Tiling for Heterogeneous Computing Platforms.

Pierre Boulet, Jack Dongarra, Yves Robert, Frédéric Vivien

To cite this version:

HAL Id: hal-02102006
https://hal-lara.archives-ouvertes.fr/hal-02102006
Submitted on 17 Apr 2019
Tiling for Heterogeneous Computing Platforms

Pierre Boulet, Jack Dongarra, Yves Robert and Frédéric Vivien

January 1998

Research Report № 98-08
Abstract

In the framework of fully permutable loops, tiling has been extensively studied as a source-to-source program transformation. However, little work has been devoted to the mapping and scheduling of the tiles on physical processors. Moreover, targeting heterogeneous computing platforms has, to the best of our knowledge, never been considered. In this paper we extend tiling techniques to the context of limited computational resources with different-speed processors. In particular, we present efficient scheduling and mapping strategies that are asymptotically optimal. The practical usefulness of these strategies is fully demonstrated by MPI experiments on a heterogeneous network of workstations.

Keywords: tiling, communication-computation overlap, mapping, limited resources, different-speed processors, heterogeneous networks.

Résumé

Dans le cadre des boucles totalement permutables, le partitionnement a été intensivement étudié en tant que transformation de programme. Cependant, très peu de travaux ont concerné l’ordonnancement et l’allocation des tuiles sur les processeurs physiques, et aucun, à notre connaissance, n’a considéré un ensemble de processeurs hétérogène. Dans ce rapport, nous étendons les techniques de partitionnement au cadre des ressources bornées et des processeurs de vitesses différentes. En particulier, nous présentons des stratégies d’ordonnancement et d’allocation asymptotiquement optimales. Nous démontrons l’intérêt pratique de ces stratégies par des expérimentations avec MPI sur un réseau hétérogène de stations de travail.

Mots-clés: partitionnement, recouvrement calculs-communications, allocation, ressources limitées, processeurs de vitesses différentes, réseau hétérogène.
Tiling for Heterogeneous Computing Platforms*

Pierre Boulet, Jack Dongarra, Yves Robert and Frédéric Vivien

1 LIP, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
2 Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA
3 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

In the framework of fully permutable loops, tiling has been extensively studied as a source-to-source program transformation. However, little work has been devoted to the mapping and scheduling of the tiles on physical processors. Moreover, targeting heterogeneous computing platforms has, to the best of our knowledge, never been considered. In this paper we extend tiling techniques to the context of limited computational resources with different-speed processors. In particular, we present efficient scheduling and mapping strategies that are asymptotically optimal. The practical usefulness of these strategies is fully demonstrated by MPI experiments on a heterogeneous network of workstations.

Key words: tiling, communication-computation overlap, mapping, limited resources, different-speed processors, heterogeneous networks

1 Introduction

Tiling is a widely used technique to increase the granularity of computations and the locality of data references. This technique applies to sets of fully permutable loops [22, 14, 10]. The basic idea is to group elemental computation points into tiles that will be viewed as computational units (the loop nest must be permutable so that such a transformation is valid). The larger the tiles, the more efficient are the computations performed using state-of-the-art processors with pipelined arithmetic units and a multilevel memory hierarchy (this feature is illustrated by recasting numerical linear algebra algorithms in terms of blocked Level 3 BLAS kernels [11, 8]). Another advantage of tiling is the decrease in communication time (which is proportional to the surface of the tile) relative to the computation time (which is proportional to the volume of the tile). The price to pay for tiling may be an increased latency; for example, if there are data dependencies, the first processor must complete the whole execution of the first tile before another processor can start the execution of...
the second one. Tiling also presents load-imbalance problems: the larger the tile, the more difficult it is to distribute computations equally among the processors.

Tiling has been studied by several authors and in different contexts (see, for example, [13, 19, 21, 18, 4, 20, 5, 16, 1, 7, 15, 6, 12]). Rather than providing a detailed motivation for tiling, we refer the reader to the papers by Calland, Dongarra, and Robert [6] and by Högsted, Carter, and Ferrante [12], which provide a review of the existing literature. Briefly, most of the work amounts to partitioning the iteration space of a uniform loop nest into tiles whose shape and size are optimized according to some criterion (such as the communication-to-computation ratio). Once the tile shape and size are defined, the tiles must be distributed to physical processors and the final scheduling must be computed.

A natural way to allocate tiles to physical processors is to use a cyclic allocation of tiles to processors. Several authors [16, 12, 3] suggest allocating columns of tiles to processors in a purely scattered fashion (in HPF words, this is a CYCLIC(1) distribution of tile columns to processors). The intuitive motivation is that a cyclic distribution of tiles is quite natural for load-balancing computations. Once the distribution of tiles to processors is fixed, there are several possible schedulings; indeed, any wavefront execution that goes along a left-to-right diagonal is valid. Specifying a columnwise execution may lead to the simplest code generation.

When all processors have equal speed, it turns out that a pure cyclic columnwise allocation provides the best solution among all possible distributions of tiles to processors [6]—provided that the communication cost for a tile is not greater than the computation cost. Since the communication cost for a tile is proportional to its surface, while the computation cost is proportional to its volume, this hypothesis will be satisfied if the tile is large enough.\(^2\)

However, the recent development of heterogeneous computing platforms poses a new challenge: that of incorporating processor speed as a new parameter of the tiling problem. Intuitively, if the user wants to use a heterogeneous network of computers where, say, some processors are twice as fast as some other processors, we may want to assign twice as many tiles to the faster processors. A cyclic distribution is not likely to lead to an efficient implementation. Rather, we should use strategies that aim at load-balancing the work while not introducing idle time. The design of such strategies is the goal of this paper.

