
HAL Id: hal-02102002
https://hal-lara.archives-ouvertes.fr/hal-02102002

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acyclicity and Finite Linear Extendability: a Formal
and Constructive Equivalence.

Stéphane Le Roux

To cite this version:
Stéphane Le Roux. Acyclicity and Finite Linear Extendability: a Formal and Constructive Equiv-
alence.. [Research Report] LIP RR-2007-14, Laboratoire de l’informatique du parallélisme. 2007,
2+22p. �hal-02102002�

https://hal-lara.archives-ouvertes.fr/hal-02102002
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Acyclicity and Finite Linear Extendability:

a Formal and Constructive Equivalence
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Abstract

Linear extension of partial orders emerged in the late 1920’s. Its
computer-oriented version, i.e., topological sorting of finite partial or-
ders, arose in the late 1950’s. However, those issues have not yet been
considered from a viewpoint that is both formal and constructive; this
paper discusses a few related claims formally proved with the construc-
tive proof assistant Coq. For instance, it states that a given decidable
binary relation is acyclic and equality is decidable on its domain iff an
irreflexive linear extension can be computed uniformly for any of its
finite restriction. A detailed introduction and proofs written in plain
English shall help readers who are not familiar with constructive issues
or Coq formalism.

Keywords: Binary relation, finite restriction, linear extension, (non-)uniform
computability, topological sorting, constructivism, induction, proof assistant.

Résumé

Ceci est le resumé en français

Mots-clés: Relation binaire, restriction finie, extension linéaire, calculabilité
(non-)uniforme, tri topologique, constructisme, récurrence, assistant à la preuve.
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1 Introduction

This section adopts an approach technical and historical. It presents three issues: the main
ingredients of the proof assistant Coq, namely inductive methods, constructivism, the Curry-
De Bruijn-Howard correspondence, and constructive proof assistant in general; the notions of
computability and linear extension, both involved in the results proved in Coq and discussed
in this paper; the main results and the contents of the paper.

1.1 A Historical View on Inductive Methods

Acerbi [2] identifies the following three stages in the history of proof by induction. First, an
early intuition can be found in Plato’s Parmenides. Second, in 1575, Maurolico [11] showed
by an inductive argument that the sum of the first n odd natural numbers equals n

2. Third,
Pascal seems to have performed fully conscious inductive proofs. Historically, definitions by
induction came long after proofs by induction. In 1889, even though the Peano’s axiomati-
zation of the natural numbers [14] referred to the successor of a natural, it was not yet an
inductive definitionbut merely a property that had to hold on pre-existing naturals. Early
XXth century, axiomatic set theory enabled inductive definitions of the naturals, like von Neu-
mann [19], starting from the empty set representing zero. Beside the natural numbers, other
objects also can be inductively/recursively defined. According to Gochet and Gribomont [7],
primitive recursive functions were introduced by Dedekind and general recursive functions
followed works of Herbrand and Gödel; since then, it has been also possible to define sets by
induction, as subsets of known supersets. However, the inductive definition of objects from
scratch, i.e., not as part of a greater collection, was mainly developed through recursive types
(e.g., lists or trees).

1.2 Constructivism in Proof Theory

Traditional mathematical reasoning is ruled by classical logic. First attempts to formalize
this logic can be traced back to ancient Greeks like Aristotle [4] who discussed the principle of
proof by contradiction among others: to prove a proposition by contradiction, one first derives
an absurdity from the denial of the proposition, which means that the proposition can not
not hold. From this, one eventually concludes that the proposition must hold. This principle
is correct with respect to classical logic and it yields elegant and economical proof arguments.
For example, a proof by contradiction may show the existence of objects complying with a
given predicate without exhibiting a constructed witness: if such an object can not not exist
then it must exist. At the beginning of the XXth century, many mathematicians started to
think that providing an actual witness was a stronger proof argument. Some of them, like
Brouwer, would even consider the proof by contradiction as a wrong principle. This mindset
led to intuitionistic logic and, more generally, to constructivist logics formalized by Heyting,
Gentzen, and Kleene among others. Instead of the principle of proof by contradiction, intu-
itionists use a stricter version stating only that an absurdity implies anything. Intuitionistic
logic is smaller than classical logic in the sense that any intuitionistic theorem is also a clas-
sical theorem, but the converse does not hold. In [18], a counter-example shows that the
intermediate value theorem is only classical, which implies the same for the Brouwer fixed
point theorem. The principle of excluded middle states that any proposition is either “true”
or “false”. It is also controversial and it is actually equivalent, with respect to intuitionistic
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logic, to the principle of proof by contradiction. Adding any of those two principles to the
intuitionistic logic yields the classical logic. In this sense, each of those principles captures
the difference between the two logics.

1.3 The Curry-De Bruijn-Howard Correspondence

Nowadays, intuitionistic logic is also of interest due to practical reasons: the Curry-De Bruijn-
Howard correspondence identifies intuitionistic proofs with functional computer programs and
propositions with types. For example a program f of type A → B is an object requiring an
input of type A and returning an output of type B. By inhabiting the type A → B, the function
f is also a proof of “A implies B”. This vision results from many breakthroughs in proof and
type theories: type theory was first developed by Russell and Whitehead in [20] in order
to cope with paradoxes in naive set theory. People like Brouwer, Heyting, and Kolmogorov
had the intuition that a proof was a method (or an algorithm, or a function), but could not
formally state it at that time. In 1958, Curry saw a connection between his combinators and
Hilbert’s axioms. Later, Howard [16] made a connection between proofs and lambda terms.
Eventually, De Bruijn [13] stated that the type of a proof was the proven proposition.

