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Abstract

A great amount of work has been devoted to the understanding of the long�
time behavior of cellular automata �CA�� As for any other kind of dynamical
system	 the long�time behavior of a CA is described by its attractors� In this
context	 it has been proved that it is undecidable to know whether every circular
con
guration of a given CA evolves to some 
xed point �not unique�� In this paper
we prove that it remains undecidable to know whether every circular con
guration
of a given CA evolves to the same 
xed point� Our proof is based on properties
concerning NW�deterministic periodic tilings of the plane� As a corollary it
is concluded the �already proved� undecidability of the periodic tiling problem
�nevertheless	 our approach could also be used to prove this result in a direct and
very simple way��

Keywords� cellular automata	 periodic tilings of the plane�

R�esum�e

De nombreux travaux ont �et�e consacr�es �a la compr�ehension de l�evolution �a long
terme des automates cellulaires �AC�� Comme pour les autres types de syst�emes
dynamiques	 cette �evolution �a long terme est d�ecrite par ses attracteurs� Dans
ce contexte	 il a �et�e d�emontr�e ind�ecidable de savoir si toute con
guration p�eri�
odique dun AC donn�e �evolue vers un point 
xe �peut��etre non unique�� Dans
cet article	 nous prouvons lind�ecidabilit�e de savoir si toute con
guration p�eri�
odique evolue vers le m�eme point 
xe� Notre preuve sappuie sur les propiet�es
des pavages NW�d�eterministe et p�eriodiques du plan� Comme corollaire	 nous
obtenons lind�ecidabilit�e �d�ej�a connue� de la pavabilit�e p�eriodique �cependant
notre approche permet darriver �a ce r�esultat de fa�con simple et directe��

Mots�cl�es� automates cellulaires	 pavages p�eriodiques du plan�
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Abstract

A great amount of work has been devoted to the understanding of the long�time
behavior of cellular automata 	CA
� As for any other kind of dynamical system� the
long�time behavior of a CA is described by its attractors� In this context� it has
been proved that it is undecidable to know whether every circular conguration of
a given CA evolves to some xed point 	not unique
� In this paper we prove that
it remains undecidable to know whether every circular conguration of a given CA
evolves to the same xed point� Our proof is based on properties concerning NW�
deterministic periodic tilings of the plane� As a corollary it is concluded the 	already
proved
 undecidability of the periodic tiling problem 	nevertheless� our approach could
also be used to prove this result in a direct and very simple way
�
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� Introduction

Cellular automata �CA� are discrete dynamical systems� They are de
ned by a lattice of

cells and a local rule by which the state of a cell is determined as a function of the state
of its neighborhood� A con�guration of a CA is an assignment of states to the cells of the
lattice� The global transition function is a map from the space of all con
gurations to itself
obtained by applying the local rule simultaneously to all the cells� This global transition
function corresponds to the CA dynamics�
Because of the dynamical system nature of CA	 a great amount of work has been de�

voted to the understanding of its long�time behavior �consider	 for instance	 the well known
Wolframs classi
cation of �Wol����� The long�time behavior of any dynamical system is
described by its attractors� In this context	 for the two �and higher� dimensional CA	 it was
proved in �CPY��� the undecidability of the nilpotency problem �which	 in practice	 consists
to decide whether every con
guration of a given CA evolves to the same 
xed point in a

nite number of steps�� Later J� Kari proved in �Kar��� the undecidability of the nilpotency
problem for the one�dimensional case�
On the other hand	 K� Sutner in �Sut��� restricted previous kind of study to circular

con�gurations �those spatially periodic� because of their 
nitary description and therefore
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their possibility of being handled in the framework of ordinary computability theory� More
precisely	 by the use of non�standard simulations of Turing machines	 it was proved that it
is undecidable to know whether every circular con
guration of a given one�dimensional CA
evolves to some 
xed point �not unique��
In this paper we prove that it remains undecidable to know whether every circular con�


guration of a given one�dimensional CA evolves to the same 
xed point� Our result allows
us to conclude the one of Sutner in a rather direct way�
The structure of our proof is inspired on the one developed by J� Kari in �Kar���� In fact	

our work is based on results concerning tiling problems and	 in particular	 on the useful NW�

deterministic notion �roughly	 a set of tiles is NW�deterministic if it is locally deterministic in
one dimension�� More precisely	 here we prove that it is undecidable to know whether a given
NW�deterministic set of tiles admits a periodic tiling of the plane� Despite the similarity
with Karis result	 our objects are di�erent in nature� the CA con
gurations considered here
are circular and the tilings of the plane are periodic� In this particularity lies the di�culty
of our proof�
By the way	 and as an obvious consequence	 it can be concluded the undecidability of

the periodic tiling problem �in which it is asked whether an arbitrary set of tiles admits a
periodic tiling of the plane�� This result was obtained by Gurevich�Koriakov in �GK����
Nevertheless	 we would like to remark that our approach could also be used to prove the
Gurevich�Koriakov result in a direct way� In fact	 when the NW�deterministic property is
no more required	 most of the technicities of the proof are no more needed and it becomes
very simple�

� De�nitions

A one�dimensional cellular automaton with unitary radius neighborhood	 or simply a CA	
is a couple �Q� �� where Q is a 
nite set of states and � � Q� � Q is a transition function�
A con
guration of a CA �Q� �� is a bi�in
nite sequence C � QZZ	 and its global transition
function G� � QZZ � QZZ is such that �G��C��i � ��Ci��� Ci� Ci��� for all i � ZZ� For t �

IN� � IN � f�g it is de
ned recursively Gt
��C� � G��G

�t���
� �C�� with G�

��C� � C� A set of
di�erent con
gurations fC���� � � � � C�T���g is said to be a cycle of length T if Gt

��C
���� � C�t�

for t � f�� � � � � T � �g and G��C�T���� � C���� A 
xed point is a cycle of unitary length� We
say that a con
guration C is circular if there exists a P � IN� for which Ci � Ci�P for all
i � ZZ�
In the global �xed point attractor problem it is asked whether every circular con
guration

of a given CA evolves to the same 
xed point�
This work is mainly based on properties concerning periodic tilings of the plane� A tile

is a labeled unit sized square� A tiling system is a pair �T � �� where T is a 
nite set of tiles
and � � T � � T is a partial function called local matching� A tiling of the plane by �T � �� is
an assignment X � T ZZ�

satisfying for all i� j � ZZ� ��Xi���j�Xi�j���Xi���j�Xi�j��� � Xi�j �see

gure ��i�� A tiling system �T � �� is said to be NW�deterministic if for every pair x� y � T
there exists at most one tile z � T accepting x has left neighbor and y as upper neighbor�
In other words	 for NW�deterministic tiling system �T � ��	 the domain of the partial local
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matching function can be assumed to be T �� A tiling of the plane by a NW�deterministic set
of tiles �T � �� is an assignment X � T ZZ�

satisfying for all i� j � ZZ� ��Xi���j�Xi�j��� � Xi�j

�see 
gure ��ii��

i, jX - 1

X i j+1,X i ,- 1 j X i, j

X i, j+1

X i ,- 1 j X i, j

X i, j+1

(i) (ii)

Fig� � Local matching� �i� The general case� �ii� The NW�deterministic case�

A tilingX is said to be periodic if there exist horizontal and vertical translations for which
X remains invariant� Formally	 we say that X � T ZZ�

is periodic if there exists P � IN� such
that Xi�j � Xi�P�j � Xi�j�P for all i� j � ZZ�
In the NW�deterministic periodic tiling problem it is given a NW�deterministic tiling