The rest of the paper is organized as follows. In Section 2 we formally state the problem of tiling for heterogeneous computing platforms. All our hypotheses are listed and discussed, and we give a theoretical way to solve the problem by casting it in terms of a linear programming problem. The cost of solving the linear problem turns out to be prohibitive in practice, so we restrict ourselves to columnwise allocations. Fortunately, there exist asymptotically optimal columnwise allocations, as shown in Section 3, where several heuristics are introduced and proved. In Section 4 we provide MPI experiments that demonstrate the practical usefulness of our columnwise heuristics on a network of workstations. Finally, we state some conclusions in Section 5.

2 Problem Statement

In this section, we formally state the scheduling and allocation problem that we want to solve. We provide a complete list of all our hypotheses and discuss each in turn.

\(^1\)For example, for two-dimensional tiles, the communication cost grows linearly with the tile size while the computation cost grows quadratically.

\(^2\)Of course, we can imagine a theoretical situation in which the communication cost is so large that a sequential execution would lead to the best result.
2.1 Hypotheses

(H1) The computation domain (or iteration space) is a two-dimensional rectangle\(^3\) of size \(N_1 \times N_2\). Tiles are rectangular, and their edges are parallel to the axes (see Figure 1). All tiles have the same fixed size. Tiles are indexed as \(T_{i,j}, 0 \leq i < N_1, 0 \leq j < N_2\).

(H2) Dependences between tiles are summarized by the vector pair

\[
\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\]

In other words, the computation of a tile cannot be started before both its left and upper neighbor tiles have been executed. Given a tile \(T_{i,j}\), we call both tiles \(T_{i+1,j}\) and \(T_{i,j+1}\) its successors, whenever the indices make sense.

![Figure 1: A tiled iteration space with horizontal and vertical dependencies.](image)

(H3) There are \(P\) available processors interconnected as a (virtual) ring.\(^4\) Processors are numbered from 0 to \(P-1\). Processors may have different speeds: let \(t_q\) the time needed by processor \(P_q\) to execute a tile, for \(0 \leq q < P\). While we assume the computing resources are heterogeneous, we assume the communication network is homogeneous: if two adjacent tiles \(T\) and \(T'\) are not assigned to the same processor, we pay the same communication overhead \(T_{\text{com}}\), whatever the processors that execute \(T\) and \(T'\).

(H4) Tiles are assigned to processors by using a scheduling \(\sigma\) and an allocation function \(\text{proc}\) (both to be determined). Tile \(T\) is allocated to processor \(\text{proc}(T)\), and its execution begins at time-step \(\sigma(T)\). The constraints\(^5\) induced by the dependencies are the following: for each tile \(T\) and each of its successors \(T'\), we have

\[
\begin{align*}
\sigma(T) + t_{\text{proc}(T)} &\leq \sigma(T') & \text{if } \text{proc}(T) = \text{proc}(T') \\
\sigma(T) + t_{\text{proc}(T)} + T_{\text{com}} &\leq \sigma(T') & \text{otherwise}
\end{align*}
\]

\(^3\)In fact, the dimension of the tiles may be greater than 2. Most of our heuristics use a columnwise allocation, which means that we partition a single dimension of the iteration space into chunks to be allocated to processors. The number of remaining dimensions is not important.

\(^4\)The actual underlying physical communication network is not important.

\(^5\)There are other constraints to express (e.g., any processor can execute at most one tile at each time-step). See Section 2.3 for a complete formalization.
The makespan $MS(\sigma, \text{proc})$ of a schedule-allocation pair (σ, proc) is the total execution time required to execute all tiles. If execution of the first tile $T_{0,0}$ starts at time-step $t = 0$, the makespan is equal to the date at which the execution of the last tile is executed:

$$MS(\sigma, \text{proc}) = \sigma(T_{N_i,N_j}) + t_{\text{proc}}(T_{N_i,N_j}).$$

A schedule-allocation pair is said to be optimal if its makespan is the smallest possible over all (valid) solutions. Let T_{opt} denote the optimal execution time over all possible solutions.

2.2 Discussion

We survey our hypotheses and assess their motivations, as well as the limitations that they may induce.

Rectangular iteration space and tiles We note that the tiled iteration space is the outcome of previous program transformations, as explained in [13, 19, 21, 18, 4]. The first step in tiling amounts to determining the best shape and size of the tiles, assuming an infinite grid of virtual processors. Because this step will lead to tiles whose edges are parallel to extremal dependence vectors, we can perform a unimodular transformation and rewrite the original loop nest along the edge axes. The resulting domain may not be rectangular, but we can approximate it using the smallest bounding box (however, this approximation may impact the accuracy of our results).