1.4 Constructive Proof Assistants

The Curry-De Bruijn-Howard Correspondence led to rather powerful proof assistants. Those
pieces of software verify a proof by checking whether the program encoding the proof is
well-typed. Accordingly, proving a given proposition amounts to providing a program of
a given type. Some basic proof-writing steps are automated but users have to code the
“interesting” parts of the proofs themselves. Each single step is verified, which gives an
additional guarantee of the correctness of a mathematical proof. Of course this guarantee is
not absolute: technology problems (such as software or hardware bugs) may yield validation
of a wrong proof and human interpretations may also distort a formal result. Beside level
of guarantee, another advantage is that a well-structured formal proof can be translated into
natural language by mentioning all and only the key points from which a full formal proof
can be easily retrieved. Such a reliable summary is usually different from the sketch of a
“proof” that has not been actually written. An advantage of intuitionistic logic over classical
logic is that intuitionistic proofs of existence correspond to search algorithms and some proof
assistants, like Coq, are able to automatically extract an effective search program from an
encoded proof, and the program is certified for free. See the Coq website [1] and the book by
Bertot and Casteran [5].

1.5 Decidability and Computability

In the middle of the 1930’s, Church introduced the lambda calculus, and Turing and Post
independently designed their very similar machines. Those three notions are by some means
equivalent models for computer programs. A question is said to be decidable if there exists
a computer program (equivalently lambda term or Post-Turing machine) requiring the pa-
rameters of the questions as input, returning (within finite time) “yes” or “no” as output, and
thus correctly answering the question. In this way, a binary relation over a set is said to be
decidable if there exists a program expecting two elements in that set and returning “yes” if
they are related or “no” if they are not. A sister notion is that of computable (or recursive)
function, i.e., mathematical function the images of which are computable within finite time
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by the same computer program although the domain and the codomain of the function may
be infinite. Note that computability with two-element-codomain functions amounts to decid-
ability. If several computable functions can be all computed by the same program, then these
functions are said to be uniformly computable.

1.6 Transitive Closure, Linear Extension, and Topological Sorting

The calculus of binary relations was developed by De Morgan around 1860. The notion of
transitive closure of a binary relation (smallest transitive binary relation including a given
binary relation) was defined in different manners by different people about 1890. See Pratt [15]
for a historical account. In 1930, Szpilrajn [17] proved that, assuming the axiom of choice,
any partial order has a linear extension, i.e., is included in some total order. The proof
invokes a notion close to transitive closure. Szpilrajn acknowledged that Banach, Kuratowsky,
and Tarski had found unpublished proofs of the same result. In the late 1950’s, The US
Navy [3] designed PERT (Program Evaluation Research Task or Project Evaluation Review
Techniques) for management and scheduling purposes. This tool partly consists in splitting a
big project into small jobs on a chart and expressing with arrows when one job has to be done
before another one can start up. In order to study the resulting directed graph, Jarnagin [12]
introduced a finite and algorithmic version of Szpilrajn’s result. This gave birth to the widely
studied topological sorting issue, which spread to the industry in the early 1960’s (see [10]
and [8]). Some technical details and computer-oriented examples can be found in Knuth’s
book [9].

1.7 Contribution

This paper revisits a few folklore results involving transitive closure, excluded middle, com-
putability, linear extension, and topological sorting. Most of the properties are logical equiv-
alences instead of one-way implications, which suggests maximal generality. Claims have
been fully formalized (and proved) in Coq and then slightly modified in order to fit in the
Coq-related CoLoR library [6]. This paper follows the structure of the underlying Coq devel-
opment but some straightforward results are omitted. Arguments are constructive (therefore
also classical) and usually simple. This paper is meant to be read by a mathematician who
is not familiar with constructivism. Concepts specific to Coq are introduced before they are
used. Formal definitions and results are stated in a light Coq formalism that is very close to
traditional mathematics and slightly different from the actual Coq code in order to ease the
reading. Proofs are mostly written in plain English. The main result in this paper relies on
an intermediate one, and is itself invoked in a game theoretic proof (in Coq) not published
yet.

In this paper, a binary relation over an arbitrary set is said to be middle-excluding if
for any two elements in the set, either they are related or they are not. The intermediate
result of this paper implies that in an arbitrary set with decidable (resp. middle-excluding)
equality, a binary relation is decidable (resp. middle-excluding) iff the transitive closures
of its finite restrictions are uniformly decidable (resp. middle-excluding). The main result
splits into two parts, one on excluded middle and one on computability: First, consider a
middle-excluding relation. It is acyclic and equality on its domain is middle-excluding iff
its restriction to any finite set has a middle-excluding irreflexive linear extension. Second,
consider R a decidable binary relation over A. The following three propositions are equivalent.
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Note that computability of linear extensions is non-uniform in the second proposition but
uniform in the third one.

• Equality on A is decidable and R is acyclic.

• Equality on A is decidable and every finite restriction of R has a decidable linear ex-
tension.

• There exists a computable function that expects finite restrictions of R and returns
(decidable) linear extensions of them.

1.8 Contents

Section 2 gives a quick look at the Coq versions of types, binary relations, excluded middle,
and computability. Through the example of lists, section 3 explains the principle of defini-
tion by induction in Coq, as well as the associated inductive proof principle and definition
by recursion. In particular, subsection 3.2 details a simple proof by induction on list. Sub-
section 4.1 explains the inductive notion of transitive closure and the associated inductive
proof principle. Subsections 4.2 and 4.3 discuss irreflexivity, representation of “finite sets”
by lists, define finite restrictions of a binary relation, and detail a simple proof by induction
on transitive closure. Section 5 defines paths with respect to a binary relation and proves
their correspondence with transitive closure. It also defines bounded paths that are proved to
preserve decidability and middle-exclusion properties of the original relation. Since bounded
paths and paths are by some means equivalent on finite sets, subsection 5.4 states the in-
termediate result. Subsection 6.1 defines relation totality over finite sets. Subsections 6.2
to 6.5 define an acyclicity-preserving conditional single-arc addition (to a relation), and an
acyclicity-preserving multi-stage arc addition over finite sets, which consists in repeating in
turn single-arc addition and transitive closure. This procedure helps state linear extension
equivalence in 6.6 and topological sorting equivalence in 6.7.

1.9 Convention

Let A be a Set. Throughout this paper x, y, z, and t implicitly refer to objects of type A. In
the same way R, R’, and R” refer to binary relations over A; l, l’, and l” to lists over A, and
n to natural numbers. For the sake of readability, types will sometimes be omitted according
to the above convention, even in formal statements where Coq could not infer them. The
notation ¬P stands for P → False, x 6=y for x=y → False, and 6 ∃x, P for (∃x, P) → False.

