
HAL Id: hal-02101996
https://hal-lara.archives-ouvertes.fr/hal-02101996

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Table-based polynomials for fast hardware function
evaluation

Jérémie Detrey, Florent de Dinechin

To cite this version:
Jérémie Detrey, Florent de Dinechin. Table-based polynomials for fast hardware function evaluation.
[Research Report] LIP RR-2004-52, Laboratoire de l’informatique du parallélisme. 2004, 2+11p. �hal-
02101996�

https://hal-lara.archives-ouvertes.fr/hal-02101996
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Table-based polynomials
for fast hardware function evaluation

Jérémie Detrey and
Florent de Dinechin

November 2004

Research Report No RR2004-52

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Table-based polynomials

for fast hardware function evaluation

Jérémie Detrey and
Florent de Dinechin

November 2004

Abstract
Many general table-based methods for the evaluation in hardware of elemen-
tary functions have been published. The bipartite and multipartite methods
implement a first-order approximation of the function using only table lookups
and additions. Recently, a single-multiplier second-order method of similar in-
spiration has also been published. This paper presents a general framework ex-
tending such methods to approximations of arbitrary order, using adders, small
multipliers, and very small ad-hoc powering units. We obtain implementations
that are both smaller and faster than all previously published approaches.
This paper also deals with the FPGA implementation of such methods. Pre-
vious work have consistently shown that the more complex methods were also
faster: The reduction of the table size meant a reduction of its lookup time,
which compensated for the addition and multiplication time. A second contri-
bution is therefore to finally create a tradeoff between space and time among
table-based methods.

Keywords: Function evaluation, polynomial approximation, table-based method, hardware
operators, FPGA

Résumé
De nombreuses méthodes générales à base de tables pour l’évaluation matérielle
de fonctions élémentaires ont été publiées. Les mathodes bipartite et multi-
partite implémentent une approximation du premier ordre de la fonction en
utilisant uniquement des accès à des tables et des additions. Récemment, une
méthode du second ordre n’utilisant qu’un multiplieur, inspirée des précédentes,
a aussi été publiée. Cet article présente un cadre général pour étendre de telles
méthodes à des approximations d’ordres supérieurs, utilisant des additionneurs,
de petits multiplieurs, et de très petites unités dédiées d’élévation à une puis-
sance donnée. Nous obtenons des implémentations qui sont tant plus petites
que plus rapides que toutes les méthodes précédemment publiées.
Cet article présente aussi l’implémentation de telles méthodes sur FPGA. Des
travaux antérieurs ont montré à plusieurs reprises que des méthodes plus com-
plexes sont aussi plus rapides : la réduction de la taille des tables entrâıne une
réduction du temps d’accès, qui contre-balance le coût des additions et des mul-
tiplications. Cette contribution vise donc à trouver où se situe le compromis
entre surface et latence pour les méthodes à base de tables.

Mots-clés: Évaluation de fonctions, approximation polynomiale, méthode à base de tables,
opérateurs matériels, FPGA

1 Introduction

Many applications require the evaluation in hardware of a numerical function: Trigonometric functions
for DSP algorithms, inverse and inverse square root for providing seed values to the Newton-Raphson
algorithms for division and square root [1], exponential and logarithm for some scientific computing
applications or for the logarithm number system (LNS) [2], etc. When a compound function (such as
log2(1+2x) for instance) is needed, it is often more efficient to implement it as one operator instead of a
combination of successive operators for each function (here an exponential, an addition and a logarithm).

Specific methods exist for implementing most of the elementary functions. For example, the CORDIC
algorithm and its derivatives implement trigonometric and exp/log functions. With some work, this
is probably also true of most useful compound function (see for example the litterature about LNS
arithmetic for methods dedicated to evaluating log2(1 + 2x)). However these specific methods usually
have their constraints. For instance, the CORDIC derivative leads to small but slow operators. Besides
they may require a lot of non-reusable work to get a functional implementation.

An alternative is to use a general implementation method which may be tailored easily to any function.
The simplest of these methods is, of course, to tabulate all the values that the function takes in the needed
discrete range. The drawback is then the hardware cost, as the size of the table increases exponentially
with the size (in bits) of its input argument.