Dependence vectors We assume that dependencies are summarized by the vector pair $V = \{(1, 0)^t, (0, 1)^t\}$. Note that these are dependencies between tiles, not between elementary computations. Hence, having right- and top-neighbor dependencies is a very general situation if the tiles are large enough. Technically, since we deal with a set of fully permutable loops, all dependence vectors have nonnegative components only, so that V permits all other dependence vectors to be generated by transitivity. Note that having a dependence vector $(0, a)^t$ with $a \geq 2$ between tiles, instead of having vector $(0, 1)^t$, would mean unusually long dependencies in the original loop nest, while having $(0, a)^t$ in addition to $(0, 1)^t$ as a dependence vector between tiles is simply redundant. In practical situations, we might have an additional diagonal dependence vector $(1, 1)^t$ between tiles, but the diagonal communication may be routed horizontally and then vertically, or the other way round, and even may be combined with any of the other two messages (because of vectors $(0, 1)^t$ and $(1, 0)^t$).

Computation-communication overlap Note that in our model, communications can be overlapped with the computations of other (independent) tiles. Assuming communication-computation overlap seems a reasonable hypothesis for current machines that have communication coprocessors and allow for asynchronous communications (posting instructions ahead, or using active messages). We can think of independent computations going along a thread while communication is initiated and performed by another thread [17]. An interesting approach has been proposed by Andonov and Rajopadhye [3]: they introduce the tile period P_i as the time elapsed between corresponding instructions of two successive tiles that are mapped to the same processor, while they define the tile latency L_i to be the time between corresponding instructions of two successive tiles that are mapped to different processors. The power of this approach is that the expressions for L_i and P_i can be modified to take into account several architectural models. A detailed architectural model is presented in [3], and several other models are explored in [2]. With our notation, $P_i = t_i$ and $L_i = t_i + T_{\text{com}}$ for processor P_i.

4
Finally, we briefly mention another possibility for introducing heterogeneity into the tiling model. We chose to have all tiles of same size and to allocate more tiles to the faster processors. Another possibility is to evenly distribute tiles to processors, but to let their size vary according to the speed of the processor they are allocated to. However, this strategy would severely complicate code generation. Also, allocating several neighboring fixed-size tiles to the same processor will have similar effects as allocating variable-size tiles, so our approach will cause no loss of generality.

2.3 ILP Formulation

We can describe the tiled iteration space as a task graph \(G = (V, E) \), where vertices represent the tiles and edges represent dependencies between tiles. Computing an optimal schedule-allocation pair is a well-known task graph scheduling problem, which is NP-complete in the general case [9].

If we want to solve the problem as stated (hypotheses (H1) to (H4)), we can use an integer linear programming formulation. Several constraints must be satisfied by any valid schedule-allocation pair. In the following, \(T_{max} \) denotes an upper bound on the total execution time. For example, \(T_{max} \) can be the execution time when all the tiles are given to the fastest processor: \(T_{max} = N_1 \times N_2 \times \min_{0 \leq i < P} t_i \).

We now translate these constraints into equations. In the following, let \(i \in \{1, \ldots, N_1\} \) denote a row number, \(j \in \{1, \ldots, N_2\} \) a column number, \(q \in \{0, \ldots, P - 1\} \) a processor number, and \(t \in \{0, \ldots, T_{max}\} \) a time-step.

- **Number of executions.** Let \(B_{i,j,q,t} \) be an integer variable indicating whether the execution of tile \(T_{i,j} \) began at time-step \(t \) on processor \(q \): if this is the case, then \(B_{i,j,q,t} = 1 \), and \(B_{i,j,q,t} = 0 \) otherwise. Each tile must be executed once, and thus starts at one and only one time-step. Therefore, the constraints are

\[
\forall i, j, q, t, \quad B_{i,j,q,t} \geq 0 \quad \text{and} \quad \forall i, j, \sum_{q=0}^{P-1} \sum_{t=0}^{T_{max}} B_{i,j,q,t} = 1.
\]

- **Execution place and date.** Using \(B_{i,j,q,t} \), we can compute the date \(D_{i,j} \) at which tile \((i, j)\) starts execution. We can also check which processor \(q \) processes tile \((i, j)\). The 0/1 result is stored in \(P_{i,j,q} \):

\[
\forall i, j, \quad D_{i,j} = \sum_{p=0}^{P-1} \sum_{t=0}^{T_{max}} t \times B_{i,j,q,t} \quad \text{and} \quad \forall i, j, q, \quad P_{i,j,q} = \sum_{t=0}^{T_{max}} B_{i,j,q,t}.
\]

- **Communications.** There must be a communication delay between the end of execution of tile \((i - 1, j)\) (resp. \((i, j - 1)\)) and the beginning of execution of tile \((i, j)\) if and only the two tiles are not executed by the same processor, that is, if and only if there exists \(q \) such that \(P_{i,j,q} \neq P_{i,j,q-1} \) (resp. \(P_{i,j,q} \neq P_{i,j-1,q} \)). The boolean result is stored in \(v_{i,j} \) (resp. \(h_{i,j} \)): \(v_{i,j} = 1 \) if tiles \((i - 1, j)\) and \((i, j)\) are not executed by the same processor, and \(v_{i,j} = 0 \) otherwise. We have a similar definition for \(h_{i,j} \) using tiles \((i, j-1)\) and \((i, j)\). The equations are:

\[
\forall i \geq 2, j, q, \quad v_{i,j} \geq P_{i,j,q} - P_{i-1,j,q}, \quad v_{i,j} \geq P_{i-1,j,q} - P_{i,j,q},
\]

\[
\forall i, j \geq 2, q, \quad h_{i,j} \geq P_{i,j,q} - P_{i,j-1,q}, \quad h_{i,j} \geq P_{i,j-1,q} - P_{i,j,q}.
\]

