Table 
� we report the best allocations found by the
algorithm up to s � �� The entry �Selected j denotes the value of j that is chosen to build the
next allocation� Note that the cost of the allocations is not a decreasing function of s� If we allow
chunks of size not greater than �� the best solution is obtained with the chunk ��� 
� �� of size ��

Finally� we point out that our modi�ed heuristic �converges to the original asymptotically
optimal heuristic� For a chunk of size C � L�

PP��
i	�

�
ti
� where L � lcm�t�� t�� � � � � tP��� columns�

we obtain the optimal cost

costopt �
L

C
�

�
 X

��i�P��

�

ti

�
A
��

�

which is the inverse of the harmonic mean of the execution times divided by the number of proces�
sors�

�




Chunk Size c� c� c� Cost Selected j

    

� �   � �


 � �  
�� 

� 
 �  
 


� 
 � � 
 

� � � � ��� �

� � 
 � ���� 

� � 
 � ����

Table 
� Running the algorithm with � processors� t� � �� t� � �� and t� � ��

��� MPI Experiments

We report several experiments on the network of workstations presented in Section ���� After
comments on the experiments� we focus on cyclic and block�cyclic allocations and then on our
modi�ed heuristics�

�	�	� General Remarks

We study di�erent columnwise allocations on the heterogeneous network of workstations presented
in Section ���� Our simulation program is written in C using the MPI library for communication�
It is not an actual tiling program� but it simulates such behavior� we have not inserted the code
required to deal with the boundaries of the computation domain� The domain has � rows and a
number of columns varying from 
 to � by steps of �� An array of doubles is communicated
for each communication� its size is the square root of the tile area�

The actual communication network is an Ethernet network� It can be considered as a bus�
not as a point�to�point connection ring� hence our model for communication is not fully correct�
However� this con�guration has little impact on the results� which correspond well to the theoretical
conditions�

As already pointed out� the workstations we use are multiple�user workstations� Although our
simulations were made at times when the workstations were not supposed to be used by anybody
else� the load may vary� The timings reported in the �gures are the average of several measures
from which aberrant data have been suppressed�

In Figures � and �� we show for reference the sequential time as measured on the fastest machine�
namely� �nala �

�	�	� Cyclic Allocations

We have experimented with cyclic allocations on the � fastest machines� on the � fastest machines�
and on all � machines� Because cyclic allocation is optimal when all processors have the same
speed� this will be a reference for other simulations� We have also tested a block cyclic allocation
with block size equal to �� in order to see whether the reduced amount of communication helps�
Figure � presents the results�� for these � allocations �� purely cyclic allocations using �� �� and �
machines� and � block�cyclic allocations��

We comment on the results of Figure � as follows�

�	Some results are not available for ��� columns because the chunk size is too large�
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Remark cyclic�b�m� corresponds to a block cyclic allocation with block size b� using the m
fastest machines of Table ��

Figure �� Experimenting with cyclic and block�cyclic allocations�

� With the same number of machines� a block size of � is better than a block size of � �pure
cyclic��

� With the same block size� adding a single slow machine is disastrous� and adding the second
one only slightly improve the disastrous performances�

� Overall� only the block cyclic allocation with block size � and using the � fastest machines
gives some speedup over the sequential execution�

We conclude that cyclic allocations are not e�cient when the computing speeds of the available
machines are very di�erent� For the sake of completeness� we show in Figure � the execution times
obtained for the same domain �� rows and � columns� and the � fastest machines� for block
cyclic allocations with di�erent block sizes� We see that the block�size as a small impact on the
performances� which corresponds well to the theory� all cyclic allocations have the same cost�

�	�	� Using our modi�ed heuristic

Let us now consider our heuristics� In Table �� we show the block sizes computed by the algorithm
described in Section ��
� for di�erent upper bounds of the chunk size� The best allocation computed
with bound u is denoted as Cu�

The time needed to compute these allocations is completely negligible with respect to the
computation times �a few milliseconds versus several seconds��
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Figure �� Cyclic allocations with di�erent block sizes�
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Table �� Block sizes for di�erent chunk size bounds�

Figure � presents the results for these allocations� Here are some comments�

� Each of the allocations computed by our heuristic is superior to the best block�cyclic alloca�
tion�

� The more precise the allocation� the better the results�

� For � columns and allocation C���� we obtain a speedup of 
�
 �and 
�� for allocation C����
which is very satisfying �see below��

The optimal cost for our workstation network is costopt �
L
C
� ����
�����

���
��� � ���� Note that the
cost of cost�C���� � ���
 is very close to the optimal cost� The peak theoretical speedup is equal
to mini ti

costopt
� 
��� For � columns� we obtain a speedup equal to 
�
 for C���� This is satisfying

considering that we have here only � chunks� so that side e�ects still play an important role� Note
also that the peak theoretical speedup has been computed by neglecting all the dependencies in
the computation and all the communications overhead� Hence� obtaining a twofold speedup with
� machines of very di�erent speeds is not a bad result at all!