Table-and-addition methods [3, 4, 5, 6] use a first-order Tailor approximation to the function. The
product terms are themselves tabulated, leading to an architecture composed of table lookups and addi-
tions, and therefore very fast. Recently, we proposed a method allowing a second order approximation
using only one small multiplier [7]. Here “small” means that its input and output sizes are much smaller
than the input and output precision of the function to be evaluated. Both methods can be applied to
any function, elementary or compound, that fullfills basic continuity requirements. This means that they
lend themselves to the implementation of automatic operator generators: We have programs that take an
arbitrary function with an input and output precision, and compute the optimal implementation of this
function as a hardware operator, according to some predefined optimality criterion. The size and speed
of the operator depends on the input and output precision, but also on the function. These generators
output circuits descriptions in the VHDL language, suitable for synthesis.

These methods may target Application-Specific Integrated Circuits (ASICs) or Field-Programmable
Gate Arrays (FPGAs). The metrics of ASICs and FPGAs are very different: Tables may be implemented
in various ways in both world, the same holds for arithmetic operators, and the relative size and speed
of arithmetic and tables are different. For practical reasons we mostly studied FPGA implementation.
In both case, an operator generator will try and synthesize a few candidates to optimality before giving
a definitive result.

With the FPGA metrics, an interesting result of previous work on table-based methods was that a
multipartite implementation was a win-win situation compared to a simple table: Although the former
has one table lookup and several additions on the critical path, it is faster than the latter which has
only a table lookup. The reason is simply that the tables are so much reduced in the multipartite
implementation that the lookups are much faster, which compensates the addition time. More surprising
was the fact that going to second-order approximation and to architectures with multipliers on the critical
path was again a win-win move [7]. This is a motivation to study higher-order methods in this paper.

This paper first presents in Section 2 a general framework for the hardware implementation of arbi-
trary polynomials. Polynomiers using the Horner evaluation order have been studied, but their iterative
nature leads to implementations with long latency. The approach studied here is to use a developed
form of the polynomial, where each monomial is evaluated in parallel. Each monomial may then be
implemented by multipliers and powering units, or table-based methods, or a combination of both. The
philosophy is here to carry out a careful error computation, not only to guarantee faithful correct round-
ing of the result, but also to build blocks which are never more accurate than strictly needed, as exposed
in Section 3. The architectures obtained are depicted in Section 4, and their speed and area is studied
in Section 5 and compared to results obtained using other methods.

1

2 Presentation of the method

2.1 Function evaluation

The problem of function evaluation can be expressed as follows: We are given a function f defined on a
finite input interval I ⊂ R, along with two positive integers wI and wO which specify the length in bits
of the input and output words respectively, and we want to build a hardware circuit which will compute
an approximation f̃ of the function f on the interval I.

Without loss of generality, we can take I = [0; 1[and scale f such as f(I) = [0; 1[. Therefore, we will
write the input word X as X = .x1x2 . . . xwI , and similarly the output word Y = f̃(X) = .y1y2 . . . ywO .
We also want our evaluation operator to guarantee the accuracy of the result. As rounding to nearest is
impossible because of the table-maker’s dilemma [1], we choose to ensure faithful rounding:

ε = max
X

|f(X) − f̃(X)| < 2−wO .

2.2 Piecewise polynomial approximation

The method we present here is based on a piecewise polynomial approximation: The input interval
I = [0; 1[is regularly split in several sub-intervals Ii = [i · 2−α; (i + 1) · 2−α[. These sub-intervals are
addressed by the α most significant bits of X , and we approximate f on each of them by a degree n
polynomial Pi. Each polynomial Pi is computed using by a minimax scheme[1], and therefore minimizes
the maximum error entailed by this approximation.

Note that the input interval partition that we perform here is uniform, as all the sub-intervals have
the same size. Lee et al. have developed a method for hierarchical segmentation of this interval in [8]
which could be worth trying to apply to our work.

As the sub-intervals are addressed by α bits from X , we can split the input word in two sub-words
A = .a1a2 . . . aα and B = .b1b2 . . . bβ of length α and β = wI − α respectively, such as shown in Fig. 1.
This gives:

X = A + B · 2−α.

wI

α β

A B

Figure 1: Splitting of the input word X into A and B.