Note that if a communication delay is needed between the execution of tile \((i - 1, j)\) and that of tile \((i, j)\), then \(v_{i,j} \) will impose one. If none is needed, \(v_{i,j} \) may still be equal to 1, as long as this does not increase the total execution time.
We need only to add the objective function: the minimization of the time presented in Figure 2. Since an optimal rational solution of this problem is not always an integer step at which the execution of the last tile would be prohibitive for any practical application. Furthermore, even if we could solve Figure 2 contains more than $PN_1N_2T_{max}$ variables and inequalities. The cost of solving such a problem would be prohibitive for any practical application. Furthermore, even if we could solve the linear program, we might not be pleased with the solution. We probably would prefer “regular” allocations of tiles to processors, such as columnwise or rowwise allocations.

Nevertheless, such allocations can lead to asymptotically optimal solutions, as shown in the next section.

Figure 2: Integer linear program that optimally solves the schedule-allocation problem.

- **Precedence constraints.** The execution of tile $(i - 1, j)$ (resp. $(i, j - 1)$) must be finished, and the data transferred, before the beginning of execution of tile (i, j):

$$
\forall i \geq 2, j \quad D_{i,j} \geq D_{i-1,j} + v_{i,j} T_{com} + \sum_{q=0}^{P-1} P_{i-1,j,q} t_q
$$

$$
\forall i, j \geq 2, \quad D_{i,j} \geq D_{i,j-1} + h_{i,j} T_{com} + \sum_{q=0}^{P-1} P_{i,j-1,q} t_q
$$

- **Number of tiles executed at any time-step.** A processor executes (at most) one tile at the time. Therefore processor q can start executing at most one tile in any interval of time t_q (as t_q is the time to execute a tile by processor q):

$$
\forall q, \quad t_q - 1 \leq T_{max}, \sum_{t'=t_q-1}^{t_q} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} B_{i,j,q,t'} \leq 1
$$

Now that we have expressed all our constraints in a linear way, we can write the whole linear programming system. We need only to add the objective function: the minimization of the time-step at which the execution of the last tile T_{N_1,N_2} is terminated. The final linear program is presented in Figure 2. Since an optimal rational solution of this problem is not always an integer solution, this program must be solved as an integer linear program.

The main drawback of the linear programming approach is its huge cost. The program shown Figure 2 contains more than $PN_1N_2T_{max}$ variables and inequalities. The cost of solving such a problem would be prohibitive for any practical application. Furthermore, even if we could solve the linear program, we might not be pleased with the solution. We probably would prefer “regular” allocations of tiles to processors, such as columnwise or rowwise allocations.

Nevertheless, such allocations can lead to asymptotically optimal solutions, as shown in the next section.
3 Columnwise Allocation

Before introducing asymptotically optimal columnwise (or rowwise) allocations, we give a small example to show that columnwise allocations (or equivalently rowwise allocations) are not optimal.

3.1 Optimality and Columnwise Allocations

Consider a tiled iteration space with \(N_2 = 2 \) columns, and suppose we have \(P = 2 \) processors such that \(t_1 = 5 \times t_0 \): the first processor is five times faster than the second one. Suppose for the sake of simplicity that \(T_{\text{com}} = 0 \). If we use a columnwise allocation,

- either we allocate both columns to processor 0, and the makespan is \(MS = 2N_1t_0 \)
- or we allocate one column to each processor, and the makespan is greater than \(N_1t_1 \) (a lower bound time for the slow processor to process its column)

The best solution is to have the fast processor execute all tiles. But if \(N_1 \) is large enough, we can do better by allocating a small fraction of the first column (the last tiles) to the slow processor, which will process them while the first processor is active executing the first tiles of the second column. For instance, if \(N_1 = 6n \) and if we allocate the last \(n \) tiles of the first column to the slow processor (see Figure 3), the execution time becomes \(MS = 11n t_0 = \frac{11}{6} N_1 t_0 \), which is better than the best columnwise allocation.\(^6\)

![Figure 3: Allocating tiles for a two-column iteration space.](image)

This small example shows that our target problem is intrinsically more complex than the instance with same-speed processors: as shown in [6], a columnwise allocation would be optimal for our two-column iteration space with two processors of equal speed.

3.2 Heuristic Allocation by Block of Columns

Throughout the rest of the paper we make the following additional hypothesis:

(H5) We impose the allocation to be columnwise: \(^7\) all tiles \(T_{i,j} \), \(1 \leq i \leq N_1 \), are allocated to the same processor.

\(^6\)This is not the best possible allocation, but it is superior to any columnwise allocation.

\(^7\)Note that the problem is symmetric in rows and columns. We could study rowwise allocations as well.
We start with an easy lemma to bound the optimal execution time T_{opt}:

Lemma 1

$$T_{\text{opt}} \geq \frac{N_1 \times N_2}{\sum_{i=0}^{P-1} \frac{1}{t_i}}.$$

Proof Let x_i be the number of tiles allocated to processor i, $0 \leq i < P$. Obviously, $\sum_{i=0}^{P-1} x_i = N_1 N_2$. Even if we take into account neither the communication delays nor the dependence constraints, the execution time T is greater than the computation time of each processor: $T \geq x_i t_i$ for all $0 \leq i < P$. Rewriting this as $x_i \leq T/t_i$ and summing over i, we get $N_1 N_2 = \sum_{i=0}^{P-1} x_i \leq (\sum_{i=0}^{P-1} \frac{1}{t_i})T$, hence the result.

