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Abstract

In this paper� we have experimentally compared synchronized versus asynchronized
all�optical de�ection networks� The originality of our approach is �rst that we have
included a model of bursty tra�c� it is simulated by a bi�Poissonian emission� Second�
we have compared four routing modes� synchronous mode� partially synchronous mode�
and asynchronousmodes with �xed and bounded size packets� All modes were considered
under the same emission protocols� More precisely� we have run the several experiments
with a careful attention to the several time scalings related to these di�erent modes�
Our experiments mainly show that the natural decrease of the performances of the
asynchronous mode� compared to the synchronous mode� can be balanced in a signi�cant
way by the use of a sophisticated routing algorithm� Moreover� we have also shown that
asynchronous routing is not very sensitive to bursty tra�c� These results� and the fact
that asynchronous networks are easier to design� and cheaper to build than synchronous
networks� show the practical interest of asynchronous de�ection routing�

Keywords� All�optical networks� de�ection routing�

R�esum�e

Nous avons exp�erimentalement compar�e l	e�et du synchronisme ou de l	asynchronisme
pour le routage par d�e�exion dans des r�eseaux tout�optiques� L	originalit�e de notre
approche est d	avoir int�egr�e un mod
ele de tra�c sporadique� sous la forme d	�emissions
bipoissonniennes� Elle est aussi dans le fait que nous avons compar�e quatre modes de
routage � mode synchrone� mode partiellement synchrone� et modes asynchrones avec
messages de taille �xe ou de taille born�ee� Tout ces modes ont �et�e examin�es 
a partir
du m�eme protocole d	�emission� Plus pr�ecis�ement� nous avons veill�e attentivement au
respect des di��erentes �echelles de temps que nous avons dues consid�erer� Nos exp�eri�
mentations montrent essentiellement que la d�eg�enerescence naturelle des performances
du mode asynchrone compar�ees 
a celles du mode synchrone peut �etre contrebalanc�ee
par un mode de routage asynchrone plus astucieux� De plus� nous montrons que les
r�eseaux asynchrones sont moins sensibles aux tra�cs sporadiques� Ces r�esultats� accen�
tu�es par le fait que les r�eseaux asynchrones sont plus simples et moins chers 
a construire�
montrent l	int�er�et pratique des r�eseaux 
a d�e�exion asynchrone�

Mots�cl�es� R�eseaux transparents� routage par d�e�exion�
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� Introduction

As their names clearly indicate� all�optical networks exploit photonic technologies for the implemen�
tation of both switching� and transmission �

�� When some data that are stored in an electronic
format must be sent through the network� the network�application interface constructs a message
whose payload �i�e� message	s data� is in optic format� The message is then transmitted through the
network toward its destination without any conversion of the payload from optics to electronics in
order to eliminate the electronic bottleneck� and to exploit the enormous capacity of optics� When
the message arrives at its destination� its payload is again converted from optics to electronics by
the network�application interface�

Two large classes of networks can be considered� depending on the way messages are routed
from their sources to their destinations� single�hop� and multi�hop �
� ��� Both have their advan�
tages� and drawbacks� Single�hop routing provides end�to�end transparent channels� The current
implementations of single�hop routing use wavelength division multiplexing �WDM� systems �
���
Single�hop routing is non �locally� adaptive� Multi�hop routing can also be implemented by WDM
systems� It allows adaptive choices of the routes� up to the price of reintroducing� to some ex�
tend� the electronic bottleneck� Indeed� taking fast routing decisions requires a computational
power which is di�cult to obtain optically using the current technology� Hence� multi�hop routing
requires that the header of the message must be converted in an electronic format at every hop�

The high bandwidth of optics allows us to deal with enhanced networking characteristics as�
in particular� an integration of the services at a town level� For this purpose� Metropolitan Area
Networks �MAN� �
�� have been proposed� MAN are often opposed to LAN �local Area Networks��
and WAN �Wide Area Networks� in term of both size� and structure� A LAN is generally of modest
size� and is connected as a ring or a star� A WAN is generally de�ned as a large loosely coupled
network� A MAN is of intermediate size� and can be viewed as a tightly coupled network� The
relatively large size of a MAN does not allow global control of the network� and multi�hop routing is
an adapted switching mode for that kind of networks� MAN is supposed to integrate many di�erent
services as RTC for telephone and video� and X�� or IP for data transfers between LANs� Such
multi�media applications generate very di�erent data �ows in the network� Hence� it must support
sporadic tra�cs �
�� 
���

Routing in electronic networks �of any kind� is highly based on the use of a large number of
bu�ers� This is not possible on all�optical networks for which de�ection routing ��� �� �also called
hot�potato routing� is frequently prefered� Indeed� optical bu�ers are di�cult to build with the
current technology�
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Routing messages among nodes of an interconnection network requires to satisfy many con�
straints as small latency �for interactive applications�� regular tra�c �for constant�bandwidth ap�
plications�� ordered delivery �for on�line applications�� and� of course� fault�tolerance� Therefore�
many parameters must be carefully chosen� The topology models the way the nodes are connected
together� The need of fast routing decisions� and major technological constraints� limit the degree
of the network� Networks as meshes �wrapped around or not� �
��� or de Bruijn �
�� are possi�
ble candidates� Synchronous networks provide e�cient routing since a routers can consider all its
inputs globally in order to optimize its routing decision� On the other hand� asynchronous net�
works are more easy to build� An application does not generate a single message in general� but
a sequence of �possibly ordered� messages� Also� it might be useful to decompose a large message
in sub�messages of smaller size� Actually� the network�application interface produces packets� A
packet is the smallest entity subject to routing decisions� A packet can be of �xed size� or just of
bounded size� This choice is mainly forced by the type of network�synchronization� The routing

strategy de�nes the ways source�destination routes are constructed� For instance� XY �routing is
the most common rule to route in meshes� A shortest�path routing is a routing strategy which
insures that� in absence of other tra�c� any message will always follow a shortest path from its
source toward its destination� Bu�erisation is possible in all�optical networks� but it requires a lot
of optical �bers� and possibly ampli�ers� Also� a message cannot be bu�erized for an arbitrarily
large period of time� The main consequence of the bu�er limitation is that the routing decision
must be taken on�line� and very fast�

In this paper� we will study the in�uence of the level of synchronism on routing in de�ection
networks� A similar study has already be done in ���� However� our approach and our conclusion
di�er in many aspects� For instance� although we noticed an important degradation of the through�
put of unslotted de�ection networks� we did not observe a situation where severe congestion occurs�
Several slight di�erences between ��� and this paper may explain this divergence �insertion policy�
topology� etc��� The paper is organized as follows� Section � accurately describes our model of
all�optical networks� and our simulation protocol� Then Section � presents experimental measures
on the throughput of the network� on the load of the network� and on the number of lost packets�
Section � deals with local parameters� as the length of the queues� and the time spent by a packet
in a queue before being sent through the network� Section � presents also results on the number of
time a packet can be de�ected� Finally� Section � contains some concluding remarks� In particular�
we conclude that asynchronous routing deserves to be considered with attention� Indeed� we have
noticed that the performance degradations of asynchronous routing versus synchronous routing are
mainly due to algorithmic problems rather than intrinsic problems related to asynchronism�

� Model and experiments

��� Routing in all�optical networks

We have considered one of the most famous types of topology� the bidirectional Manhattan street
network without wrapped around links� that is the symmetrically oriented mesh �see Figure 
�a���
Each node is connected to the its router by a single bidirectional channel� We did not add optical
bu�ers �i�e� �ber loop of a given length� to routers since all�optical routing should try to avoid the
use of bu�ers� Each router is therefore supposed to be a �� � crossbar �see Figure 
�b���

In our model� a message is composed of its payload and its header� The payload contains
the data ��les� images� sounds� etc��� and the header includes useful information for the routing
function �destination label� packet number� source label� etc��� The payload generally consists of a
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Figure 
� �a� A � � � bidirectional Manhattan street network� and �b� one of its routers �i�e� a
�� � crossbar��

RCP

Photonic
Switchpackets payload payload

headers headers
new

delay
line

Figure �� De�ection routing in a �� � crossbar� the routing control processor in denoted by RCP�

large amount of data which must be kept always in optical form so that it circulates at the photonic
rate� Headers and payloads can be transmitted on di�erent wavelength� The bandwidth allocated
to headers is very limited because the size of the header is limited by the electronic bottleneck� For
example� the Mixed Rate technique was reported at 
�� Mb�s for the header and ��� Mb�s for the
payload ����

When a message arrives at a given router �see Figure ��� its header is converted in electronic
format� and it is decoded by the router which takes the routing decision� Once the decision has
been taken according to some simple rules� that is when a single output port has been selected�
the router connects the input port to the output port so that the payload can cut through the
router� The payload is just slightly delayed in a loop while the routing control processor �RCP� is
computing the route� The RCP can generate a new header for the message�

We use a shortest path routing� More precisely� a message is always routed on a shortest
path from its source to its destination in absence of other tra�c� If many possible output ports
correspond to shortest paths� then one of then is chosen uniformly at random� If all the output
ports corresponding to shortest paths are busy� i�e�� if they are already used by other messages� then
one of the other output ports is chosen uniformly at random� and the message is de�ected from its
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Figure �� In an asynchronous network� a packet is inserted only if there is enough time before the
receipt of another message �case �a��� otherwise it waits in the FIFO input queue �case �b���

shortest path� A comparison between store�and�forward and de�ection routing in Shu�e networks
shows that de�ection routing o�ers relatively good behavior compared to store�and�forward ����
De�ection routing requires much less bu�erisation than store�and�forward routing�

In de�ection routing� messages are assumed to be inserted in the network under some conditions
�otherwise n� 
 messages could compete for only n output ports�� Therefore� storage facilities are
placed at all inputs of the network to store packets which cannot be inserted at the time they are
created� In our model� these bu�ers are running in FIFO mode� If the network is synchronous�
one can insert a new packet in the network if one of the four input ports is empty� Indeed� four
simultaneous inputs can always be routed� In asynchronous network� the problem is a bit more
tricky since there is no condition on the time interval during which an input port will be empty�
A possible solution ��� is to check �in advance� on each optic �ber to �gure out whether or not
a message can be inserted �see Figure ��� This can be done by adding a �ber loop to each input
channel in order to delay the arrival of packets� This is possible as soon as packets are of bounded
length� This is typically the case of IP packets�

Another important di�erence between synchronous and asynchronous networks is that� in syn�
chronous networks� one can handle globally the several packets arriving in a router at the same
time� This fact allow each router to allocate optimally the packets to their routes� and� therefore�
one can minimize locally the number of de�ections� We call locally�matched de�ection routing this
kind of strategy�

��� Tra�c generation

We have �xed the size of the mesh at 
�� 
�� with input queue of size 
�� requests at each node�
The bandwidth of the links is supposed to be 
�Gb�s� and each link is supposed to have a length
of �km� A packet is supposed to be a maximum size 
Ko� that is 
�s� that is also ���m�

����� Time scaling

We have considered two time scaling in order to separate the behavior of the network from the
behavior of the applications using the network�


� Simulation tick� or network tick� and
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�� Processor tick� or emission tick�

The interval between two simulation ticks is ��
�s� At each tick� we consider possible emission
of packets at each node� and we route packets in the network� The tra�c demand is simulated
as follows� At each node� the decision to introduce or not a packet in the input queue is taken
according to a probabilistic law� and destinations are chosen randomly uniformly among the other
nodes� Each node follows the same law� Processor tick is �xed at ��ns� At this speed� and at
each processor� the emission follows a Bernoulli law �when a processor sends� it sends exactly one
packet�� This Bernoulli law is in turn simulated by a Binomial law at the simulation tick� We
denote by tn �resp� tp�� the tick of the network �resp� of the processor��

Most of our experimental results are presented as function of the load o�ered to the network�
The o�ered load is expressed in packet per slot� In synchronous networks� the slot is the packet size�
In asynchronous networks� the slot is an abstract measure expressing the maximum size of a packet�
The slot is denoted by ts� We have �xed the slot at ts � 
�s� Hence� to get a �xed o�ered load
L� we have forced the parameter of the Bernoulli law B��� followed by the processors emissions to
be � � L

ts�tp
� Then the emission law of a network is B��� tn�tp�� This protocol produces the same

emission law for both synchronous and asynchronous networks� Note that it would not have been
the case if we would have followed the naive approach consisting of setting tn � ts for synchronous
simulation�

����� Sporadic tra�c

We mainly consider two di�erent emission laws for two di�erent kinds of experiments� Poissonian
tra�c� and sporadic tra�c� In the Poissonian tra�c� every processor follows the same Bernoulli
law� This is the most commonly studied tra�c in the literature�

In order to simulate a sporadic tra�c� we have used an emission law denoted by S�Lg� p�Lb� p
�� � ��

In this case� each node is in two possible states called ground and bursty� These states alternate
according to two probabilities p and p�� From the ground state� the probability to enter the bursty
state is p� From the bursty state� the probability to enter the ground state is p�� In the ground
state� the emission law is Poissonian� thence it is similar to the one previously described� In the
bursty state� we allow processors to send a large number of packets within one slot �such packets
will be stored in the input queue�� When a processor is in the bursty state� its o�ered load is
of average Lb � 
 �to be compared with the global o�ered load in the Poissonian tra�c which is
always strictly less than 
��

We have considered� as in �
��� that bursty tra�cs are mainly caused by ftp�data�like appli�
cations� Moreover� whatever is the load of the network� a burst o�ers the same characteristic�
Thus� we decide to set Lb � cst� independently from the global load L� For the same reasons� the
probability p� to get out of a bursty application is not related to the global load� and thus it is set
as a constant� The ground emission rate Lg is de�ned as a linear function of the o�ered load of
the network L� Indeed� the ground tra�c is induced by telnet�like connections �
�� whose number
grows linearly with the number of running applications� We have set Lg � L

max
g L� where Lmax

g is
the ground tra�c saturating the network �to be �xed later according to the experimental results

on the Poissonian tra�c�� For a given o�ered load� the probability p is �xed to p�
L�Lmaxg ���

L�Lb
so that

the mean of the law S�Lg� p�Lb� p
�� is L� Thence� in our sporadic model� an increase of the load

will be induced by an increase of the frequency at which we enter in the bursty state�
We have �xed �somewhat arbitrarily� the value of Lb at � �smaller bursts would not be signif�

icant� and larger bursts would saturate the input queues�� We also set p� � ����� This value was
�xed according to the one of Lb� It implies that a burst will �ll up the input queue with �� packets

�



in the average� that is with ��! of the size of the queue� Finally� we set Lmax
g � ��� �see Figure ���

One can see on Figure � that Poissonian and sporadic tra�cs are indeed very di�erent�
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Figure �� Poissonian tra�c versus sporadic tra�c� number of packets in a queue as function of the
time�

����� Message of variable length

Asynchronous networks support messages of di�erent lengths� We have considered that the length
of messages L follows a bimodal law polarized at �
� the length of the acknowledgment packets�
and ��� the length of the slot� We have �xed the minimum size of a packet at ���ns �the size of
a header�� We recall that a slot is 
�s� We set P �L � ���ns� � ���� and P �L � 
�s� � ���� The
other message lengths are chosen as multiple of ��
�s� uniformly in the interval �����  ���� The
average of such a law is ���ns�

��� Experimental measures

All measurements are performed at the steady state� We have measured the throughput of the
network as a function of the input demand� More precisely� we have counted the number of packets
which arrive at destination at each slot in average� divided by the number of nodes �that is 
����
This number is in ��� 
� for synchronous networks� The input demand is the average number of
packets each node sends in average at each step� Note that since input queues are of bounded size�
packets can be lost when the network approaches the saturation� The number of loss packets is
inversely proportional to the throughput� We have also considered the load of the network� It is the
average number of packets simultaneously in the network divided by the number of links� Again
this number is in ��� 
� for synchronous networks�

We have also considered local measurements� More precisely� we have created a speci�c tra�c�
called spy tra�c� between two given nodes� In our experiments� node ��� �� sends packets to
node � �  � according to a Poissonian law of mean ���
 �i�e�� at a low rate�� We have reported
the distribution of the number of times spy packets are de�ected� We have also measured the
distribution of the number of packets in the queue of ��� �� when a spy packet enters the queue� and
the distribution of the number of simulation ticks a spy packet has to wait in the queue of ��� ��
before being sent to the network�
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� Global measurements

In this section� we present experimental results on the throughput of the network� on the load of
the network� and on the number of loss packets� The two �rst subsections deal with synchronous
networks� whereas the last subsection deals with asynchronous networks� Subsection ����
 presents
two intermediate models� somewhat in between synchronous and asynchronous networks� These
models are introduced for the purpose of a clear comparison between these two types of networks�

��� Synchronous routing under Poissonian tra�c

Figure � presents the well know behavior of synchronous routing under Poissonian tra�c� Fig�
ure ��a� shows the two states of the network� a linear increase of the throughput until the network
gets saturated� When the network saturates� the throughput becomes constant� and the number
of loss packets increases �whereas no packets are lost for a low o�ered load�� One can check that
the network starts to saturate for an o�ered load larger than ��� �either by comparison with the
diagonal line� or by looking at the number of loss packets��

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
globsgp

Offered load

# 
m

sg
/s

lo
t/n

od
e 

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
loadsgp

Offered load

# 
m

sg
/li

nk

Throughput and loss packets �a� "packets per link �b�

Figure �� Synchronous routing under Poissonian tra�c

Figure ��b� presents the average number of messages per link� Again� the form of the results
is not surprising� When the o�ered load increases� the number of messages per link increases
super linearly� This is due to the interactions between the network load on one hand� and the
number of messages de�ections on the other hand� When the network reaches the saturation� all
the bandwidth of the network is used� This is always the case for synchronous networks�

��� Synchronous routing under sporadic tra�c

Figure ��a� and �b� show the in�uence of a sporadic tra�c on synchronous routing�
Figure ��a� shows that� when the network is not yet saturated� the number of loss packets is

larger under the sporadic tra�c than under the Poissonian tra�c� This is due to the large standard
deviation of the bi�Poissonian tra�c� When the network is saturated� the routings of the two types
of tra�c o�er the same behavior� As one can check on Figure ��b�� the loss of packets under a
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Figure �� Synchronous routing under sporadic tra�c

sporadic tra�c imply that the links saturate for a larger o�ered load� The number of loss packets
is the major di�erence between Poissonian and sporadic tra�c� However� for a same number of
packets inside the network� the behavior of these packets is roughly the same for both tra�cs�

����� Two intermediate routing modes

As we said before� one can use synchronism to improve the routing algorithm by handling simulta�
neously the several packets entering a router at the same time� This global handling of the input
packets allow us to minimize the number of de�ections for the considered group of packets� An�
other advantage of the synchronism is that one can introduce more packets in the network than for
asynchronous networks with �xed size packets� Indeed� there is often not enough space between two
consecutive packets to insert an entering packet in asynchronous networks with �xed size packets�
In order to study separately the in�uences of these two good properties of synchronous routing
over asynchronous routing� we have introduced two intermediate models� The �rst model is called
partially synchronous� the network is synchronous but packets arriving simultaneously in a router
are handled in any order without optimization of the number of de�ections� The second model is
called �xed size asynchronous� the network is asynchronous but packets are of �xed size�

Figure � presents the behavior of the partially synchronous model under a Poissonian tra�c�
One can notice a large degradation of the performances in comparison with synchronous routing�
For instance� the network get saturated for a much smaller o�ered load �roughly ��� rather than
����� Regarding asynchronous routing with �xed size packets� one can check on Figure � that the
network saturates before the bandwidth is totally used� Actually� the bandwidth cannot be totally
used in average in an asynchronous mode� A simultaneous observation of Figures �� �� and � makes
clear the way performances decrease from synchronous routing to asynchronous routing with �xed
size packets�
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Figure �� Partially synchronous routing under the Poissonian tra�c
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Figure �� Fixed size packet asynchronous routing under the Poissonian tra�c

 



��� Asynchronous routing

This section focuses on a totally asynchronous routing� that is with packets of arbitrary size� Com�
pared to Figure �� Figure  shows that allowing packets of di�erent size improve the performances�
This is straightforward because� for a same number of packets� the asynchronous mode requires
much less bandwidth than the synchronous mode �smaller average size packet��
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Figure  � Asynchronous routing under Poissonian tra�c

Figure  and 
� show that the behavior of the network looks the same for both Poissonian
and sporadic tra�cs in asynchronous routing� Note that this phenomenon cannot be caused by a
di�erent occupation of the queues� Indeed� we have �xed the maximum number of packets allowed
in a queue� and not the maximum capacity of a queue� Therefore it is an intrinsic property of
asynchronous routing�
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Figure 
�� Asynchronous routing under sporadic tra�c
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� Local measurements

In this section� we report measures on the spy tra�c described in Section ���� In particular� we
have measured the latency �message delay� of the spy tra�c� We have also considered the behavior
of the queue of the source of this spy tra�c� There will be seven di�erent distributions that will be
presented in the forthcoming �gures� one for each value of o�ered load� ����� ��
�� ��
�� ����� �����
���� and ���� To �gure out the one�to�one correspondence between the curves and the o�ered load�
one can look at the y�axis� Values on this axis are �naturally� ordered in a decreasing order of the
o�ered load� To draw the behavior of the queue� we had to use two scales for the presentation of
the results� One is dedicated to low o�ered loads� and the other is dedicated to the saturated state�
Indeed� moving from one state to the other produces many changes in the behavior of the queue
sizes�

��� Message delays

We have measured the number of de�ections of spy messages sent by node ��� �� to node � �  ��
For a sake of uniformity� we have normalized the results as a function of the number of received
messages�

����� Synchronous routing

Figure 

 shows that� under low tra�c condition �that is for an o�ered load at most ����� the
number of de�ections is relatively small� but for a load of ����� When the tra�c load increases� the
shape of the distributions changes� the median increases a bit� and both maximum and standard
deviation of the distribution strongly increase�
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Figure 

� Distribution of the number of de�ections for synchronous routing under the Poissonian
tra�c

There is no signi�cant di�erence between sporadic and Poissonian tra�c when looking at the
distribution of the delays �see Figure 
��� The tiny improvements under the sporadic tra�c come
from the smaller average number of messages per link under this mode� This con�rms the fact that�
as we already pointed out in Section ���� the internal behavior of a de�ection network is roughly
independent of the tra�c nature�
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Figure 
�� Distribution of the number of de�ections for synchronous routing under the sporadic
tra�c