Thus, to compute f̃(X), we need to evaluate the polynomial PA(B · 2−α), which we will write
P (A, B · 2−α) to simplify the notations. We can then expand the polynomial to obtain:

P (A, B · 2−α) = Kn(A) · Bn · 2−nα + . . .
+K1(A) · B · 2−α + K0(A). (1)

The main idea of the method presented in this article is to evaluate separately each of the terms (or
monomials) of the form Tk(A, B) = Kk(A) · Bk · 2−kα for k ranging from 0 to n. A final summation of
all the terms then effectively computes the approximated function f̃(X).

2.3 Computing the terms

There are several methods to evaluate a term Tk(A, B), and we chose to implement two of them in our
work, as described in the following paragraphs.

2.3.1 Simple ROM

The first and the simplest method is to extensively compute all the possible values for the term and
tabulate these values in a table addressed by A and B, or only by A for T0(A, B) = K0(A).

2

2.3.2 Power-and-multiply

This second method consists in first computing Bk by using a powering unit, and then multiplying the
result by Kk(A).

Yet several implementation choices remain. The powering unit can either be a simple table addressed
by B where all the possible values of Bk are stored, or a specialized ad-hoc unit which first generates
then adds all the partial products required to compute Bk (such as in [9] for k = 2).

Moreover, the product of Bk by Kk(A) can be spread on several multipliers by splitting the word
Bk = .p1p2 . . . pkβ , which is of length kβ, in mk sub-words Sk,j , as in the multipartite method [6].
Spreading the product will allow us to optimize separately each multiplier as detailed in Section 3.2.

We then obtain:
Bk = Sk,1 + Sk,2 · 2−ρk,2 + . . . + Sk,m · 2−ρk,mk ,

where, for j ranging from 1 to mk:

Sk,j = .pρk,j+1pρk,j+2 . . . pρk,j+σk,j

is the sub-word of Bk starting at bit ρk,j and of length σk,j . As it is a partition, we also have the natural
conditions on the ρk,j ’s and the σk,j ’s:

ρk,1 = 0,

ρk,j+1 = ρk,j + σk,j , for 1 ≤ j < mk,
mk∑
j=1

σk,j = ρk,mk
+ σk,mk

= kβ.

This partition is shown in Fig. 2.

. . .

. . .

kβ

.Sk,2

σk,2

Sk,1

σk,1

Sk,j

ρk,2
ρk,3

ρk,j

ρk,m

σk,j σk,m

Sk,m

Figure 2: Splitting of the word Bk into Sk,1, Sk,2, ..., Sk,mk
.

We can therefore rewrite the k-th term as :

Tk(A, B) = Kk(A) · Bk · 2−kα

=




mk∑
j=1

Kk(A) · Sk,j · 2−ρk,j


 · 2−kα.

(2)

Finally, another choice raised by this method is, for each product Qk,j(A, Sk,j) = Kk(A)·Sk,j , whether
to use a table addressed by A and a multiplier, or a single but larger table addressed by A and Sj . We will
consider that the mM

k first products will be implemented with multipliers, whereas the mT
k = mk −mM

k

last ones will have their values tabulated.

2.4 Exploiting symmetry

By a simple change of variable in Eq. 1, we can easily obtain a new expression for the polynomial
approximation P (A, B · 2−α), such that all the terms are symmetric with respect to the middle of the
sub-interval I(A):

P (A, B · 2−α) = K ′
n(A) · (B − ∆)n · 2−nα + . . .

+K ′
1(A) · (B − ∆) · 2−α + K ′

0(A),

where ∆ = 1
2 (1 − 2−β).

3

0

∆

values effectively
computed

Figure 3: Example of segment symmetry.

This transformation allows us to use a trick from Schulte and Stine [4] to compute the terms only on
one half of the sub-interval and deduce the values for the other half by symmetry at the expense of a
few XOR gates, as depicted in Fig. 3.

Remark : To avoid overloading too much the notations, we will continue to write the terms Tk(A, B) =
Kk(A) · Bk · 2−kα, even when symmetry is implied.

3 Decreasing accuracy

In this method so far, the only error is entailed by the initial polynomial approximation of the function.
However, we can see from Eq. 1 that, because of the different power-of-two factors, the terms do not
have the same weight in the final addition and thus some of them are computed with too much accuracy
when compared to others.

In order to simplify the tables, and consequently gain in area and latency for our operator, we can
therefore decrease the accuracy of those terms that are relatively too accurate.