The proof of Lemma 1 leads to the (intuitive) idea that tiles should be allocated to processors in proportion to their relative speeds, so as to balance the workload. Specifically, let $L = \text{lcm}(t_0, t_1, \ldots, t_{P-1})$, and consider an iteration space with L columns: If we allocate $\frac{L}{t_i}$ tile columns to processor i, all processors need the same number of time-steps to compute all their tiles: the workload is perfectly balanced. Of course, we must find a good schedule so that processors do not remain idle, waiting for other processors because of dependence constraints.

We introduce below a heuristic that allocates the tiles to processors by blocks of columns whose size is computed according to the previous discussion. This heuristic produces an asymptotically optimal allocation: the ratio of its makespan over the optimal execution time tends to 1 as the number of tiles (the domain size) increases.

In a columnwise allocation, all the tiles of a given column of the iteration space are allocated to the same processor. When contiguous columns are allocated to the same processor, they form a block. When a processor is assigned several blocks, the scheduling is the following:

1. Block are computed one after the other, in the order defined by the dependencies. The computation of the current block must be completed before the next block is started.

2. The tiles inside each block are computed in a rowwise order: if, say, 3 consecutive columns are assigned to a processor, it will execute the three tiles in the first row, then the three tiles in the second row, and so on. Note that (given 1.) this strategy is the best to minimize the latency (for another processor to start next block as soon as possible).

The following lemma shows that dependence constraints do not slow down the execution of two consecutive blocks (of adequate size) by two different-speed processors:

Lemma 2 Let P_1 and P_2 be two processors that execute a tile in time t_1 and t_2, respectively. Assume that P_1 was allocated a block B_1 of c_1 contiguous columns and that P_2 was allocated the block B_2 consisting of the following c_2 columns. Let c_1 and c_2 satisfy the equality $c_1 t_1 = c_2 t_2$.

Assume that P_1, starting at time-step s_1, is able to process B_1 without having to wait for any tile to be computed by some other processor. Then P_2 will be able to process B_2 without having to wait for any tile computed by P_1, if it starts at time $s_2 \geq c_1 t_1 + T_{\text{com}}$.

Proof P_1 (resp. P_2) executes its block row by row. The execution time of a row is $c_1 t_1$ (resp. $c_2 t_2$). By hypothesis, it takes the same amount of time for P_1 to compute a row of B_1 as for P_2 to compute a row of B_2.

Since P_1 is able to process B_1 without having to wait for any tile to be computed by some other processor, it finishes computing the ith row of B_1 at time $s_1 + ic_1 t_1$.

Let P_2 not start processing the first tile of the ith row of B_2 before P_1 has computed the last tile of the ith row of B_1 and has sent that data to P_2, that is, at time-step $s_1 + ic_1t_1 + T_{com}$.

Since P_2 starts processing the first row of B_2 at time s_2, where $s_2 \geq s_1 + c_1t_1 + T_{com}$, it is not delayed by P_1. Later on, P_2 will process the first tile of the ith row of B_2 at time $s_2 + (i - 1)c_2t_2 = s_2 + (i - 1)c_1t_1 \geq s_1 + c_1t_1 + T_{com} + (i - 1)c_1t_1 = s_1 + ic_1t_1 + T_{com}$; hence P_2 will not be delayed by P_1.

We are ready to introduce our heuristic.

Heuristic

Let P_0, \ldots, P_{P-1} be P processors that respectively execute a tile in time t_0, \ldots, t_{P-1}. We allocate column blocks to processors by chunks of $C = L \times \sum_{i=0}^{P-1} \frac{1}{t_i}$, where $L = \text{lcm}(t_0, t_1, \ldots, t_{P-1})$ columns. For the first chunk, we assign the block B_0 of the first L/t_0 columns to P_0, the block B_1 of the next L/t_1 columns to P_1, and so on until P_{P-1} receives the last L/t_{P-1} columns of the chunk. We repeat the same scheme with the second chunk (columns $C + 1$ to $2C$) first, and so on until all columns are allocated (note that the last chunk may be incomplete). As already said, processors will execute blocks one after the other, row by row within each block.

Lemma 3 The difference between the execution time of the heuristic allocation by columns and the optimal execution time is bounded as

$$T - T_{opt} \leq (P - 1)T_{com} + (N_1 + N_2 - 1)\text{lcm}(t_0, t_1, \ldots, t_{P-1}).$$

Proof Let $L = \text{lcm}(t_0, t_1, \ldots, t_{P-1})$. Lemma 2 ensures that, if processor P_i starts working at time-step $s_i = i(L + T_{com})$, it will not be delayed by other processors. By definition, each processor executes one block in time LN_1. The maximal number of blocks allocated to a processor is

$$n = \left\lceil \frac{N_2}{L \times \sum_{i=0}^{P-1} \frac{1}{t_i}} \right\rceil.$$

The total execution time, T, is equal to the date the last processor terminates execution. T can be bounded as follows:

$$T \leq s_{P_1} + n \times LN_1.$$

On the other hand, T_{opt} is bounded below by Lemma 1. We derive

$$T - T_{opt} \leq (P - 1)(L + T_{com}) + LN_1 \left\lceil \frac{N_2}{L \times \sum_{i=0}^{P-1} \frac{1}{t_i}} \right\rceil - \frac{N_1 \times N_2}{\sum_{i=0}^{P-1} \frac{1}{t_i}}.$$

Since $\lceil x \rceil \leq x + 1$ for any rational number x, we obtain the desired formula.