2 Preliminaries

2.1 Types and Relations

Any Coq object has a type, which informs of the usage of the object and its possible inter-
actions with other Coq objects. The Coq syntax Obj : T means that Obj has type T. For
example, f : A → B means that f requires an argument in the domain A and returns an
output in the codomain B. If x has type A then f and x can be combined and yield (f x ), also
written f (x ) or f x, of type B. A type is also a Coq object so it has a type too. The only types
of types mentioned in this paper are Prop and Set. The two propositions True and False
are in Prop but in a constructive setting there are propositions, i.e., objects in Prop, neither



Acyclicity and Finite Linear Extendability 5

equivalent to True nor to False. Both the collection of all natural numbers and the collection
of the two booleans true and false have type Set. Intuitively, proving propositions in Prop
amounts to traditional (and intuitionistic) mathematical reasoning as proving objects in Set
is computationally stronger since effective programs can be extracted from theorems in Set.
Now consider g : A → (B → C ) where the parentheses are usually omitted by convention.
The function g expects an argument in A and returns a function expecting an argument in
B and returning an output in C. Therefore g can be seen as a function requiring a first ar-
gument in A, a second one in B, and returning an object in C. Binary relations over A can
be represented by functions typed in A → A → Prop, i.e. requiring two arguments in A and
returning a proposition (that may be interpreted as “the two arguments are related”). The
returned proposition may be True, False, or something else that may or may not be equivalent
to either True or False. For example if it returns always something absurd, i.e., implying
False, then it is “the”empty relation over A. The object Identity relation, defined below in the
light Coq formalism using this paper’s convention, can be interpreted as the identity relation
over A. Indeed, it requires two arguments in A and returns a proposition asserting that those
arguments are equal.

Definition Identity relation x y : Prop := x=y.

The actual Coq code would need to make it clear that x and y are in A.

Definition Identity relation (x y : A) : Prop := x=y.

2.2 Excluded Middle and Decidability

The following two objects define middle-excluding equality on A and middle-excluding binary
relations over A, respectively.

Definition eq midex := ∀ x y, x=y ∨ x 6=y.

Definition rel midex R := ∀ x y, R x y ∨ ¬R x y.

Note that the proposition eq midex is only a definition but not a theorem in Coq, i.e.,
there is no proof of which the conclusion is the proposition ∀ x y, x=y ∨ x 6=y. Same remark
for rel midex.

This paper widely uses the syntax ∀ v, {B}+{C} which is a ∀ v, B ∨ C with a computa-
tional content. It means that for all v either B holds or C holds, and that, in addition, there
exists a computable function expecting a v and pointing to one that holds. The next two
definitions respectively say that equality on A is decidable and that a given binary relation
over A is decidable.

Definition eq dec := ∀ x y, {x=y}+{x 6=y}.

Definition rel dec R := ∀ x y, {R x y}+{¬R x y}.

The remainder of this subsection 2.2 justifies further the syntax ∀ v, {B}+{C} as correct
representation for decidability. Roughly speaking, {Obj : T | P} means the existence, with
computational content, of an object of type T satisfying the predicate P, whereas ∃ Obj : T,
P does the same without computational content. As shown by the two lemmas below, rel dec
R is equivalent to “computable” existence of a function requiring two arguments in A and
returning the boolean true if the two arguments are related or false if they are not, which
amounts to decidability as discussed in subsection 1.5.
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Lemma rel dec bool : ∀ R,
rel dec R → {f : A → A → bool | ∀ x y : A, if f x y then R x y else ¬R x y}.

Lemma bool rel dec : ∀ R,
{f : A → A → bool | ∀ x y : A, if f x y then R x y else ¬R x y} → rel dec R.

Therefore the syntax {P}+{¬P} is usually a convenient way to represent decidability in
Coq. In terms of usage: while proving a proposition, both x=y ∨ x 6=y and {x=y}+{x 6=y}
allow to case split (first case x=y and second case x 6=y). When building a function, however,
only {x=y}+{x 6=y} allows to case split, e.g., to perform a traditional “if-then-else”. It means
that the computational content of {x=y}+{x 6=y} is stronger, as suggested below. The same
kind of result is available for binary relations.

Lemma eq dec midex : eq dec → eq midex.

Lemma rel dec midex : rel dec → rel midex.

3 On Lists

3.1 Lists in the Coq Standard Library

All the underlying Coq code of this subsection can be found in the Coq Standard Library [1].
Semi-formally, lists are defined by induction as follows. Let B be any set. Consider all L

complying with the following two conditions:

• nil is in L and is called the empty list over B.

• If x is in B and l is in L then (cons x l) is in L.

The lists over B are defined as the (unique) least such an L. Formally in Coq, lists over
A can be defined as follows:

Inductive list : Set :=
| nil : list
| cons : A → list → list.

The first line defines lists over A by induction and considers the collection of all lists over
A as a Set. The next line says that nil is a list over A and the last line says that applying an
element of A and list over A to the constructor cons yields a new list over A. The notation
x ::l stands for cons x l. Call x the head of x ::l and l its tail.

Example 1 If x and y are in A then cons x (cons y nil) is a list over A represented by
x::y::nil.

In Coq, any definition by induction comes with an inductive proof principle, aka induction
principle. For lists, it states that if a predicate holds for the empty list and is preserved by
list construction, then it holds for all lists. Formally:

∀ (P : list → Prop), P nil → (∀ a l, P l → P (a :: l)) → ∀ l, P l.

There is a way to define functions over inductively defined objects, just along the inductive
definition of those objects. This is called a definition by recursion. For example, appending
two lists l and l’ is defined by recursion on the first list argument l.
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Fixpoint app l l’ {struct l} : list :=
match l with
| nil ⇒ l’
| x :: l”⇒ x :: app l” l’
end.

The function app requires two lists over A and returns a list over A. The command Fixpoint

means that app is defined by recursion and {struct l} means that the recursion involves l,
the first list argument. As lists are built using two constructors, the body of the function
case splits on the structure of the list argument. If it is nil then the appending function
returns the second list argument. If not then the appending function returns a list involving
the same appending function with a strictly smaller first list argument, which ensures process
termination. The notation l++l’ stands for app l l’.