3.1 Terms as simple ROMs

When considering a term Tk(A, B) implemented as a table addressed by A and B, the idea is to decrease
the size of the address word:

• Decreasing the size of A by using only its αk most significant bits to address the table means that
we will use a same value of the coefficient Kk for 2α−αk consecutive intervals.

• Decreasing the size of B by using only its βk most significant bits to address the table means that
less values will be computed for each interval.

We can therefore refine the splitting of the input word as in Fig. 4 and use only Ak = .a1a2 . . . aαk

and Bk = .b1b2 . . . bβk
to address the table of term Tk(Ak, Bk).

wI

βα

αk βk

Ak Bk

Figure 4: Splitting of the input word X into Ak and Bk.

3.2 Terms as power-and-multiply units

In this case, the first idea is also to decrease the size of A and B. But here, as the product is spread
over mk multiplications, we have mM

k tables addressed by A, and mT
k tables addressed by A and Sk,j .

Once again, according to Eq. 2, those tables have different relative accuracies due to the 2−ρk,j factors.
We can therefore address them with sub-words of A of different sizes: The table used by Qk,j will be
addressed with only the αk,j most significant bits of A.

4

Yet, from Eq. 2 we can see that the relative weight of Qk,j decreases as j increases. This gives the
following constraint on the αk,j ’s:

∀j, j′ ∈ [1; m], if j < j′ then αk,j ≥ αk,j′ .

Moreover, we can also use Bk = .b1b2 . . . bβk
instead of B, as shown Fig. 5. Thus, the length of Bk

k

will be only kβk, which also implies smaller Sk,j ’s. In fact, we can be even more general and suppose
that the powering unit will generate only the λk most significant bits of Bk

k (with λk ≤ kβk).

α β

wI

βk

BkAk,m

αk,m

αk,1

αk,2

Ak,1

Ak,2

Figure 5: Splitting of the input word X into Ak,j ’s and Bk.

This way, the Sk,j ’s are much smaller, and consequently so are the product (both multiplier-based
and table-based) units.

3.3 A few words about the ad-hoc powering units

If generating only λk bits of Bk
k is not a problem for the table-based powering units, for the ad-hoc

powering units, on the other hand, will entail a larger error if only the partial products of weight greater
than λk are computed then added.

To solve this problem without having the unit to compute all the kβk bits of Bk
k , we introduce

another parameter µk which specifies the minimal weight of the partial products considered internally
by the operator, before truncating the result to λk bits. This parameter is illustrated in Fig. 6, where
the partial products are represented by bullets and sorted according to their weight.

Weight:−λk−3−2−1 −µk −kβk

λk

µk

Figure 6: Use of the λk and µk parameters for ad-hoc powering units (here for k = 2 and βk = 10).

4 Architecture

4.1 Overview

The overall architecture of the operators designed by the proposed method is given in Fig. 7. This
architecture is quite straightforward, as it is directly derived from Eq. 1.

Still, a few points have to be detailed. First, it is obvious that the order 0 term T0 does not depend
on B, and therefore will be implemented as a simple ROM.

Concerning the term Tn of degree n, one can notice that the accuracy required for this term is very
low, due to the 2−nα factor. We can then decrease αn and βn to only a few bits, and therefore implement
also this term with a simple ROM. The same argument sometimes hold for lower order terms such as
Tn−1.

5

round

. . .

α

A B

β

ROM

power-mult
power-mult

ROM

T0 T1 T2 Tn

Figure 7: Overall architecture.

On the other hand, the other terms need to be computed with a larger accuracy, and will usually be
implemented with slower but smaller power-and-multiply units.

4.2 Term as a simple ROM

The architecture for evaluating a term Tk using a simple ROM is also quite straightforward, as shown in
Fig. 8.

The most significant bit b1 of the input word Bk selects if Bk is in the first or the second half of the
sub-interval I(A). A row of XOR gates is used to compute the symmetric of Bk if it falls on the wrong
half. The table lookup is addressed by the αk bits of Ak, and the βk − 1 bits B′

k = b′2b
′
3 . . . b′βk

from the
XOR gates.