Proposition 1 Our heuristic is asymptotically optimal: letting T be its makespan, and T_{opt} be the optimal execution time, we have

$$\lim_{N_2 \to +\infty} \frac{T}{T_{opt}} = 1.$$

\(^8\)Processor P_{P-1} is not necessarily the last one, because the last chunk may be incomplete.
The two main advantages of our heuristic are (i) its regularity, which leads to an easy implementation; and (ii) its guarantee: it is theoretically proved to be close to the optimal. However, we will need to adapt it to deal with practical cases, because the number $C = L \times \sum_{i=0}^{P-1} \frac{1}{t_i}$ of columns in a chunk may be too large.

4 Practical Heuristics

In the preceding section, we described a heuristic that allocates blocks of columns to processors in a cyclic fashion. The size of the blocks is related to the relative speed of the processors. However, the execution time variables t_i are not known accurately in practice, and a straightforward application of our heuristic would lead to difficulties, as shown next in Section 4.1. We explain how to modify the heuristic (computing different block sizes) in Section 4.2.

4.1 Processor Speed

To expose the potential difficulties of the heuristic, we conducted experiments on a heterogeneous network of eight Sun workstations. To compute the relative speed of each workstation, we used a program that runs the same piece of computation that will be used later in the tiling program. Results are reported in Table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>nala</th>
<th>bluegrass</th>
<th>dancer</th>
<th>donner</th>
<th>vixen</th>
<th>rudolph</th>
<th>zazu</th>
<th>simba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Ultra 2</td>
<td>SS 20</td>
<td>SS 5</td>
<td>SS 5</td>
<td>SS 5</td>
<td>SS 10</td>
<td>SS 1/4/60</td>
<td>SS 1/4/60</td>
</tr>
<tr>
<td>Execution time t_i</td>
<td>11</td>
<td>26</td>
<td>33</td>
<td>33</td>
<td>38</td>
<td>40</td>
<td>528</td>
<td>530</td>
</tr>
</tbody>
</table>

Table 1: Measured computation times showing relative processor speeds.

To use our heuristic, we must allocate chunks of size $C = L \sum_{i=0}^{P-1} \frac{1}{t_i}$ columns, where $L = \text{lcm}(t_0, t_1, \ldots, t_7) = 34,560,240$. We compute that $C = 8,469,789$ columns, which would require a very large problem size indeed. Needless to say, such a large chunk is not feasible in practice. Also, our measurements for the processor speeds may not be inaccurate, and a slight change may dramatically impact the value of C. Hence, we must devise another method to compute the sizes of the blocks allocated to each processor (see Section 4.2). In Section 4.3, we present simulation results and discuss the practical validity of our modified heuristics.

4.2 Modified Heuristic

Our goal is to choose the "best" block sizes allocated to each processor while bounding the total size of a chunk. We first define the cost of a block allocation and then describe an algorithm to compute the best possible allocation, given an upper bound for the chunk.

4.2.1 Cost Function

As before, we consider heuristics that allocate tiles to processors by blocks of columns, repeating each chunk in a cyclic fashion. Consider a heuristic defined by $C = (c_0, \ldots, c_{P-1})$, where c_i is the number of columns in each block allocated to processor P_i.

\[The 8 workstations were not dedicated to our experiments. Even though we were running these experiments during the night, some other users' processes might have been running. Also, we have averaged the results, so the error margin roughly lies between 5% and 10%.\]
Definition 1 The cost of a block size allocation \(C \) is the maximum of the computation times \((c_i t_i)\) of each block divided by the total number of columns computed in each chunk:

\[
\text{cost}(C) = \frac{\max_{0 \leq i \leq P-1} c_i t_i}{\sum_{0 \leq i \leq P-1} c_i}.
\]

Considering the steady state of the computation, all processors work in parallel inside their block, so that the computation time of a whole chunk is the maximum of the computation times of the processors. During this time, \(s = \sum_{0 \leq i \leq P-1} c_i \) columns are computed. Hence, the average time to compute a single column is given by your cost function. When the number of columns is much larger than the size of the chunk, the total computation time can well be approximated by \(C \times N_2 \), the product of the average time to compute a column by the total number of columns.

4.2.2 Optimal Block Size Allocations

As noted before, our cost function correctly models reality when the number of columns in each chunk is much smaller than the total number of columns of the domain. We now describe an algorithm that returns the best (with respect to the cost function) block size allocation given a bound \(s \) on the number of columns in each chunk.

We build a function that, given a best allocation with a chunk size equal to \(n - 1 \), computes a best allocation with a chunk size equal to \(n \). Once we have this function, we start with an initial chunk size \(n = 0 \), compute a best allocation for each increasing value of \(n \) up to \(n = s \), and select the best allocation encountered so far.