Example 2 Let x, y, z, and t be in A. Computation steps are shown below.
(x::y::nil)++(z::t::nil) Ã x::((y::nil)++(z::t::nil)) Ã
x::y::(nil++(z::t::nil)) Ã x::y::z::t::nil.

The function length of a list is defined by recursion, as well as the predicate In saying
that a given element occurs in a given list. The predicate incl says that all the elements of a
first list occur in a second list. It is defined by recursion on the first list, using In.

3.2 Decomposition of a List

If equality is middle-excluding on A and if an element occurs in a list built over A, then the
list can be decomposed into three parts: a list, one occurrence of the element, and a second
list where the element does not occur.

Lemma In elim right : eq midex → ∀ x l,
In x l → ∃ l’, ∃ l”, l=l’++(x ::l”) ∧ ¬In x l”.

Proof Assume that equality is middle-excluding on A and let x be in A. Next, prove by
induction on l the proposition ∀ l, In x l → ∃ l’, ∃ l”, l=l’++(x ::l”) ∧ ¬In x l”. The base
case, l=nil, is straightforward since x cannot occur in the empty list. For the inductive case,
l=y ::l1, the induction hypothesis is In x l1 → ∃ l’, ∃ l”, l1=l’++(x ::l”) ∧ ¬In x l”. Assume
that x occurs in l and prove ∃ l’, ∃ l”, y ::l1=l’++(x ::l”) ∧ ¬In x l” as follows: case split on x
occurring in l1. If x occurs in l1 then get l’ and l” from the induction hypothesis, and show
that y ::l’ and l” are witnesses. If x does not occur in l1 then x equals y, so nil and l1 are
witnesses. ¤

3.3 Repeat-Free Lists

The predicate repeat free says that no element occurs more than once in a given list. It is
defined by recursion on its sole argument.

Fixpoint repeat free l : Prop :=
match l with
| nil ⇒ True
| x ::l’ ⇒ ¬In x l’ ∧ repeat free l’
end.
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If equality is middle-excluding on A then a repeat free list included in another list is not
longer than the other list. This is proved by induction on the repeat free list. For the inductive
step, invoke In elim right to decompose the other list along the head of the repeat free list.

Lemma repeat free incl length : eq midex → ∀ l l’,
repeat free l → incl l l’ → length l≤length l’.

4 On Relations

4.1 Transitive Closure in the Coq Standard Library

Traditionally, the transitive closure of a binary relation is the smallest transitive binary rela-
tion including the original relation. The notion of transitive closure can be formally defined by
induction, in the Coq Standard Library. The following function clos trans expects a relation
over A and yields its transitive closure, which is also a relation over A.

Inductive clos trans R : A → A → Prop :=
| t step : ∀ x y, R x y → clos trans R x y
| t trans :

∀ x y z, clos trans R x y → clos trans R y z → clos trans R x z.

Informally, the t step constructor guarantees that clos trans R contains R and the t trans
constructor adds all “arcs” the absence of which would contradict transitivity.

Intuitively, two elements are related by the transitive closure of a binary relation if one
can start at the first element and reach the second one in finitely many steps of the original
relation. Therefore replacing clos trans R x y → clos trans R y z → clos trans R x z by
R x y → clos trans R y z → clos trans R x z or clos trans R x y → R y z → clos trans
R x z in the definition of clos trans would yield two relations coinciding with clos trans.
Those three relations are yet different in intension: only clos trans captures the meaning of
the terminology “transitive closure”.

The Coq Standard Library also defines what a transitive relation is. In addition, this
paper needs the notion of subrelation.

Definition sub rel R R’ : Prop := ∀ x y, R x y → R’ x y.

The notion of subrelation helps express the induction principle for clos trans. It states
that if a relation contains R and satisfies the following “weak transitivity” property then it
also contains clos trans R.

∀ R’, sub rel R R’ →
(∀ x y z, clos trans R x y → R’ x y → clos trans R y z →R’ y z → R’ x z ) → sub rel
(clos trans R) R’

The next lemma asserts that a transitive relation contains its own transitive closure (they
actually coincide).

Lemma transitive sub rel clos trans : ∀ R,
transitive R → sub rel (clos trans R) R.

Proof Let R be a transitive relation over A. Prove the subrelation property by the induction
principle of clos trans. The base case is trivial and the inductive case is derived from the
transitivity of R. ¤
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4.2 Irreflexivity

A relation is irreflexive if no element is related to itself. Therefore irreflexivity of a relation
implies irreflexivity of any subrelation.

Definition irreflexive R : Prop := ∀ x, ¬R x x.

Lemma irreflexive preserved : ∀ R R’,
sub rel R R’ → irreflexive R’ → irreflexive R.

4.3 Restrictions

Throughout this paper, finite “subsets” of A are represented by lists over A. For that specific
use of lists, the number and the order of occurrences of elements in a list are irrelevant. Let R
be a binary relation over A and l be a list over A. The binary relation restriction R l relates
elements that are both occurring in l and related by R. The predicate is restricted says that
“the support of the given binary relation R is included in the list l”. And the next lemma
shows that transitive closure preserves restriction to a given finite set.

Definition restriction R l x y : Prop := In x l ∧ In y l ∧ R x y.

Definition is restricted R l : Prop := ∀ x y, R x y → In x l ∧ In y l.

Lemma restricted clos trans : ∀ R l,
is restricted R l → is restricted (clos trans R) l.

Proof Assume that R is restricted to l. Let x and y in A be such that clos trans R x y,
and prove by induction on that last hypothesis that x and y are in l. The base case, where
“clos trans R x y comes from R x y”, follows by definition of restriction. For the inductive
case, where “clos trans R x y comes from clos trans R x z and clos trans R z y for some z in
A”, induction hypotheses are In x l ∧ In z l and In z l ∧ In y l, which allows to conclude.¤

If the support of a relation involves only two (possibly equal) elements, and if those
two elements are related by the transitive closure, then they are also related by the original
relation. By the induction principle for clos trans and lemma restricted clos trans.

Lemma clos trans restricted pair : ∀ R x y,
is restricted R (x ::y ::nil) → clos trans R x y → R x y.