If k is odd, a last row of XOR gates controled by b1 computes if necessary the opposite of the value
given by the ROM. If k is even, we do not need these XOR gates.

xor

xor

α β

Ak Bk

b1

Kk(Ak) · B′k
k

Figure 8: Architecture of the term Tk implemented as a simple table.

4.3 Term as a power-and-multiply unit

The architecture of a power-and-multiply unit is given in Fig. 9.
As for table-based terms, the most significant bit b1 of Bk controls a row of XOR gates used to

take the symmetric value of Bk if it is in the wrong half of the sub-interval. The resulting βk − 1 bits
B′

k = b′2b
′
3 . . . b′βk

are then given to the powering unit, which outputs the λk most significant bits of B′k
k .

This word is split in mk sub-words.
Each of these words Sk,j is then multiplied by Kk(Ak,j), either using a normal multiplier or a lookup

table. In both cases, we again exploit the symmetry of the product, and use some rows of XOR gates.
It is to be noted that the last row of XORs is controled by both bi and pρk,j

when k is odd.

6

xorxor

xor xor

xor

power

xor

xor

α β

Bk

b1

k

Ak,1

B′k
k

λk

Sk,1 Sk,2 . . .
p1

Sk,mk

Ak,2

pρk,2+1

Ak,1

Ak,mk

pρk,mk
+1

Kk(Ak,1) Kk(Ak,mk
)

·Sk,mk

(Ak,2)

Kk

Figure 9: Architecture of the term Tk implemented as a power-and-multiply unit.

4.4 Table-based powering unit

The architecture of a table-based powering unit is perfectly straightforward, as it is only a lookup table,
addressed by the βk − 1 bits of B′

k, which contains the λk most significant bits of B′k
k .

4.5 Ad-hoc powering unit

The architecture of an ad-hoc powering unit is also very simple, as shown in Fig. 10. The first part of
the operator generates all the partial products that are required to compute the µk most significant bits
of B′k

k . Then, these partial products are added, and finally the result is truncated to λk bits.

round

partial product
generation

βk − 1

B′
k

Figure 10: Architecture of an ad-hoc powering unit.

5 Error analysis

In this section we briefly describe how to keep track of all the errors entailed by the presented method,
and therefore how to guarantee faithful rounding for the final result. In fact, this method can easily be
adapted to any error bound εmax > 2−wO−1, but in this paper we only consider the case of εmax = 2−wO .

7

For simplicity’s sake we do not detail all the equations involved in this error analysis, but we have
extensively tested it.

5.1 Polynomial approximation: εpoly

The polynomial approximation of the function on each sub-interval obviously yields an error bounded
by εpoly. The Remez algorithm [1] that we use to compute the minimax polynomials gives us the value
of εpoly for each sub-interval I(A).

5.2 Decreasing accuracy: εmethod

5.2.1 Reducing table input size (εtab)

Reducing the number of bits used to address a table is in fact using a constant value for several entries
of the table.

For instance, considering a term Tk(A, B) = Kk(A) · Bk · 2−kα implemented as a ROM, decreasing
the word length of A to αk bits means that a same value of the coefficient Kk will be used for 2α−αk

consecutive sub-intervals. To minimize the error, we can use for this value Kk(Ak) the average of the
extremal values of Kk(A) for the sub-intervals. The aforementioned error is thus the half of the distance
between those extremal values.

Similarly, reducing B to βk bits means that a constant value of Bk will be used for 2β−βk successive
values of B. Taking the average of the extremal values of Bk also yields the minimum error.
Remark : It is important to note that, though the symmetry trick allows us to use only βk − 1 bits of B
to address the table, it entails abolutely no additional error.

The same argument holds for all the tables used in our method. We can therefore quantify the total
error entailed by these approximations, as each term implemented as a ROM, each table-based powering
unit or multiplier and each coefficient table yields an error. The sum of these errors is noted εtab.

5.2.2 Ad-hoc powering units (εpow)

Using only the βk most significant bits of B when computing Bk produces a quantifiable error, as
Bk = B − .bβk+1bβk+2 . . . bβ · 2−βk and 0 ≤ .bβk+1bβk+2 . . . bβ < 1. To center this error around 0, we add
an implicit half-ulp (unit in the last place) to Bk before computing Bk

k .
Moreover, the error made when reducing the number of partial products taken into account in the

computation of Bk
k can also be bounded in advance, as we already know the number and the weight of

the partial products that are ignored. We can then compute the sum s of those partial products, as the
error will be in the interval [0; s]. Adding s/2 to the sum of the partial products computed by the unit
will center the error around 0 as much as possible.