system and it is asked whether it admits a periodic tiling of the plane�

� The Global Fixed Point Attractor Problem

It is direct to notice that every circular con
guration of a CA evolves in a 
nite number
of steps to a 
nite cycle� In �Sut��� it is proved that it is undecidable to know whether
every circular con
guration of a CA evolves to a 
xed point� In this section we show that
it remains undecidable to know whether every circular con
guration of a CA evolves to the
same 
xed point� Our result will allow us to conclude the one of �Sut��� directly�
The reduction to the global �xed point attractor problem is done from the NW�deterministic

periodic tiling problem�

Proposition � The NW�deterministic periodic tiling problem is undecidable�

Proof In section �� �

Proposition � The global �xed point attractor problem is undecidable�

Proof Let �T � �� be a NW�deterministic tiling system� Let us consider now the CA �Q� ��
with Q � fT � fsgg such that s �� T 	 and with the transition function � de
ned as follows�

��x� y� z� �
�
��x� y� if x� y� z � T and ��x� y� is well de
ned�
s otherwise�

It is not di�cult to notice that �T � �� admits a periodic tiling of the plane if and
only if there exists a circular con
guration of �Q� �� not evolving to the trivial 
xed point
�� � � sss � � ��� �
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The local �xed point attractor problem	 in which it is asked whether every circular con
gu�
ration of a CA evolves to a �not necessarily unique� 
xed point	 was proved to be undecidable
by K� Sutner in �Sut���� Our result allows us to conclude Sutners one in a direct way by
considering the following lemma�

Lemma � Given a CA	 it is decidable to know whether it admits a unique circular con
g�
uration as a 
xed point�

Proof Given a CA �Q� ��	 it su�ces to consider the directed graph G � �V�E� with V � Q�

satisfying �x� y� z� � V if and only if ��x� y� z� � y and ��x�� y�� z��� �x�� y�� z��� � E if and
only if y� � x� and z� � y�� There is a complete equivalence between the cycles of G and
the circular 
xed points of �Q� ��� �

Corollary � The local �xed point attractor problem is undecidable�

Proof Let us denote as P the global �xed point attractor problem restricted to instances
�CA� having a unique 
xed point� By proposition � together with lemma � the undecidability
of P can be concluded� On the other hand	 the global and the local versions of the �xed point

attractor problem when restricted to CA having a unique 
xed point are equivalents� �

� The NW�Deterministic Periodic Tiling Problem

The goal of this section is to prove the undecidability of the NW�deterministic periodic tiling

problem� As it was done in �Kar���	 in order to make the proof more understandable	 we are
going to use an equivalent notion of NW�determinism� From now on we say that a tiling
system �T � �� is NW�deterministic if for every a� b� c � T there exists at most one tile d � T
matching as in 
gure ��i� In this case � can be considered as a three arguments partial
function and we note ��a� b� c� � d�
Notice that if �T � �� is a NW�deterministic tiling system in this new sense then there

exists an equivalent tiling system � �T � ��� which is NW�deterministic in the original sense� In
fact	 let �T � T � and let �� � �T � � �T be de
ned for all x� a� b� c � T as follows �see 
gure
��ii��

����x� a�� �b� c�� � �a� ��a� b� c��

a

b c

d a

b c

)(ϕ a,b,cx

(i) (ii)

Fig� � �i� ��a� b� c� � d� �ii� Equivalence between the two NW�deterministic notions�
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It is direct to see that there exists a periodic tiling for �T � �� if and only if there exists
a periodic tiling for � �T � ����
Let �T�� ��� and �T�� ��� be a pair of NW�deterministic tiling systems� We de
ne a natural

superposition operation � which preserves the NW�deterministic property in such a way that
�T � �� � �T�� ��� � �T�� ��� with T � T� � T� and for all �x�� x��� �y�� y��� �z�� z�� � T �

���x�� x��� �y�� y��� �z�� z��� � ����x�� y�� z��� ���x�� y�� z���

The undecidability of the NW�deterministic periodic tiling problem is going to be proved
by a reduction from the halting problem on Turing machines� Before showing this reduc�
tion	 we must construct a pair of NW�deterministic sets of tiles satisfying very particular
conditions�

��� The NW�Deterministic Set of Tiles A

Lemma � There exists a NW�deterministic set of tiles A � A� �A� such that�

	 A� admits only nonperiodic tilings of the plane�

	 For any n � � there exists a square of size �n tiled by A satisfying�

� It has periodic boundary conditions� In other words	 this square pattern can be
repeated in order to tile the plane periodically�

� The tiles of A� appear only on the right and bottom borders of the square as it
is schematically showed in 
gure ��

A

Atiles in

tiles in

n2

2

1

Fig� � A square tiled by A � A� � A� with periodic boundary conditions�

Proof The set A� to be considered corresponds to the one introduced in �Kar��� which
is almost identical to the well known Robinsons set ��Rob���� denoted here as A� and
appearing in 
gure �� Notice that A� has cardinality �� �� crosses and and �� arms� because
all the rotations of each tile are admissible� Notice also that we refer to �set of tiles� instead
of �tiling system� because the tiles themselves encode the local matching function �arrow
heads must meet arrow tails�� In �Rob��� it was proved that A� admits only nonperiodic
tilings of the plane�

�



(i) (ii)

Fig� � Robinsons set A�� �i� Crosses� �ii� Arms�

By simply adding colors to the upper�left and bottom�right corners	 in �Kar��� it is shown
how to transform the set A� into a NW�deterministic one A� preserving the nonperiodicity
property� More precisely	 to the arms horizontally oriented �those with the principal arrow
lying horizontally� it is added an H label on its upper�left corner and a V label on its bottom�
right one� To the arms vertically oriented the V label is added on the upper�left corner while
theH label is added on the bottom�right corner� Finally the crosses are duplicated by adding
the same label �V and H� on both corners� In 
gure � appears the way the modi
cation is
done for three particular tiles belonging to each of previous cases� Notice that now	 in order
to tile correctly	 adjacent corners must have the same color�

V

V

H

H

H

V H

V

(i) (ii) (iii)

Fig� 	 Transforming A� into A�� �i� A cross tile� �ii� An horizontally oriented arm� �iii� A
vertically oriented arm�

Let us de
ne the set of tiles A� as the one of cardinality � that appears in 
gure ��

V

H

V

H H

H H

V

H

V

Fig� 
 The set A��

The NW�determinism of A � A� �A� follows directly� it su�ces to check� The periodic
square of size �n with tiles of A� just on the right and bottom borders appears in 
gure � for
n � � and for n � �� For an arbitrary n the proof has to be done by induction� Finally	 in

gure � it is shown that previous pattern e�ectively has periodic boundary conditions� �
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Fig� � The periodic pattern for n � � and n � ��
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��� The NW�Deterministic Set of Tiles AB

Here we are going to construct a NW�deterministic set of tiles AB admitting periodic tilings
of the plane and satisfying that	 in any of these possible periodic tilings	 some particular
patterns called �boards� always appear� Let us start by some de
nitions�

Denition � Let A � A��A� be the NW�deterministic set of tiles of previous section� Let
B � Bint � BNW � BSE be the set of 
gure � made of internal tiles	 NW�border tiles and
SE�border tiles� We denote as AB the set obtained by the following superpositions�

AB � fA� �Bintg� �z �
AB

int

�fA� �BNWg � fA� �BSEg� �z �
AB

bord

The tiles belonging to ABint are calledAB�internal tiles while the tiles belonging to ABbord
are called AB�border tiles�

Denition � An AB�board is a square tiled by AB with AB�border tiles appearing only
at the border of the square as it is shown schematically in 
gure ��� Notice that from now
on	 as it is done in 
gure ��	 for any tile in AB the presence of the A�component will be
represented by a unique shadowed background �no matter if the A�component corresponds
to a tile of A� or A���

c
c

c
c

c
c

c
c

(i) (ii) (iii)

Fig� � The set of tiles B� �i� Internal tiles �ii� NW�border tiles� �ii� SE�border tiles�

c
c

c
c

c
c

c
c

Fig� �� An AB�board�
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In the two following lemmas we prove that the set AB satis
es our requirements�

Lemma � The set AB is NW�deterministic and for all n � � there exists an AB�board of
size �n with periodic boundary conditions�

Proof For the NW�determinism notice that B is NW�deterministic and AB � A � B� On
the other hand	 for any n � �	 in order to obtain an AB�board of size �n with periodic
boundary conditions it su�ces to transform a square of size �n tiled by A with periodic
boundary conditions �see 
gure �� into an AB�board by superposing in the suitable way the
tiles of B� �

Lemma � In any periodic tiling of the plane by AB an AB�board must appear�

Proof Let P be a periodic tiling of the plane by AB� First notice that at least one AB�
border tile t� must appear in P� In fact	 if this is not the case then the plane would be
tiled periodically by A��Bint� But this is not possible because A� does not admit periodic
tilings of the plane� Notice also that t� can be assumed to be a corner tile �see 
gure ���i��
In fact	 let us suppose that in P there are no corner tiles� If we de
ne as curve any path
in P determined by the �vertical and horizontal� arrows of the B�components of the AB�
border tiles and if we denote as C� the curve that passes through t�	 then C� has to be an
in
nite line� By periodicity	 there must exists a parallel line identical to C� and	 because of
the assumption that no corner tiles appear in P	 it follows one of the two contradictions of

gure ���ii� Let us consider the curve C� that passes through the corner tile t�� It is now
possible to prove �by the same kind of previous geometrical arguments� that C� has to be a
square which	 by de
nition	 delimits an AB�board� �

c
c

(ii)(i)

Fig� �� �i� A corner tile� �ii� P does not admit in
nite lines without corner tiles�
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��� The Reduction

Now we are able to prove the undecidability of the NW�deterministic periodic tiling problem�
We do it by a reduction from the known undecidable halting problem on Turing machines in
which an arbitrary Turing machineM � ��� B�Q� q�� qh� �� is given and it is asked whether
M reaches the halting state qh when starting on a blank bi�in
nite tape �� � �BB � � �� and in
the initial state q�� Notice that � � � � Q � � � Q � fL�R� Sg represents the transition
function of M with � being the alphabet	 Q the set of states	 and fL�R� Sg the possible
movements �left	 right	 stay��

Proposition � The NW�deterministic periodic tiling problem is undecidable�

Proof Let M be an arbitrary Turing machine� Let M� � ��� B�Q� q�� qh� qf � �� be the
same asM with the only di�erence that it never halts� More precisely	 when it reaches the
halting state qh it erases the tape and it stays in a �nal�quiescent con�guration �i�e� in a
particular 
nal state qf and scanning the cell located at the origin of the blank tape�� By a
suitable composition of a set of tiles T � �which codi
es the Turing machineM�� and the set
of tiles AB �introduced in previous section� we are going to obtain a NW�deterministic set of
tiles H admitting a periodic tiling of the plane if and only ifM� reaches the 
nal�quiescent
con
guration�
Let T � be the set of tiles that codi
esM� and which appears in 
gure ��� alphabet tiles

are generated for each s � �� merging tiles for every pair �s� q� � � � Q� right� left and

stay tiles are associated to the tuples �s�� q�� s�� q�� R�	 �s�� q�� s�� q�� L� and �s�� q�� s�� q�� S�
satisfying respectively ��s�� q�� � �s�� q�� R�	 ��s�� q�� � �s�� q�� L�	 and ��s�� q�� � �s�� q�� S��

s

s

s

s q

q s

s q

q

s2

s1q1

2q

s2

s1q1

2q s q2 2

s1q1

(i) (ii) (iii) (iv) (v)

Fig� �� The set of tiles T �� �i� Alphabet tiles� �ii� Merging tiles� �iii� Right tiles� �iv� Left
tiles� �v� Stay tiles�

As it is showed in 
gure ��	 the computation of M� can be codi
ed as a tiling of the
bottom�right quadrant of the plane �IN��� In fact	 if a t�frame is a region of the form
f�i� j� � IN� � i � t or j � tg with t 
 �	 then instantaneous con
gurations ofM� appear
codi
ed in successive t�frames� In each t�frame the origin of the tape is represented in the
cell �t� t�� The left part of the tape is represented in the vertical part of the frame while
the right part is represented in the horizontal part of the frame� All the tiles of a frame
correspond to alphabet tiles excepting the scanning cell and	 eventually	 the neighbor with
which it is interacting� Notice that these tilings can be seen as an alternative representation
of the Turing machine dynamics�
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Fig� �� Equivalence between a Turing machine computation and a tiling of the bottom�right
quadrant of the plane�

Let the set of tiles H � Hint � Hbord be the one with Hint � ABint � T
� and with

Hbord being obtained by superposing labels to some tiles of ABbord as it appears explicitly
in 
gure ���
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cation of ABbord in order to obtain the Hbord�
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The tiles belonging to Hint are calledH�internal tiles	 while the tiles belonging to Hbord
are called H�border tiles� As for the set AB	 we de
ne an H�board as a square tiled by H
with the H�border tiles appearing only at the border of the square as it is schematically
shown in 
gure ���
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Fig� �	 An H�board�

Notice that H is a NW�deterministic set of tiles� This fact can be easily checked by
considering that T � is NW�deterministic �becauseM� is a deterministic machine� and that
the same holds for the set AB �see lemma ���
It remains to prove thatM� reaches the 
nal�quiescent con
guration when it starts from

the blank tape if and only if H admits a periodic tiling of the plane� In fact	 ifM� reaches
the 
nal�quiescent con
guration then there exists a square S tiled by T � with the boundary
conditions that appears schematically in 
gure ���i� Without loss of generality we can assume
that the size of S is ��n � �� for some n � �� In fact	 if the size of the original square in
which the halting computation was represented is k then we can construct another one of
size �k  �� as it is explained in 
gure ���ii� Now from S it is direct to obtain an H�board
of size �n �see 
gure ���iii�� Moreover	 considering that there exists an AB�board of size
�n with periodic boundary conditions �see lemma �� we can assume that the H�board has
periodic boundary conditions and it can be repeated in order to tile the plane periodically�
Let us now suppose that H admits a periodic tiling of the plane P� It follows that an

H�board must appear in P� In fact	 if this is not the case we would contradict lemma ��
More precisely	 if we suppose that in P no H�board appears and we extract all the Turing
machines symbols of P we would obtain a periodic tiling of the plane by AB having no
AB�boards� Finally	 from an H�board it is direct to obtain a square tiled by T � encoding
an halting computation ofM� �see 
gure ���� �

��



B

B

Bq0 B

B

B

B

BqfBB

B

B

Bq0 B B

B

B

B

B
B

B
B

B
B

B

B

B

B

B

Bqf

Bqf

c

c

Bq0 B B B

B

B

B

c

c

B

B

B

c

c

B B B fq

c

c

B

(i) (ii) (iii)

Fig� �
 �i� A square tiled by T � representing an halting computation ofM�� �ii� A bigger
square� �iii� The associated H�board�

Remark � Notice that the set H always admits a tiling of the plane� In fact	 it su�ces
to use Hint in order to tile nonperiodically the plane by representing the evolution of M

�

which	 by construction	 never halts�

Remark � As an obvious consequence of proposition � it can be concluded the undecidabil�
ity of the periodic tiling problem �in which it is asked whether an arbitrary set of tiles admits
a periodic tiling of the plane�� This result was obtained in �GK���� Nevertheless	 we would
like to remark that our approach could also be used to prove the Gurevich�Koriakov result
in a direct way� In fact	 it su�ces to notice that when the NW�deterministic property is no
more required	 most of the technicities of the proof are no more needed and it becomes very
simple �for instance	 the set A has just to be nonperiodic and it does not need an explicit
representation��
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