5 On Paths and Transitive Closure

5.1 Paths

The notion of path relates to one interpretation of transitive closure. Informally, a path is a
list recording consecutive steps of a given relation. The following predicate says that a given
list is a path between two given elements with respect to a given relation.

Fixpoint is path R x y l {struct l} : Prop :=
match l with
| nil ⇒ R x y
| z ::l’ ⇒ R x z ∧ is path R z y l’
end.
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The following two lemmas show the correspondence between paths and transitive closure.
The first is proved by the induction principle of clos trans and an appending property on
paths proved by induction on lists. For the second, let y be in A and prove ∀ l x, is path R x
y l → clos trans R x y by induction on l. Now consider the variable appearance order ∀ y l x
in this lemma. Changing the order would yield a correct lemma as well, but the proof would
be less workable. Indeed y can be fixed once for all but x needs to be universally quantified
in the induction hypothesis, so x must appear after l on which the induction is performed.
Also note that the two lemmas imply ∀ x y, clos trans R x y ↔ ∃ l, is path R x y l.

Lemma clos trans path : ∀ x y, clos trans R x y → ∃ l, is path R x y l.

Lemma path clos trans : ∀ y l x, is path R x y l → clos trans R x y.

Assume that equality is middle-excluding on A and consider a path between two points.
Between those two points there is a repeat free path avoiding them and (point-wise) included
in the first path. The inclusion is also arc-wise by construction, but it is not needed in this
paper.

Lemma path repeat free length : eq midex → ∀ y l x,
is path R x y l →
∃ l’, ¬In x l’ ∧ ¬In y l’ ∧ repeat free l’ ∧
length l’≤ length l ∧ incl l’ l ∧ is path R x y l’.

Proof Assume that equality is middle-excluding on A, let y be in A, and perform an
induction on l. For the inductive step, call a the head of l. If a equals y then the empty list
is a witness for the existential quantifier. Now assume that a and y are distinct. Use the
induction hypothesis with a and get a list l’. Case split on x occurring in l’. If x occurs in
l’ then invoke lemma In elim right and decompose l’ along x, and get two lists. In order to
prove that the second list, where x does not occur, is a witness for the existential quantifier,
notice that splitting a path yields two paths (a priori between different elements) and that
appending reflects the repeat free predicate (if the appending of two lists is repeat free then
the original lists also are). Next, assume that x does not occur in l’. If x equals a then l’ is
a witness for the existential quantifier. If x and a are distinct then a::l’ is a witness. ¤

5.2 Bounded Paths

Given a relation and a natural number, the function bounded path returns a relation saying
that there exists a path of length at most the given natural number between two given
elements.

Inductive bounded path R n : A → A → Prop :=
| bp intro : ∀ x y l, length l≤ n → is path R x y l → bounded path R n x y.

Below, two lemmas relate bounded path and clos trans. The first one is derived from
path clos trans; the second one from clos trans path, path repeat free length, repeat free incl length,
and a path of a restricted relation being included in the support of the relation. Especially,
the second lemma says that in order to know whether two elements are related by the tran-
sitive closure of a restricted relation, it suffices to check whether there is, between those two
elements, a path of length at most the “cardinal” of the support of the relation.

Lemma bounded path clos trans : ∀ R n,
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sub rel (bounded path R n) (clos trans R).

Lemma clos trans bounded path : eq midex → ∀ R l,
is restricted R l → sub rel (clos trans R) (bounded path R (length l)) .

5.3 Restriction, Decidability, and Transitive Closure

The following lemma says that it is decidable whether or not one step of a given decidable
relation from a given starting point to some point z in a given finite set and one step of
another given decidable relation from the same point z can lead to another given ending
point. Moreover such an intermediate point z is computable when it exists, hence the syntax
{z : A | . . . }.

Lemma dec lem : ∀ R’ R” x y l, rel dec R’ → rel dec R”→
{z : A | In z l ∧ R’ x z ∧ R” z y}+{6 ∃ z : A, In z l ∧ R’ x z ∧ R” z y}.

The following lemma is the middle-excluding version of the previous lemma.

Lemma midex lem : ∀ R’ R” x y l, rel midex R’ → rel midex R”→
(∃ z : A, In z l ∧ R’ x z ∧ R” z y) ∨ (6 ∃ z : A, In z l ∧ R’ x z ∧ R” z y).

Proof By induction on l. For the inductive step, call a the head of l. Then case split on
the induction hypothesis. In the case of existence, any witness for the induction hypothesis
is also a witness for the wanted property. In the case of non-existence, case split on R’ x a
and R” a y. ¤

By unfolding the definition rel midex, the next result implies that given a restricted and
middle-excluding relation, a given natural number and two given points, either there is a path
of length at most that number between those points or there is no such path. Replacing midex
by dec in the lemma yields a correct lemma about decidability.

Lemma bounded path midex : ∀ R l n,
is restricted R l → rel midex R → rel midex (bounded path R n).

Proof First prove three simple lemmas relating bounded path, n, and S n. Then let R be a
middle-excluding relation restricted to l and x and y be in A. Perform an induction on n. For
the inductive step, case split on the induction hypothesis with x and y. If bounded path R n
x y holds then it is straightforward. If its negation holds then case split on em lem with R,
bounded path R n, x, y, and l. In the existence case, just notice that a path of length less than
n is of length less than S n. In the non-existence case, show the negation of bounded path in
the wanted property. ¤

Let equality and a restricted relation be middle-excluding over A, then the transitive
closure of the relation is also middle-excluding. The proof invokes bounded path midex,
bounded path clos trans, and clos trans bounded path. The decidability version of it is also
correct.

Lemma restricted midex clos trans midex : eq midex → ∀ R l,
rel midex R → is restricted R l → rel midex (clos trans R).
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5.4 Intermediate Results

The following theorems state the equivalence between decidability of a relation and uni-
form decidability of the transitive closures of its finite restrictions. The first result invokes
clos trans restricted pair and the second implication uses restricted dec clos trans dec. Note
that decidable equality is required only for the second implication. These results remain cor-
rect when considering excluded middle instead of decidability.

Theorem clos trans restriction dec R dec : ∀ R
(∀ l, rel dec (clos trans (restriction R l))) → rel dec R.