The errors yielded by each ad-hoc powering unit can be suitably scaled and added to obtain the error
term εpow.

We finally note εmethod = εtab + εpow.

5.3 Rounding considerations: εrt, εrf

The tables cannot be filled with results rounded to the target precision wO: Each table would entail a
maximum error of 2−wO−1, exceeding the total error budget εmax = 2−wO . This argument also applies
to multipliers, whose result cannot be rounded to the target precision. We therefore need to extend the
internal precision of our operator by g guard bits.

The values stored in the tables will then be rounded to the precision wO +g, thus yielding a maximum
rounding error of 2−wO−g−1. Similarly, the result of the multipliers will be rounded to wO + g bits, by
truncating and adding a half-ulp, to ensure here also a maximum error of 2−wO−g−1.

The sum of all these errors is noted εrt.
The final summation is also performed on wO+g bits, and is then truncated to the target precision wO.

A trick by Das Sarma and Matula [3] allows us to bound this rounding error by εrf = 2−wO−1(1 − 2−g).

8

5.4 Putting it all together

Summing all the errors described previously, we have the following contraint to ensure faithful rounding:

ε = εpoly + εmethod + εrt + εrf < εmax

We can then expand the values of εrt and εrf to obtain an inequation that we can solve to find the
smallest number of required guard bits g.

In fact, as we have added the maximum errors for each term, the total error may be overestimated,
and a smaller g could be enough. We therefore apply a simple trial-and-error method to find the smallest
acceptable g.

6 Results

This section presents synthesis results obtained for the presented method. We have successfully imple-
mented order 2, 3 and 4 approximations for the function log2(1 + x), and we compare them for various
precisions with the SMSO method in terms of estimated area and delay of the operators in Fig. 11 and
12. SMSO has already been proven to be always better than the best available multipartite methods [7]
and than the order 2 method from [9]. We have only the logarithm function on these graphs because
other functions give completely similar results.

Those estimations were obtained using the Xilinx design suite ISE 5.2 along with the Xilinx synthesizer
XST, for a Virtex-II XC2V-1000-4 FPGA. However, we chose not to implement multipliers using the
Virtex-II 18 × 18 multipliers, to allow a more accurate comparison with other works.

0
12 16 20 24 28 32

Input / output precision wI = wO (in bits)

500

1000

1500

2000

2500

3000
Operator area (in slices)

SMSO

order 2

order 3

order 4

50%

10%

30%

FPGA area ratio

Figure 11: Operator area for the log2(1 + x) function.

12 16 20 24 28 32

Input / output precision wI = wO (in bits)

SMSO

order 2

order 3

order 4

50

20

45

40

35

30

25

Operator delay (in ns)

Figure 12: Operator delay for the log2(1 + x) function.

7 Conclusion and future work

This article presents a general method, implemented in a functional tool, to build fast (combinatorial)
implementations of arbitrary functions. The method leads to faster and smaller implementations than

9

those previously published. As a rule of thumb, a second order approximation is optimal for precisions
up to 16 bits and leads to operators which consume only a few percent of even the smallest FPGAs. For
24-bit precision, an order 3 approximation is optimal (order 4 is no smaller, but slower). For 32 bits, a
precision out of reach of previous methods, we have a tradeoff between order 3 and order 4, one being
30% smaller, the other being faster. Besides, all these architectures are very regular and easy to pipeline.

The implementation space finally exhibits tradeoffs on FPGAs, where previous methods always lead
to win-win situation (smaller area and smaller delay).

Future work

We now have to study the application of this method to ASIC synthesis, where the metrics are very
different. Since the architectures involve the sum of many terms, the intermediate results should probably
be expressed in carry-save notation, with only one fast adder in the architecture. Therefore, there is some
work to do on the VHDL backend. We also should study the metrics (the relative cost of implementing
a table as ROM or logic, the relative cost of a squarer unit, etc), and probably placement considerations.

Another problem raised by this work is the explosion of the number of parameters, which excludes
an exhaustive enumeration of the parameter space as in the multipartite case [6]. Current heuristics for
fixing the parameters are based on trial and error, and should be improved. Experience may then show
that the approach is uselessly complex, and that some parameters should remain fixed to obvious values.