����� Asynchronous routing

As for the synchronous case� we noted that there is no big di�erence between Poissonian and spo�
radic tra�c when looking at the dispersion of the number of de�ections� However synchronous and
asynchronous routing present totally di�erent behavior� Figure 
� shows the important degradation
of the performances when asynchronous routing is used� although we will see that this phenomenon
is not really du to the asynchronism#
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Figure 
�� Distribution of the number of de�ections for asynchronous routing under the Poissonian
tra�c

Figure 
� and 
� o�er roughly the same shape �same median� same standard deviation� etc���
This shows that the performance degradation of asynchronous routing is mainly due to the di�culty
of minimizing the number of de�ections locally� This is more an algorithmic problem than an
intrinsic problem of the asynchronism�
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Figure 
�� Distribution of the number of de�ections for partially synchronous routing under the
Poissonian tra�c

��� Behavior of the queues

Two parameters characterize the behavior of the queues� �
� the number of packets currently in
the queue when a given packet in introduced in that queue� and ��� the time a given packet waits
in the queue before being introduced in the network� As opposed to the network internal behavior�
these two parameters will clearly show the di�erence between a Poissonian tra�c and a sporadic
tra�c�

����� Synchronous mode

As Figure 
� clearly shows� the number of packets that a given packet �nds in the queue of a slightly
loaded network is quite small in the average� On the contrary� when the network is saturated� the
queues are almost always completely full� Even more� Figure 
� shows that the average time every
packet waits in a queue of a saturated network is about ��� slots� that is ��� times the size of the
queues� On the contrary� when a packet enters a queue of a slightly loaded network� it waits a time
roughly equal to the number of packets waiting in the queue�

The behavior of the queues under a sporadic tra�c is completely di�erent when the network
is saturated �see Figure 
��� Indeed� the repartition of the number of packets in the queue is
almost uniform� This is induced by the large standard deviation of a sporadic tra�c� This is not
in contradiction with the fact that� when the network get saturated� both Poissonian and sporadic
tra�cs lost about the same number of packets� Indeed� remember that the spy tra�c is Poissonian�
Although it does not appear clearly on the left hand side of Figure 
�� a large number of spy
messages �nd the queue �lled up by an arbitrary large number of packets even when the network
is far to be saturated�

����� Asynchronous routing

Figure 
� shows the waiting time in a queue under a Poissonian tra�c for asynchronous routing�
We point out one major di�erence between this �gure and Figure 
�� For the maximum load� the
waiting time in the asynchronous mode is about three time the waiting time in the synchronous
mode�
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Figure 
�� Number of packets when entering the queue under the Poissonian tra�c for synchronous
routing
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Figure 
�� Waiting time in the queue under the Poissonian tra�c for synchronous routing
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Figure 
�� Number of packets when entering the queue under the sporadic tra�c for synchronous
routing
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Figure 
�� Waiting time in the queue under the Poissonian tra�c for asynchronous routing
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� Conclusion

In this paper� we have experimented the performances of de�ection routing in synchronous and
asynchronous networks� We have shown that� as it could have been easily guessed� synchronous
routing performs better that asynchronous routing �the former gets saturated for an higher o�ered
load than the latter� the number of de�ection of messages is smaller in synchronous networks than in
asynchronous networks� etc��� However� we have also shown that the main reason of this di�erence
of behavior is the fact that synchronism helps to minimize locally the number of de�ections �for
instance using a locally$matched de�ection routing�� Therefore� the question that naturally arises
is to �gure out whether it is possible to replace the greedy de�ection routing in asynchronous
networks by some kind of locally$matched algorithm�

It is technically possible to implement locally$matched de�ection routing in asynchronous net�
works� Indeed� one can use the fact that� as explained in the introduction �see Figure ��� one
can know a bit in advance the possible arrivals in a router� However� the underlying algorithmic
problem is a bit more tricky since it turns out to be an on�line scheduling problem� We think that
it is of a major interest to investigate deeper this question since synchronism is technically di�cult
to implement� and expensive to realize�
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