Theorem R dec clos trans restriction dec : eq dec → ∀ R
rel dec R → ∀ l, rel dec (clos trans (restriction R l)).

6 Linear Extension and Topological Sorting

Consider R a binary relation over A and l a list over A. This section presents a way of
preserving acyclicity of R while “adding arcs” to the restriction of R to l in order to build a
total and transitive relation over l. In particular, if R is acyclic, then its image by the relation
completion procedure must be a strict total order. The basic idea is to compute the transitive
closure of the restriction of R to l, add an arc iff it can be done without creating any cycle,
taking the transitive closure, adding an arc if possible, etc. All those steps preserve existing
arcs. Since l is finite, there are finitely many eligible arcs, which ensures termination of the
process. This is not the fastest topological sort algorithm but its fairly simple expression leads
to a simple proof of correctness.

6.1 Total

R is said to be total on l if any two distinct elements in l are related either way. Such a
trichotomy property for a relation implies trichotomy for any bigger relation.

Definition trichotomy R x y : Prop := R x y ∨ x=y ∨ R y x.

Definition total R l : Prop := ∀ x y, In x l → In y l → trichotomy R x y.

Lemma trichotomy preserved : ∀ R R’ x y,
sub rel R R’ → trichotomy R x y → trichotomy R’ x y.

6.2 Try Add Arc

If x and y are equal or related either way then define the relation try add arc R x y as R,
otherwise define it as the disjoint union of R and the arc (x,y).

Inductive try add arc R x y : A → A → Prop :=
| keep : ∀ z t, R z t → try add arc R x y z t
| try add : x 6=y → ¬R y x → try add arc R x y x y.

Prove by induction on l and a few case splittings that, under some conditions, a path with
respect to an image of try add arc is also a path with respect to the original relation.

Lemma path try add arc path : ∀ R t x y l z,
¬(x=z ∨ In x l) ∨ ¬(y=t ∨ In y l) →
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is path R (try add arc R x y) z t l → is path R z t l.

The next three lemmas lead to the conclusion that the function try add arc does not
create cycles. The first one is derived from a few case splittings and the last one highly relies
on the second one but also invokes clos trans path.

Lemma trans try add arc sym : ∀ R x y z t,
transitive R → try add arc R x y z t → try add arc R x y t z → R z z.

Lemma trans bounded path try add arc : eq midex → ∀ R x y z n,
transitive R → bounded path (try add arc R x y ) n z z → R z z.

Proof By induction on n. The base case requires only trans try add arc sym. For the
inductive case, consider a path of length less than or equal to n+1 and build one of length
less than n+1 as follows. By path repeat free length the path may be repeat free, i.e., with-
out circuit. Proceed by case splitting on the construction of the path: when the path is
nil, it is straightforward. If the length of the path is one then invoke sub rel try add arc
trans try add arc sym; otherwise perform a 4-case splitting (induced by the disjunctive defi-
nition of try add arc) on the first two (try add arc R x y)-steps of the path. Two cases out of
the four need lemmas transitive sub rel clos trans, path clos trans, and path try add arc path.

¤

Lemma try add arc irrefl : eq midex → ∀ R x y,
transitive R → irreflexive R → irreflexive (clos trans (try add arc R x y)).

6.3 Try Add Arc (One to Many)

The function try add arc one to many recursively tries to (by preserving acyclicity) add all
arcs starting at a given point and ending in a given list.

Fixpoint try add arc one to many R x l {struct l} : A → A → Prop :=
match l with
| nil ⇒ R
| y ::l’ ⇒ clos trans (try add arc (try add arc one to many R x l’ ) x y)
end.

The following three lemmas prove preservation properties about the function try add arc one to many :
namely, arc preservation, restriction preservation, and middle-exclusion preservation. Decid-
ability preservation is also correct, although not formally stated here.

Lemma sub rel try add arc one to many : ∀ R x l,
sub rel R (try add arc one to many R x l).

Proof By induction on l. For the inductive step, call a the head of l and l’ its tail. Use tran-
sitivity of sub rel with try add arc one to many x l’ and try add arc (try add arc one to many
x l’ ) x a. Also invoke clos trans and a similar arc preservation property for try add arc. ¤

Lemma restricted try add arc one to many : ∀ R l x l’, In x l → incl l’ l →
is restricted R l → is restricted (try add arc one to many R x l’ ) l.

Proof By induction on l’, restricted clos trans, and a similar restriction preservation prop-
erty for try add arc. ¤
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Lemma try add arc one to many midex :
eq midex → ∀ R x l l’, In x l → incl l’ l → is restricted R l →
rel midex R → rel midex (try add arc one to many R x l’ ).

Proof By induction on l’. Also invoke restricted try add arc one to many, lemma re-
stricted midex clos trans midex with l, and a similar middle-exclusion preservation property
for try add arc. ¤

Next, a step towards totality.

Lemma try add arc one to many trichotomy : eq midex → ∀ R x y l l’,
In y l’ → In x l → incl l’ l → is restricted R l → rel midex R →
trichotomy (try add arc one to many R x l’ ) x y.

Proof By induction on l’. For the inductive step, invoke trichotomy preserved, case split
on y being the head of l’ or y occurring in the tail of l’. Also refer to a similar trichotomy
property for try add arc. ¤

6.4 Try Add Arc (Many to Many)

The function try add arc many to many requires a relation and two lists. Then, using
try add arc one to many, it recursively tries to safely add all arcs starting in first list argu-
ment and ending in the second one.

Fixpoint try add arc many to many R l’ l {struct l’} : A → A → Prop :=
match l’ with
| nil ⇒ R
| x ::l”⇒ try add arc one to many (try add arc many to many R l” l) x l
end.

The following three results proved by induction on the list l’ state arc, restriction, and de-
cidability preservation properties of try add arc many to many. For the inductive case of the
first lemma, call l”the tail of l’, apply the transitivity of sub rel with (try add arc many to many
R l”l), and invoke lemma sub rel try add arc one to many. Use restricted try add arc one to many
for the second lemma. For the third one invoketry add arc one to many dec and also re-
stricted try add arc many to many. Middle-exclusion preservation is also correct, although
not formally stated here.