First we characterize the best allocations for a given chunk size \(s \):

Lemma 4 Let \(C = (c_0, \ldots, c_{P-1}) \) be an allocation, and let \(s = \sum_{0 \leq i \leq P-1} c_i \) be the chunk size. Let \(m = \max_{1 \leq i \leq P} c_i t_i \) denote the maximum computation time inside a chunk. If \(C \) verifies

\[
\forall i, 0 \leq i \leq P - 1, \ t_i c_i \leq m \leq t_i (c_i + 1),
\]

then it is optimal for the chunk size \(s \).

Proof Take an allocation verifying the above condition 1. Suppose that it is not optimal. Then there exists a better allocation \(C' = (c'_0, \ldots, c'_{P-1}) \) with \(\sum_{0 \leq i \leq P-1} c'_i = s \), such that

\[
m' = \max_{0 \leq i \leq P-1} c'_i t_i < m.
\]

By definition of \(m \), there exists \(i_0 \) such that \(m = c_{i_0} t_{i_0} \). We can then successively derive

\[
c_{i_0} t_{i_0} = m > m' \geq c'_{i_0} t_{i_0},
\]

\[
c_{i_0} > c'_{i_0}
\]

\[
\exists i_1, c_{i_1} < c'_{i_1} \quad (\text{because} \quad \sum_{0 \leq i \leq P-1} c_i = s = \sum_{0 \leq i \leq P-1} c'_i)
\]

\[
c_{i_1} + 1 \leq c'_{i_1}
\]

\[
t_{i_1} (c_{i_1} + 1) \leq t_{i_1} c'_{i_1}
\]

\[
m \leq m' \quad (\text{by definition of} \quad m \quad \text{and} \quad m')
\]

which contradicts the non-optimality of the original allocation. \(\blacksquare \)

There remains to build allocations satisfying Condition (1). The following algorithm suffices:
For the chunk size $s = 0$, take the optimal allocation $(0, 0, \ldots, 0)$.

To derive an allocation C' verifying equation (1) with chunk size s from an allocation C verifying (1) with chunk size $s - 1$, add 1 to a well-chosen c_j one that verifies

$$t_j(c_j + 1) = \min_{0 \leq i \leq P-1} t_i(c_i + 1).$$

(2)

In other words, let $c_i' = c_i$ for $0 \leq i \leq P - 1, i \neq j$, and $c_j' = c_j + 1$.

Lemma 5 This algorithm is correct.

Proof We have to prove that allocation C', given by the algorithm, verifies Equation (1).

Since allocation C verifies equation (1), we have $t_i c_i \leq m \leq t_j(c_j + 1)$. By definition of j from Equation (2), we have

$$m' = \max_{0 \leq i \leq P-1} t_i c_i' = \max \left(t_j(c_j + 1), \max_{1 \leq i \leq q, i \neq j} t_i c_i \right) = t_j c_j'.

We then have $t_j c_j' \leq m' \leq t_j(c_j' + 1)$ and

$$\forall i \neq j, 1 \leq i \leq q, \quad t_i c_i' = t_i c_i \leq m' \leq t_j c_j' = \min_{0 \leq i \leq P-1} t_i(c_i + 1) \leq t_i(c_i + 1) = t_i(c_i' + 1),$$

so the resulting allocation does verify Equation (1).

To summarize, we have built an algorithm to compute "good" block sizes for the heuristic allocation by blocks of columns. One selects an upper bound on the chunk size, and our algorithm returns the best block sizes, according to our cost function, with respect to this bound.

The complexity of this algorithm is $O(Ps)$, where P is the number of processors and s, the upper bound on the chunk size. Indeed, the algorithm consists of s steps where one computes a minimum over the processors. This low complexity allows us to perform the computation of the best allocation at runtime.

A Small Example. To understand how the algorithm works, we present a small example with $P = 3$, $t_0 = 3$, $t_1 = 5$, and $t_2 = 8$. In Table 2, we report the best allocations found by the algorithm up to $s = 7$. The entry "Selected j" denotes the value of j that is chosen to build the next allocation. Note that the cost of the allocations is not a decreasing function of s. If we allow chunks of size not greater than 7, the best solution is obtained with the chunk $(3, 2, 1)$ of size 6.

Finally, we point out that our modified heuristic "converges" to the original asymptotically optimal heuristic. For a chunk of size $C = L \times \sum_{i=0}^{P-1} \frac{1}{t_i}$, where $L = \text{lcm}(t_0, t_1, \ldots, t_{P-1})$ columns, we obtain the optimal cost

$$\text{cost}_{\text{opt}} = \frac{L}{C} = \left(\sum_{0 \leq i \leq P-1} \frac{1}{t_i} \right)^{-1},$$

which is the inverse of the harmonic mean of the execution times divided by the number of processors.
Table 2: Running the algorithm with 3 processors: $t_0 = 3$, $t_1 = 5$, and $t_2 = 8$.

4.3 MPI Experiments

We report several experiments on the network of workstations presented in Section 4.1. After comments on the experiments, we focus on cyclic and block-cyclic allocations and then on our modified heuristics.

4.3.1 General Remarks

We study different columnwise allocations on the heterogeneous network of workstations presented in Section 4.1. Our simulation program is written in C using the MPI library for communication. It is not an actual tiling program, but it simulates such behavior: we have not inserted the code required to deal with the boundaries of the computation domain. The domain has 100 rows and a number of columns varying from 200 to 1000 by steps of 100. An array of doubles is communicated for each communication; its size is the square root of the tile area.