Moreover, even though we have considered error bounds as constant on the interval I in section 5, the
very same scheme can be applied when considering the bounds on εmethod as piecewise polynomials. This
gives a much finer approximation of the method error bound, as shown in Fig. 13. The idea here is to
gradually decrease the accuracy of the tables when εmethod is small compared to its extremal values (e.g.
in the middle of the sub-intervals in Fig. 13) by using a non-constant number of input bits to address
the table. This strategy will be interesting when synthesizing the tables as logic, as logic minimization
will apply. We have already implemented this error analysis but we do not take advantage of it yet.

−6e−06

−4e−06

−2e−06

 0

 2e−06

 4e−06

 6e−06

Figure 13: Bounding the method error εmethod with piecewise polynomials (the dashed lines).

Another question which remains open is the interest of the Horner evaluation method when targetting
hardware. In the litterature concerning the precisions considered, we are only aware of very naive
approaches [8]. To get a fair comparison, the Horner approach should be studied with an effort on the
error analysis similar to that described in this paper.

Acknowledgements

The authors would like to thank Arnaud Tisserand for many interesting discussions on this topic, and
also for administrating the CAD tool server on which all the synthesis presented in this paper were
performed.

References

[1] J.-M. Muller, Elementary Functions, Algorithms and Implementation. Boston: Birkhauser, 1997.

10

[2] J. Detrey and F. de Dinechin, “A VHDL library of LNS operators,” in 37th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, USA, Oct. 2003.

[3] D. Das Sarma and D. Matula, “Faithful bipartite ROM reciprocal tables,” in 12th IEEE Symposium
on Computer Arithmetic, S. Knowles and W. McAllister, Eds. Bath, UK: IEEE Computer Society
Press, 1995, pp. 17–28.

[4] J. Stine and M. Schulte, “The symmetric table addition method for accurate function approximation,”
Journal of VLSI Signal Processing, vol. 21, no. 2, pp. 167–177, 1999.

[5] J.-M. Muller, “A few results on table-based methods,” Reliable Computing, vol. 5, no. 3, pp. 279–288,
1999.

[6] F. de Dinechin and A. Tisserand, “Some improvements on multipartite table methods,” in 15th IEEE
Symposium on Computer Arithmetic, N. Burgess and L. Ciminiera, Eds., Vail, Colorado, June 2001,
pp. 128–135, updated version of LIP research report 2000-38.

[7] J. Detrey and F. de Dinechin, “Second order function approximation using a single multiplication on
FPGAs,” in 14th Intl Conference on Field-Programmable Logic and Applications. Antwerp, Belgium:
LNCS 3203, Aug. 2004, pp. 221–230.

[8] D.-U. Lee, W. Luk, J. Villasenor, and P. Cheung, “Hierarchical segmentation schemes for function
evaluation,” in IEEE Conference on Field-Programmable Technology, Tokyo, dec 2003.

[9] J. A. Piñeiro, J. D. Bruguera, and J.-M. Muller, “Faithful powering computation using table look-up
and a fused accumulation tree,” in 15th IEEE Symposium on Computer Arithmetic, N. Burgess and
L. Ciminiera, Eds., Vail, Colorado, June 2001, pp. 40–47.

11

	1 Introduction
	2 Presentation of the method
	2.1 Function evaluation
	2.2 Piecewise polynomial approximation
	2.3 Computing the terms
	2.3.1 Simple ROM
	2.3.2 Power-and-multiply

	2.4 Exploiting symmetry

	3 Decreasing accuracy
	3.1 Terms as simple ROMs
	3.2 Terms as power-and-multiply units
	3.3 A few words about the ad-hoc powering units

	4 Architecture
	4.1 Overview
	4.2 Term as a simple ROM
	4.3 Term as a power-and-multiply unit
	4.4 Table-based powering unit
	4.5 Ad-hoc powering unit

	5 Error analysis
	5.1 Polynomial approximation: poly
	5.2 Decreasing accuracy: method
	5.2.1 Reducing table input size (tab)
	5.2.2 Ad-hoc powering units (pow)

	5.3 Rounding considerations: rt, rf
	5.4 Putting it all together

	6 Results
	7 Conclusion and future work