Lemma sub rel try add arc many to many : ∀ R l l’,
sub rel R (try add arc many to many R l’ l).

Lemma restricted try add arc many to many : ∀ R l l’, incl l’ l →
is restricted R l → is restricted (try add arc many to many R l’ l) l.

Lemma try add arc many to many dec : → ∀ R l l’, incl l’ l →
is restricted R l → rel dec R → rel dec (try add arc many to many R l’ l).

The next two results state a trichotomy property and that the function try add arc many to many
does not create any cycle.

Lemma try add arc many to many trichotomy : eq midex → ∀ R l x y l’,
incl l’ l → In y l → In x l’ → restricted R l → rel midex R →
trichotomy (try add arc many to many R l’ l) x y.



Acyclicity and Finite Linear Extendability 15

Proof By induction on l’. Start the inductive step by case splitting on x being the head of
l’ or occurring in its tail l”. Conclude the first case by try add arc one to many trichotomy,
try add arc many to many midex, and restricted try add arc many to many. Use trichotomy preserved,
the induction hypothesis, and sub rel try add arc one to many for the second case. ¤

Lemma try add arc many to many irrefl : eq midex → ∀ R l l’,
incl l’ l → is restricted R l → transitive A R →
irreflexive R → irreflexive (try add arc many to many R l’ l).

Proof By induction on l’. For the inductive step, first prove a similar irreflexivity property
for try add arc one to many by induction on lists and try add arc irrefl. Then invoke re-
stricted try add arc many to many. Both this proof and the one for try add arc one to many
also require transitivity of the transitive closure and an additional case splitting on l’ being
nil or not. ¤

6.5 Linear Extension/Topological Sort Function

Consider the restriction of a given relation to a given list. The following function tries to add
all arcs both starting and ending in that list to that restriction while still preserving acyclicity.

Definition LETS R l : A → A → Prop :=
try add arc many to many (clos trans (restriction R l)) l l.

The next three lemmas are proved by sub rel try add arc many to many, transitive clos trans,
and restricted try add arc many to many respectively.

Lemma LETS sub rel : ∀ R l,
sub rel (clos trans (restriction R l)) (LETS R l).

Lemma LETS transitive : ∀ R l, transitive (LETS R l).

Lemma LETS restricted : ∀ R l, is restricted (LETS R l) l.

Under middle-excluding equality, the finite restriction of R to l has no cycle iff LETS R
l is irreflexive. Prove left to right by try add arc many to many irrefl, and right to left by
irreflexive preserved and LETS sub rel.

Lemma LETS irrefl : eq midex → ∀ R l,
(irreflexive (clos trans (restriction R l)) ↔ irreflexive (LETS R l)).

If R and equality on A are middle-excluding then LETS R l is total on l. This is proved by
R midex clos trans restriction midex (in 5.4 ) and try add arc many to many trichotomy.

Lemma LETS total : eq midex → ∀ R l, rel midex R → total (LETS R l) l.

The next two lemmas show that if R and equality on A are middle-excluding (resp. decid-
able) then so is LETS R l : by try add arc many to many midex (resp. try add arc many to many dec)
and R midex clos trans restriction midex (resp. R dec clos trans restriction dec).

Lemma LETS midex : eq midex → ∀ R l,
rel midex R → rel midex (LETS R l).

Lemma LETS dec : eq dec → ∀ R, rel dec R → ∀ l, rel dec (LETS R l).
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6.6 Linear Extension

Traditionally, a linear extension of a partial order is a total order including the partial order.
Below, a linear extension (over a list) of a binary relation is a strict total order (over the list)
that is bigger than the original relation (restricted to the list).

Definition linear extension R l R’ := is restricted R’ l ∧
sub rel (restriction R l) R’ ∧ transitive A R’ ∧ irreflexive R’ ∧ total R’ l.

The next two lemmas say that a relation “locally” contained in some acyclic relation is
“globally” acyclic and that if for any list over A there is a middle-excluding total order over
that list, then equality is middle-excluding on A.

Lemma local global acyclic : ∀ R,
(∀ l, ∃ R’, sub rel (restriction R l) R’ ∧ transitive R’ ∧ irreflexive R’ ) →
irreflexive (clos trans R).

Proof Let R be a relation over A. Assume that any finite restriction of R is included in
some strict partial order. Let x be in A such that clos trans R x x. Then derive False as
follows. Invoke clos trans path and get a path. It is still a path for the restriction of R to
the path itself (the path is a list seen as a subset of A). Use path clos trans, then the main
assumption, transitive sub rel clos trans, and the monotonicity of clos trans with respect to
sub rel. ¤

Lemma total order eq midex :
(∀ l, ∃ R, transitive R ∧ irreflexive R ∧ total R l ∧ rel midex R) → eq midex.

Proof Assume the left conjunct, let x and y be in A, use the assumption with x ::y ::nil,
get a relation, and double case split on x and y being related either way. ¤

Consider a middle-excluding relation on A. It is acyclic and equality is middle-excluding
on A iff for any list over A there exists, on the given list, a decidable strict total order
containing the original relation.

Theorem linearly extendable : ∀ R, rel midex R →
(eq midex ∧ irreflexive (clos trans R) ↔
∀ l, ∃ R’, linear extension R l R’ ∧ rel midex R’ ).

Proof Left to right: by the relevant lemmas of subsection 6.5, (LETS R l) is a witness for
the existential quantifier. Right to left by local global acyclic and total order eq midex. ¤

6.7 Topological Sorting

In this subsection, excluded-middle results of subsection 6.6 are translated into decidability
results and augmented: as there is only one concept of linear extension in subsection 6.6, this
section presents three slightly different concepts of topological sort. Instead of the equivalence
of theorem linearly extendable, those three definitions yield a quadruple equivalence.

From now on a decidable relation may be represented by a function to booleans instead
of a function to Prop satisfying the definition rel dec. However, those two representations are
“equivalent” thanks to lemmas rel dec bool and bool rel dec in subsection 2.2.

In this article, a given relation over A is said to be non-uniformly (topologically) sortable
if the restriction of the relation to any list has a decidable linear extension.
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Definition non uni topo sortable R :=
∀ l, ∃ R’ : A → A → bool, linear extension R l (fun x y ⇒ R’ x y=true).

In the definition above, R’ represents a decidable binary relation that intends to be a
linear extension of R over the list l. But R’ has type A → A → bool so it cannot be used
with the predicate linear extension R l that expects an object of type A → A → Prop, which
is the usual type for representing binary relations in Coq. The function fun x y ⇒ (R’ x
y)=true above is the translation of R’ in the suitable type/representation. It expects two
elements x and y in A and returns the proposition R’ x y=true, in Prop.

In this article, a given relation over A is said to be uniformly sortable if there exists
a computable function expecting a list over A and producing, over the list argument, a
(decidable) linear extension of the original relation.

Definition uni topo sortable R := {F : list A → A → A → bool |
∀ l, linear extension R l (fun x y ⇒ (F l x y)=true )}.

The third definition of topological sort uses the concept of asymmetry, which is now
informally introduced; from an algorithmic viewpoint: given a way of representing binary
relations, different objects may represent the same binary relation; from a logical viewpoint:
two binary relations different in intension, i.e. their definitions intend different things, may
still coincide, i.e. may be logically equivalent. In an arbitrary topological sort algorithm,
the returned linear extension may depend on which object has been chosen to represent the
original binary relation. For example, applying the empty relation on a given two-element set
to a topological sort algorithm may produce the two possible linear extensions depending on
the order in which the two elements constituting the set are given. This remark leads to the
following definition.

Definition asym R G := ∀ x y : A,
x 6=y → ¬R x y → ¬R y x → ¬(G (x ::y ::nil) x y ∧ G (y ::x ::nil) x y).

Next comes the definition of asymmetry for a topological sort of a binary relation. The
syntax let variable:= formula in formula’ avoids writing formula several times in formula’.

Definition asym topo sortable R := {F : list A → A → A → bool |
let G := (fun l x y ⇒ F l x y=true) in
asym R G ∧ ∀ l, linear extension R l (G l)}.

Given a binary relation R over A, the remainder of this subsection proves that the four
following assertions are equivalent:

1. Equality on A is decidable, and R is decidable and acyclic.

2. R is middle-excluding and asymmetrically sortable.

3. R is decidable and uniformly sortable.

4. Equality on A is decidable, and R is decidable and non-uniformly sortable.

The following lemma says that if there exists a computable function expecting a list over
A and producing a (decidable) strict total order over A, then equality on A is decidable. The
proof is similar to the one for total order eq midex.

Lemma total order eq dec :
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{F : list A → A → A → bool | ∀ l, let G := fun x y ⇒ F l x y=true in
transitive A G ∧ irreflexive G ∧ total G l} → eq dec A.

Next lemma shows that LETS yields asymmetric topological sort.

Lemma LETS asym : ∀ R, asym R (LETS R).

Proof Assume all possible premises, especially let x and y be in A. As a preliminary: the
hypotheses involve one relation image of restriction and four relations images of try add arc.
Prove that all of them are restricted to x ::y ::nil. Then perform a few cases splittings and
apply clos trans restricted pair seven times. ¤

The quadruple equivalence claimed above is derived from rel dec midex and the six theo-
rems below. The proofs are rather similar to the middle-excluding case in subsection 6.6. The
first theorem proves 1 → 2 by the relevant lemmas of subsection 6.5 and LETS producing a
witness for the computational existence. The second (straightforward) and the third show 2
→ 3. The fourth (straightforward) and the fifth, proved by total order eq dec, yield 3 → 4.
The last shows 4 → 1 by invoking local global acyclic.

Theorem possible asym topo sorting : ∀ R,
eq dec A → rel dec R → irreflexive (clos trans A R) → asym topo sortable R.

Theorem asym topo sortable uni topo sortable : ∀ R,
asym topo sortable R → uni topo sortable R.

Theorem asym topo sortable rel dec : ∀ R,
rel midex R → asym topo sortable R → rel dec R.

Proof First notice that R is acyclic by local global acyclic and that equality on A is
decidable by total order eq dec. Then let x and y by in A. By decidable equality, case split
on x and y being equal. If they are equal then they are not related by acyclicity. Now
consider that they are distinct. Thanks to the assumption, get TS an asymmetric topological
sort of R. Case split on x and y being related by TS (x ::y ::nil). If they are not then they
cannot be related by R by subrelation property. If they are related then case split again on
x and y being related by TS (y ::x ::nil). If they are not then they cannot be related by R by
subrelation property. If they are then they also are by R by the asymmetry property. ¤

Theorem uni topo sortable non uni topo sortable : ∀ R,
uni topo sortable R → non uni topo sortable R.

Theorem rel dec uni topo sortable eq dec : ∀ R,
rel dec R → uni topo sortable R → eq dec A.

Theorem rel dec non uni topo sortable acyclic : ∀ R,
rel dec R → non uni topo sortable R → irreflexive (clos trans A R).

7 Conclusion

This paper has given a detailed account on a few facts related to linear extensions of acyclic
binary relations. The discussion is based on a formal proof developed with the proof assistant
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Coq. Since arguments are constructive, they are also correct with respect to traditional
mathematical reasoning. The paper aimes to be understandable to mathematicians new to
Coq or more generally by readers unfamiliar with constructive issues. The three main results
are stated again below. First, a binary relation over a set with decidable/middle-excluding
equality is decidable/middle-excluding iff transitive closures of its finite restrictions are also
decidable/middle-excluding. This theorem is involved in the proof of the second and third
main results. Second, consider a middle-excluding relation over an arbitrary domain. It is
acyclic and equality on its domain is middle-excluding iff any of its finite restriction has a
middle-excluding linear extension. Third, consider R a decidable binary relation over A. The
following three propositions are equivalent:

• Equality on A is decidable and R is acyclic.

• Equality on A is decidable and R is non-uniformly sortable.

• R is uniformly sortable.

The proofs of the last two main results rely on the constructive function LETS that is
actually (similar to) a basic topological sort algorithm. An effective program could therefore
be extracted from the Coq development (related to computability). The original proof would
in turn serve as a formal proof of correctness for the program.
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