The actual communication network is an Ethernet network. It can be considered as a bus, not as a point-to-point connection ring; hence our model for communication is not fully correct. However, this configuration has little impact on the results, which correspond well to the theoretical conditions.

As already pointed out, the workstations we use are multiple-user workstations. Although our simulations were made at times when the workstations were not supposed to be used by anybody else, the load may vary. The timings reported in the figures are the average of several measures from which aberrant data have been suppressed.

In Figures 4 and 6, we show for reference the sequential time as measured on the fastest machine, namely, "nala".

4.3.2 Cyclic Allocations

We have experimented with cyclic allocations on the 6 fastest machines, on the 7 fastest machines, and on all 8 machines. Because cyclic allocation is optimal when all processors have the same speed, this will be a reference for other simulations. We have also tested a block cyclic allocation with block size equal to 10, in order to see whether the reduced amount of communication helps. Figure 4 presents the results for these 6 allocations (3 purely cyclic allocations using 6, 7, and 8 machines, and 3 block-cyclic allocations).

We comment on the results of Figure 4 as follows:

\[\text{Chunk Size} \quad c_0 \quad c_1 \quad c_2 \quad \text{Cost} \quad \text{Selected } j\]

<table>
<thead>
<tr>
<th>Chunk Size</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>Cost</th>
<th>Selected j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1.67</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1.71</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{Table 2: Running the algorithm with 3 processors: } t_0 = 3, t_1 = 5, \text{ and } t_2 = 8.\]

\[\text{10}\text{Some results are not available for 200 columns because the chunk size is too large.}\]
Remark cyclic(b,m) corresponds to a block cyclic allocation with block size b, using the m fastest machines of Table 1.

Figure 4: Experimenting with cyclic and block-cyclic allocations.

- With the same number of machines, a block size of 10 is better than a block size of 1 (pure cyclic).
- With the same block size, adding a single slow machine is disastrous, and adding the second one only slightly improve the disastrous performances.
- Overall, only the block cyclic allocation with block size 10 and using the 6 fastest machines gives some speedup over the sequential execution.

We conclude that cyclic allocations are not efficient when the computing speeds of the available machines are very different. For the sake of completeness, we show in Figure 5 the execution times obtained for the same domain (100 rows and 1000 columns) and the 6 fastest machines, for block cyclic allocations with different block sizes. We see that the block-size as a small impact on the performances, which corresponds well to the theory: all cyclic allocations have the same cost.

4.3.3 Using our modified heuristic

Let us now consider our heuristics. In Table 3, we show the block sizes computed by the algorithm described in Section 4.2) for different upper bounds of the chunk size. The best allocation computed with bound \(\bar{u} \) is denoted as \(C_{\bar{u}} \).

The time needed to compute these allocations is completely negligible with respect to the computation times (a few milliseconds versus several seconds).
Figure 5: Cyclic allocations with different block sizes.

<table>
<thead>
<tr>
<th></th>
<th>nala</th>
<th>bluegrass</th>
<th>dancer</th>
<th>donner</th>
<th>vixen</th>
<th>rudolph</th>
<th>zazu</th>
<th>simba</th>
<th>cost</th>
<th>chunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{25}</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4.44</td>
<td>18</td>
</tr>
<tr>
<td>C_{50}</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4.23</td>
<td>39</td>
</tr>
<tr>
<td>C_{100}</td>
<td>33</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4.18</td>
<td>87</td>
</tr>
<tr>
<td>C_{150}</td>
<td>52</td>
<td>22</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>4.12</td>
<td>139</td>
</tr>
</tbody>
</table>

Table 3: Block sizes for different chunk size bounds.

Figure 6 presents the results for these allocations. Here are some comments:

- Each of the allocations computed by our heuristic is superior to the best block-cyclic allocation.

- The more precise the allocation, the better the results.

- For 1000 columns and allocation C_{150}, we obtain a speedup of 2.2 (and 2.1 for allocation C_{50}), which is very satisfying (see below).

The optimal cost for our workstation network is $\text{cost}_{opt} = \frac{L}{C} = \frac{34,500,240}{8,469,789} = 4.08$. Note that the cost of $\text{cost}(C_{150}) = 4.12$ is very close to the optimal cost. The peak theoretical speedup is equal to $\frac{\min_i \text{cost}_i}{\text{cost}_{opt}} = 2.7$. For 1000 columns, we obtain a speedup equal to 2.2 for C_{150}. This is satisfying considering that we have here only 7 chunks, so that side effects still play an important role. Note also that the peak theoretical speedup has been computed by neglecting all the dependencies in the computation and all the communications overhead. Hence, obtaining a twofold speedup with 8 machines of very different speeds is not a bad result at all!

5 Conclusion

In this paper, we have extended tiling techniques to deal with heterogeneous computing platforms. Such platforms are likely to play an important role in the near future. We have introduced an asymptotically optimal columnwise allocation of tiles to processors. We have modified this heuristic
to allocate column chunks of reasonable size, and we have reported successful experiments on a network of workstations. The practical significance of the modified heuristics should be emphasized: processor speeds may be inaccurately known, but allocating small but well-balanced chunks turns out to be quite successful.

Heterogeneous platforms are ubiquitous in computer science departments and companies. The development of our new tiling techniques allows for the efficient use of older computational resources in addition to newer available systems.

References