� Conclusion

In this paper� we have extended tiling techniques to deal with heterogeneous computing platforms�
Such platforms are likely to play an important role in the near future� We have introduced an
asymptotically optimal columnwise allocation of tiles to processors� We have modi�ed this heuristic
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Figure �� Experimenting with our modi�ed heuristics�

to allocate column chunks of reasonable size� and we have reported successful experiments on a
network of workstations� The practical signi�cance of the modi�ed heuristics should be emphasized�
processor speeds may be inaccurately known� but allocating small but well�balanced chunks turns
out to be quite successful�

Heterogeneous platforms are ubiquitous in computer science departments and companies� The
development of our new tiling techniques allows for the e�cient use of older computational resources
in addition to newer available systems�

References

	�� A� Agarwal� D�A� Kranz� and V� Natarajan� Automatic partitioning of parallel loops and
data arrays for distributed shared�memory multiprocessors� IEEE Trans� Parallel Distributed
Systems� ��������"��
� �����

	
� Rumen Andonov� Ha�d Bourzou�� and Sanjay Rajopadhye� Two�dimensional orthogonal
tiling� from theory to practice� In International Conference on High Performance Computing
�HiPC�� pages 

�"
��� Trivandrum� India� ����� IEEE Computer Society Press�

	�� Rumen Andonov and Sanjay Rajopadhye� Optimal tiling of two�dimensional uniform recur�
rences� Journal of Parallel and Distributed Computing� to appear� Available as Technical
Report LIMAV�RR ����� at http�##www�univ�valenciennes�fr#limav�

	�� Pierre Boulet� Alain Darte� Tanguy Risset� and Yves Robert� �pen��ultimate tiling$ Integra�
tion� the VLSI Journal� �����"��� �����

��



	�� Pierre�Yves Calland and Tanguy Risset� Precise tiling for uniform loop nests� In P� Cappello
et al�� editors� Application Speci�c Array Processors ASAP �	� pages ��"���� IEEE Computer
Society Press� �����

	�� P�Y� Calland� J� Dongarra� and Y� Robert� Tiling with limited resources� In L� Thiele� J� Fortes�
K� Vissers� V� Taylor� T� Noll� and J� Teich� editors� Application Speci�c Systems� Achitectures�
and Processors� ASAP
��� pages 

�"
��� IEEE Computer Society Press� ����� Extended
version available on the WEB at http�##www�ens�lyon�fr#	yrobert�

	�� Y�S� Chen� S�D� Wang� and C�M� Wang� Tiling nested loops into maximal rectangular blocks�
Journal of Parallel and Distributed Computing� ���
���
�"�
� �����

	�� J� Choi� J� Demmel� I� Dhillon� J� Dongarra� S� Ostrouchov� A� Petitet� K� Stanley� D� Walker�
and R� C� Whaley� ScaLAPACK� A portable linear algebra library for distributed memory
computers � design issues and performance� Computer Physics Communications� ����"��� �����
�also LAPACK Working Note %����

	�� Ph� Chretienne� Task scheduling over distributed memory machines� In M� Cosnard� P� Quin�
ton� M� Raynal� and Y� Robert� editors� Parallel and Distributed Algorithms� pages ���"����
North Holland� �����

	�� Alain Darte� Georges�Andr�e Silber� and Fr�ed�eric Vivien� Combining retiming and scheduling
techniques for loop parallelization and loop tiling� Parallel Processing Letters� ����� Special
issue� to appear� Also available as Tech� Rep� LIP� ENS�Lyon� RR������ and on the WEB at
http�##www�ens�lyon�fr#LIP�

	��� J� J� Dongarra and D� W� Walker� Software libraries for linear algebra computations on high
performance computers� SIAM Review� ���
�����"��� �����

	�
� K� H�ogstedt� L� Carter� and J� Ferrante� Determining the idle time of a tiling� In Principles
of Programming Languages� pages ��"���� ACM Press� ����� Extended version available as
Technical Report UCSD�CS������� and on the WEB at http�##www�cse�ucsd�edu#	carter�

	��� Fran&cois Irigoin and R�emy Triolet� Supernode partitioning� In Proc� �	th Annual ACM Symp�
Principles of Programming Languages� pages ���"�
�� San Diego� CA� January �����

	��� AmyW� Lim and Monica S� Lam� Maximizing parallelism and minimizing synchronization with
a�ne transforms� In Proceedings of the �th Annual ACM SIGPLAN�SIGACT Symposium on
Principles of Programming Languages� ACM Press� January �����

	��� Naraig Manjikian and Tarek S� Abdelrahman� Scheduling of wavefront parallelism on scalable
shared memory multiprocessor� In Proceedings of the International Conference on Parallel
Processing ICPP ��� CRC Press� �����

	��� H� Ohta� Y� Saito� M� Kainaga� and H� Ono� Optimal tile size adjustment in compiling general
DOACROSS loop nests� In ���	 International Conference on Supercomputing� pages 
�"
���
ACM Press� �����

	��� Peter Pacheco� Parallel programming with MPI� Morgan Kaufmann� �����

	��� J� Ramanujam and P� Sadayappan� Tiling multidimensional iteration spaces for multicomput�
ers� Journal of Parallel and Distributed Computing� ���
����"�
� ���
�

��



	��� Robert Schreiber and Jack J� Dongarra� Automatic blocking of nested loops� Technical Report
����� The University of Tennessee� Knoxville� TN� August ����

	
� S� Sharma� C��H� Huang� and P� Sadayappan� On data dependence analysis for compiling pro�
grams on distributed�memory machines� ACM Sigplan Notices� 
����� January ����� Extended
Abstract�

	
�� M� E� Wolf and M� S� Lam� A data locality optimizing algorithm� In SIGPLAN Conference
on Programming Language Design and Implementation� pages �"��� ACM Press� �����

	

� Michael E� Wolf and Monica S� Lam� A loop transformation theory and an algorithm to
maximize parallelism� IEEE Trans� Parallel Distributed Systems� 
������
"���� October �����

��


