
HAL Id: hal-02101995
https://hal-lara.archives-ouvertes.fr/hal-02101995v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation in bouclettes.
Pierre Boulet, Michèle Dion

To cite this version:
Pierre Boulet, Michèle Dion. Code generation in bouclettes.. [Research Report] LIP RR-1995-43,
Laboratoire de l’informatique du parallélisme. 1995, 2+21p. �hal-02101995�

https://hal-lara.archives-ouvertes.fr/hal-02101995v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Code generation in Bouclettes

Pierre BOULET

Mich�le DION
November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Code generation in Bouclettes

Pierre BOULET

Mich�le DION

November ����

Abstract

Bouclettes is a source to source loop nest parallelizer� It takes as
input Fortran uniform� perfectly nested loops and gives as output a
HPF �High Performance Fortran� program with data distribution and
parallel ��HPF� INDEPENDENT� loops� This paper explains how the
HPF program is built from some scheduling and allocation functions
automatically generated by Bouclettes�

Keywords� automatic parallelization� loop nest� HPF� compiler� code gener�
ation

R�sum�

Bouclettes est un parall�liseur source � source de nids de boucles�
Il prend en entr�e des boucles Fortran uniformes et parfaitement
imbriqu�es et retourne en sortie un programme HPF �High Perfor�

mance Fortran� avec une distribution des donn�es et des boucles par�
all�les ��HPF� INDEPENDENT�� Ce papier explique comment le pro�
gramme HPF est construit � partir des fonctions d�ordonnancement
et d�allocation g�n�r�es automatiquement par Bouclettes�

Mots�cl�s� parall�lisation automatique� nid de boucles� HPF� compilation�
g�n�ration de code

Code generation in Bouclettes

Pierre BOULET �Pierre�Boulet	lip�ens�lyon�fr

Mich�le DION �Michele�Dion	lip�ens�lyon�fr

November �� ����

� Introduction

��� What is Bouclettes�

Bouclettes is a source to source loop nest parallelizer� It takes Fortran �� loops
as input and returns an equivalent parallel program in HPF �High Performance

Fortran��
Bouclettes has been written to validate some scheduling and mapping tech�

niques based on the hyperplane method� These techniques are brie	y sketched
in section
� The goal persued when building Bouclettes was to have a com�
pletely automatic parallelization tool� This goal has been reached and the input
of the user is only required to choose the parallelization methodologies to be
applied�
We have chosen HPF as the output language because we believe it can be�

come a standard for parallel programming� Furthermore� data parallelism is
a programmation paradigm that provides a simple way of describing data dis�
tributions and of managing the communications induced by the computations�
It thus relieves the programmer �or the parallelization tool� of generating the
low�level communications�
This paper is organized as follows� after the introduction� we recall in sec�

tion
 how the parallelism is extracted from the input program� and in the
following two sections� we explain how the code is rewritten in HPF� We rst
describe the issues of rewriting a program scheduled with a linear schedule in
section �� and then propose a technique to rewrite a program scheduled with
a shifted linear schedule in section �� We then present a detailed example in
section �� Finally we conclude in section ��

��� Related work

Automatic parallelization has been studied by many researchers and some tools
for automatic parallelization have been written� SUIF ���� at Stanford Univer�
sity� California� PIPS ���� �� at the �cole Nationale Sup�rieure des Mines de
Paris� France� the Omega Library ���� at the University of Maryland� Maryland�
LooPo ��� at the University of Passau� Germany� and PAF ��
� at the University
of Versailles� France� among others�

�

The particularities of Bouclettes in regards of these other tools are the
methodologies employed and the output language� Indeed� Bouclettes takes
as input perfectly nested loops with translations as array access functions and
uses more complicated techniques to parallelize this kind of loops into HPF

programs�

� Data analysis and parallelism extraction

The parallelization process can be decomposed into several inter�dependent
tasks� See gure
�

Scheduling

Code Generation

Mapping

Dependence Analysis

Figure �� The parallelization stages

The dependence analysis consists in building a graph representing the con�
straints on the execution order of the instances of the statements� The schedul�
ing uses the dependences to build a function that associates an execution time
to an instance of a statement� The mapping stage maps the data arrays and
the instances of the statements to a virtual mesh of processors� The two pre�
vious stages �the scheduling and the mapping� are inter�dependent� we want
the global transformation of the original loop nest to respect data dependences�
The last stage is the code generation� We generate here code with parallel loops
�INDEPENDENT loops� and a data allocation �DISTRIBUTE and ALIGN directives��
The Bouclettes system is organized as a succession of stages�

�� the input program is analyzed and translated into an internal representa�
tion�

� this representation is used to compute the data dependences� in our case�
data dependences are uniform� so a simple custom dependence analyzer
is enough to get the exact data dependences�

�� from these data dependences� a linear or shifted linear schedule is com�
puted�

�� the schedule and the internal representation are used to compute a map�
ping compatible with the schedule�

�� nally� the HPF code is generated following the previously computed
transformation�

We detail below the analysis and parallelism extraction phases� A complete
example illustrating these phases �and the rewriting one� is given in section ��

��� Dependence analysis

The dependence analysis consists in nding the constraints on the execution
order of the iterations of the statements� The dependence analysis is quite
simple in the restricted context we have here� It basically consists in nding
all the data dependences between the inner statements� The three kinds of
dependences �direct� anti and output dependences� can be computed in the same
way� the dependence vectors are di�erences between two data access functions
that address the same array and reciprocally� all the di�erences between two
data access functions that address the same array are dependence vectors�

��� Scheduling

Darte and Robert have presented techniques to compute schedules for a given
uniform loop nest �
� ��� These techniques are part of the theoretical basis of
Bouclettes�
Currently� the user has the choice between the linear schedule and the shifted

linear schedule� A schedule is a function that associates to each computation
point �each iteration of a statement� the time when it is computed in the parallel
program�

the linear schedule is a linear function that associates a time t to an iteration
point �i ��i � �i� j� k� if the loop nest is three dimensional� as follows�

t �

�
p

q
���i

�

where p� q are mutually prime integers and � is a vector of integers of
dimension d �the depth of the loop nest� whose components are relatively
prime�

the shifted linear schedule is an extension of the linear schedule where each
statement of the loop nest body has its own scheduling function� All these
functions share the same linear part and some �possibly di�erent� shifting
constant are added for each statement� The time t for statement k is
computed as follows�

t �

�
p

q
���i�

ck

q

�

where p� q� ck are integers and � is a vector of integers of dimension d �the
depth of the loop nest� whose components are relatively prime�

The computation of these schedules is done by techniques which guarantee that
the result is optimal in the considered class of schedules� Here �optimal� means
that the total latency is minimized�

�

��� Mapping

Darte and Robert have presented a technique to build a mapping of data and
computation on a virtual processors grid ���� It is this technique that is used in
Bouclettes�
A mapping function is a function that associates to each computation point

the processor which will do the computation and to each array element the
processor whose memory it will be stored in�
Based on the computation of the so called �communication graph�� a struc�

ture that represents all the communications that can occur in the given loop
nest� a projection M and some shifting constants are computed� The base idea
is to project the arrays �and the computations� on a virtual processor grid of
dimension d � �� Then� the arrays and the computations are aligned �by the
shifting constants� to suppress some computations�
More precisely�M � the projection matrix� is a �d����d full ranked matrix

of integers and the constants �x are vectors of integers and of dimension d� ��
To each array or statement x is then associated an allocation function dened
by�

allocx��i� � M�i� �x

As the considered loop nests are uniform� choosing a di�erent matrix for
di�erent arrays or statements would not improve the mapping� The schedule has
to be taken into account to choose the matrix M � E�ectively� the transformed
loop nest will have as iteration domain� the image of the initial iteration domain
by the transformation�

�i ��

�
�

M

�
�i

It is mandatory to have this iteration domain mapped onto Nd� as otherwise
we would need rationally indexed processors� As the choice of M does not
have a high impact on the number of communications that remain� � �M � is just
computed as the unimodular completion of vector ��
Once M has been computed� the alignment constants are determined in

order to minimize the number of computations� Here the user can choose if he
wants to respect the owner computes rule �as in HPF� or not� If he chooses not
to respect this rule� some temporary arrays may be generated in the next stage
to take it into account�

� Coding the linear schedule

��� Loop rewriting

Bouclettes uses techniques presented by Collard� Feautrier and Risset in ��� to
rewrite the loops after reindexation� Reindexation yields a new iteration space�
which is a convex integer polyhedron dened by a set of a�ne constraints�
Rewriting the nested loop needs to scan all the integer points of this convex
and the algorithm relies on a parameterized version of the Dual Simplex� PIP
�see �����

�

Consider the initial perfect loop nest �see program ��� where �z is a vector
of structure parameters �see �����

Program � Initial perfect loop nest
do i��i

l
���z�� iu� ��z�

do i��i
l
��i�� �z�� iu� �i�� �z�
� � �

do id�i
l
d�i�� � � � � id��� �z�� iud�i�� � � � � id��� �z�

S��i�� i�� � � � � id� �z�
� � �

Sk�i�� i�� � � � � id� �z�
enddo

� � �

enddo

enddo

We rewrite the loop nest after an unimodular linear transformation U � The
vector coordinates �i � �i�� � � � � id�

T and �j � �j�� � � � � jd�
T � respectively in the

old and new basis� are related by�

�j � U�i

where U is a d � d unimodular matrix �det�U� � ���� Since we are dealing
with perfect loop nests� the iteration spaces are nite convex polyhedra of Zd

that can be dened by a set of inequalities such as�

D��z� � f�ij�i � Zd� C�i� C ��z ��b � �g

where C� C � are constraints matrix and �b is a constant vector� In the new
iteration space� the polyhedra can be dened as �

D��z� � f�jj�j � Zd� CU���j � C ��z ��b � �g�

Collard� Feautrier and Risset have proved that the initial loop nest �pro�
gram �� can be rewritten in the new iteration space in the form given in pro�
gram
 where the loop bounds jln and j

u
n� � � n � d are simple enough �for an

HPF compiler� expressions of the structure parameters and of the surrounding
indices j�� � � � � jn��� For a perfect loop nest of depth d� the new loop bounds
are obtained after �d successive calls to PIP�

��� When the OCR is not respected

HPF compilers respect the owner computes rule �OCR�� each processor com�
putes its own data only� In the mapping process of Bouclettes� the user can
chose not to respect the OCR� Let us consider an array element a��i� ca� com�
puted in a statement S��i�� The mapping process can return allocation functions
such that� �M��i� ca���a� �� M�i��S � To make both the allocation functions
and the OCR compatible� we need to add �temporary� arrays during the code
generation stage�

�

Program � Rewritten perfect loop nest
do j��j

l
���z�� ju� ��z�

do j��j
l
��j�� �z�� ju� �j�� �z�
� � �

do jd�j
l
d�j�� � � � � jd��� �z�� jud �j�� � � � � jd��� �z�

S��U
���j� �z�

� � �

Sk�U
���j� �z�

enddo

� � �

enddo

enddo

Program � Initial loop nest which does not verify the OCR
real a�n�n�

do �i

S��i� a��i� ca� � expr

enddo

Program � Loop nest which veries the OCR after the addition of temporary
arrays
real a�n� n�
real atmp�n�n�

do �i

S���i� atmp��i� ca� � expr

S���i� a��i� ca� � atmp��i� ca�
enddo

�

Hence� the loop nest of program �� where expr is an expression of other
array elements of the program is transformed by adding temporary arrays into
the loop nest of program ��
The new allocation functions are deduced from the initial functions to re�

spect the OCR�

alloca��i� � M�i� �a

allocS���i� � M�i� �s

allocatmp ��i� � M�i� �S �Mca

allocS���i� � M�i�Mca � �a�

��� Array alignment

In HPF� the programmer can specify the data mapping at two levels� First
the arrays are aligned with respect to one another with the directive ALIGN�
Then� the aligned data are distributed to the processors with the directive
DISTRIBUTE ����
The general alignment statement is�

�HPF� ALIGN array WITH target

This species to the compiler that the array should be aligned with the
target� The target can be either another array of the program or a TEMPLATE
�a virtual array�� An example of alignement statement is�

�HPF� ALIGN A�i�j� WITH B�j���i���

The general distribution statement is�

�HPF� PROCESSORS proc

�HPF� DISTRIBUTE arrays �ONTO proc�

The programmer can also specify the way to distribute the arrays on the
processors �BLOCK� CYCLIC or BLOCK	CYCLIC�� Bouclettes can generate any type
of distribution� The best one would certainly be a BLOCK	CYCLIC one where
the size of the block would depend on the target machine� As in current HPF

compilers� only BLOCK distributions are implemented� we have chosen to make
Bouclettes generate BLOCK distributions�
According to the projection matrix M � we adopt two di�erent strategies in

the code generation to align the data�

	 if the projection is along one axis of the iteration� we are able to align
directly the arrays as we explain in the following�

	 otherwise� we need to �redistribute� the arrays before aligning them
�see Section �����

�

When the projection is along one direction of the iteration space D

Let ak� �� � k � n� be the arrays of a loop nest of depth d� Let allocak��i� �
M�i��ak be the allocation function for array ak� Let � be the linear scheduling
vector for the loop nest� Let �i � D and �j ��i� � �

M ���
�

�
�k

�
� We have

M�j � M�i�M

�
�

M

�
��
�

�
�k

�
�

Let � �
M ��� � �X� X��� we have�

�

M

�
�X� X�� �

�
�X� �X�

MX� MX�

�
� Id �

Hence� MX� � Id and

M�j � M�i�M�X�X��

�
�
�k

�

M�j � M�i� �k

Let p � M�i��k �the processor p receives the value ak��i��� p and the image
of �j by M correspond to the same point in the virtual processor space� To
align all arrays ak with respect to one another� one possibility is to declare
a template BCLT	template of dimension d and to align each array with the
following directive�

�HPF� ALIGN ak��i� WITH BCLT	template

�
	�i�

�
�

M

�
���

�
�k

�

A

The distribution of the aligned data onto the processors is then specied
with the directive�

�HPF� DISTRIBUTE BCLT	template �BLOCK�� � � �BLOCK�
�BLOCK�� � � �BLOCK�

The ��� corresponds to the direction of the projection� Let us notice that
this is possible only because the projection is parallel to one direction of the
iteration space�

��� Array rotation

When this projection is not along one axis� we need to �redistribute� the arrays
to write the HPF directives�
Let U � � �

M �� For each array ak of the loop nest� we dene the new array
ak�rot such that

ak�rot��i� � ak�U
����i���

We compute the new allocation function for array ak�rot from the alloca�
tion function for array ak� Let allocak��i� � M�i� �k� we choose allocak�rot��i� �
MU���i��k � ak�rot��i� and ak�U����i�� are in the memory of the same proces�
sor��

�

As in Section ���� let U�� � �X� X��� Hence� we have

MU�� � �MX� MX��

and

UU�� �

�
�X� �X�

MX� MX�

�
� Id�

Hence�

MU�� �

�
BBB	

�
�

� Id
�

CCCA �

The projection matrix for the new �rotated� arrays denes a projection parallel
to the rst dimension of the processor space�
Besides� after rewriting� the access to array ak in the new loop nest is

ak�U
���j � cak�� We have

ak�U
���j � cak� � ak�rot�U�U���j � cak��

� ak�rot��j � Ucak��

If we replace in the new loop nest� all the occurrences of array ak by the corre�
sponding occurrences of array ak�rot� we obtain again a rewritten loop nest with
uniform access to arrays�

��� Summary

To summarize our approach� the strategy to generate the code after a linear
scheduling is�

�� verify if the data and computation mapping is compatible with the OCR�
if not insert temporary arrays�

� rewrite the loop nest�

�� verify if the projection matrix corresponds to a projection along one di�
mension of the iteration space� if not replace the initial arrays by rotated
arrays� generate the parallel loops at the beginning and at the end of
the program to respectively initialize with the correct values the rotated
values and to copy the values of the rotated arrays in the initial arrays�

�� generate the alignment directives to align each array of the loop nest with
respect to a template�

�� generate the distribute directive to map the template to virtual processors�

�

Program � Aloop nest after the linear transformation
do t�tl� tu

�HPF� INDEPENDENT

do pr��pr�l �t�� pr�u�t�
� � �

�HPF� INDEPENDENT

do prd�prdl �t�� prdu�t�

S��t� pr
�� � � � � prd�

� � �

Sk�t� pr
�� � � � � prd�

enddo

� � �

enddo

enddo

� Coding shifted linear schedules

��� From linear scheduling to shifted linear scheduling

As explained before� we have rewritten the initial loop nest taking into account
only the linear part of the schedule� This transformed loop nest looks like
program ��
Let us consider the following schedule�

schedule�I� �

�
�

q
�pLI � c�

�
���

for a given statement�
The previous transformations uses t � LI� So the execution time following

the shifted linear schedule �equation �� can be rewritten as

exe�t� �

�
�

q
�pt� c�

�
� �
�

In the above transformed code� the processors on which the computations
are executed depend only on the execution time t �and on the parameters of the
program�� So� if we can �inverse� the exe function� we will be able to rewrite
the loop nest with a new time variable corresponding to the time given by the
schedule�
We now show that this inverse is�

lin�T � �

�
�

p
�qT � c�

�
� ���

We have to prove the following proposition�

Proposition �

t � Z� �t � �lin�T �� lin�T � ��� � exe�t� � T �

��

Proof Let t � Z such that�

lin�T � � t � lin�T � ��

We can successively deduce��
�

p
�qT � c�

�
� t �

�
�

p
�q�T � ��� c�

�
���

and

�

q

p

�
�

p
�qT � c�

�
� c

�
�

�

q
�pt� c� �

�

q

p

�
�

p
�q�T � ��� c�

�
� c

�
�

Let f�T � � �

q

�
p
l
�

p
�qT � c�

m
� c

�
� we then have�

f�T � �
�

q
�pt� c� � f�T � ���

There always exist � and � such that

qT � c � p�� �� � � � � p� � � Z ���

Let us compute f�T ��

f�T � �
�

q

p

�
�

p
�qT � c�

�
� c

�

�
�

q

p

�
��

�

p

�
� c

�

�
�

q

�p�� c� � p

�
�

p

��

�
�

q

�qT � �� � p

�
�

p

��

� T �
�

q

p

�
�

p

�
� �

�
�

If we proved that bf�T �c � T � we would obtain

T �

�
�

q
�pt� c�

�
� T � �

which is equivalent to exe�t� � T � thereby establishing the proof�
Let us discuss the value of

bf�T �c �

�
T �

�

q

p

�
�

p

�
� �

��

in function of ��

	 If � � � then f�T � � T and bf�T �c � T �

��

	 Otherwise � � � � p and so
l
�
p

m
� �� We would like to have �

q
�p��� � ��

This is equivalent to prove

� �
q � �

p
� ���

� If p � q then equation � is veried�

� Else� as p � q � �� p � q� Remember the hypothesis �equation ����
�

p
�qT � c�

�
� t �

�
�

p
�q�T � ��� c�

�
�

This implies that�
�

p
�qT � c�

�
�

�
�

p
�q�T � ��� c�

�
�

Introducing � and � �equation �� in this equation leads to�
��

�

p

�
�

�
��

� � q

p

�
�

As � is a integer� we have�
�

p

�
�

�
� � q

p

�
�

As
l
�
p

m
� �� we have

� �

�
� � q

p

�

which implies equation ��

We have proven that in all cases� bf�T �c � T � which implies exe�t� � T and

t � Z� �t � �lin�T �� lin�T � ��� exe�t� � T � �

We know have to prove the opposite�
It is immediate to see that�

T�Z

�lin�T �� lin�T � ��� � Z�

So� let t � Z and T � exe�t�� The previous equation implies that

�T �� lin�T �� � t � lin�T � � ���

We have just proven that this implies that exe�t� � T �� We can now conclude
that T � � T and that

t � Z� �T � exe�t� t � �lin�T �� lin�T � �����

�

�

��� The formal transformation

�	�	� The time boundaries

After the linear transformation� the time t varies from tl to tu� We have to nd
the boundaries of the nal time T which corresponds to the interval �tl� tu�� We
take as execution time�

exei�tl� � T � exei�tu� ���

where exei�t� �
j
�

q
�pt� ci�

k
�

Using proposition �� for statement Si� considering lini�t� �
l
�

p
�qt� ci�

m
� we

have the code of program ��

Program
 Code for statement Si with shifted linear schedule
do T�exei�tl�� exei�tu�

�HPF� INDEPENDENT

do t�lini�T �� lini�T � ��� �
�HPF� INDEPENDENT

do pr��pr�l �t�� pr�u�t�
� � �

�HPF� INDEPENDENT

do prd�prdl �t�� prdu�t�

Si�t� pr
�� � � � � prd�

enddo

� � �

enddo

enddo

enddo

Let us verify that this transformation is the one we were looking for� does the
T loop index dened above corresponds to the schedule� Consider index point I�
Statement Si�I� should be executed at time T � exei�LI�� Proposition � proves
that LI is in the denition interval of t� So statement Si�I� is indeed executed
at the required time on the processors computed in the mapping phase�

�	�	� When there are several instructions

It would be interesting here to have a construct to express control parallelism in
HPF� For the moment the current specication is HPF � and can be found in
��� such a construct does not exist� but at the time of writing� it is discussed
into the HPF Forum to consider its inclusion in the HPF
 specication�
Indeed� we would like to execute in parallel all the statements that have the

same schedule� As it is not currently possible� we just execute them sequentially
 it is likely that they would be sequentialized by the compiler anyway�
The last problem we have to solve is how to deal with di�erent shifting

constants for di�erent statements� It is not very di�cult�

	 rst� let the sequential time T go from the lower bound of the time given
by the smallest constant to the upper bound of the time given by the

��

largest constant� T varies from Tl to Tu dened as

Tl �

�
�

q

ptl �min

i
ci

��

Tu �

�
�

q

ptu �max

i
ci

��

	 and then verify for each instruction that the corresponding linear time t
does not exceed its denition interval �tl� tu�� This can be done by letting
t vary from max�tl� lini�T �� to min�tu� lini�T � ��� ���

Note� this style of program writing is correct because in Fortran� if

a do loop has its lower bound greater than its upper bound� its body

is not executed�

�	�	� Some last optimizations

To avoid as much as possible the computation of min and max functions� we
can distinguish three stages in the execution of the parallelized program�

�� The initial stage when at each time some statements may not execute�
we compute the lower bound as max�tl� lini�T �� but let the upper bound
without the min� lini�T � ��� �� This is for values of T varying form

�
�

q
�ptl �min

i
ci�

�
�

to �
�

q
�ptl �max

i
ci�

�
� �

� The steady�state phase when all statements always execute� there are no
min and no max� This is for values of T varying form�

�

q
�ptl �max

i
ci�

�

to �
�

q
�ptu �min

i
ci�

�
� ��

�� The nal stage when some statements may have nished to execute� we
let the lower bound without the max� lini�T � and compute the upper
bound as min�lini�T � ��� ��� This is for values of T varying form

�
�

q
�ptu �min

i
ci�

�

to �
�

q
�ptu �max

i
ci�

�
�

��

We suppose here that n the size parameter of the program is large enough�
We have also worked on the symbolic simplication of loop bounds� The

module that work on symbolic expressions puts a�ne expressions in a �nor�
malized form� �each symbolic constant appears only once� then the 	oor and
ceil functions are deleted if the expression on which they apply is a integer
expression and the number of division is reduced by factorizing the common
denominators of fractions� This leads to more readable code and less expensive
computations to determine loop bounds�
A third optimization addresses the case of non executed loops because their

lower bounds is greater than their upper bound� If it is always the case for
a loop� this loop is discarded� And if a loop has the same lower and upper
bounds� the do statement is replaced by an a�ectation of the common bounds
value to the loop index� These simplications give a more readable form for a
human being� which is also easier to analyze for a compiler program�

� A detailed example

We will study here the whole rewriting scheme on an example�

��� The input program

The example that we consider �see program �� is a two dimensional loop nest
with two inner statements� This is not a real world code but it has been designed
to show the di�culty of rewriting �and even to nd the parallelism��

Program � Example� input program
parameter �n�����

integer i�j

real a�n�n�

real b�n�n�

do i� �� n	

do j� �� n	�

c Statement �

a�i�j��a�i�j	
�b�i	��j��	a�i
�j	��

c Statement �

b�i��j	���a�i�j	��

enddo

enddo

There are four data dependences which are�

From To Dependence
statement statement vector

 � ����	�
�
 ��� ��
� � �	��
�
� � ��� 	�

��

The rst line means that the data item produced by the instance �i� j� of
statement
 is used by the instance �i� �� j � 	� of statement ��

��� Linear scheduling without redistribution

The optimal linear scheduling vector is ��� ��� The projection matrix is ��� ��
and the alignment constants are�

array shift statement shift
a � � �
b �
 �

We can easily check that the owner computes rule is respected here� Actually
forcing to respect this rule here gives another equivalent mapping� As the owner
computes rule is respected� we will not see any temporary arrays in the produced
code to enforce this rule� As the projection matrix is ��� ��� the projection of
the two�dimensional arrays is done on the rst dimension following the second
direction� Hence the redistribution is not necessary�
The resulting code is program ���

Program � Example� HPF program with linear schedule and no redistribution
PROGRAM boucle

INTEGER P�

INTEGER T

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

�HPF� TEMPLATE BCLT���template�n��n��

�HPF� DISTRIBUTE BCLT���template�BLOCK���

�HPF� ALIGN a�i��i�� WITH BCLT���template�i��i���

�HPF� ALIGN b�i��i�� WITH BCLT���template�i���i��

DO T � ��� ��n	��

�HPF� INDEPENDENT

DO P� � ceiling�max��	nT����������� floor�min��T�����	��n	
��

a�P��T	��P�� � �a�P��T	��P�	
��b�P�	��T	��P���	a�P�
�T	��P�	����

b�P���T	��P�	�� � a�P��T	��P�	��

END DO

END DO

END

Following the declarations� there are the distribution and alignment direc�
tives� They are generated from the mapping projection and the shifting con�
stants� The DISTRIBUTE directive uses a BLOCK strategy to map the template
on the processors� As mentioned before� any strategy could be used here and a
block�cyclic approach with a block size depending on the target machine would
probably be a better solution�

�The variables have been renamed for improved readability

��

The loop nest consists in a sequential loop �index T� surrounding a parallel
loop �index P��� T and P� are obtained from the initial loop indices as��

T

P�

�
�

�
� �
� �

��
i

j

�
�

��� Linear scheduling with redistribution

The user can choose to enforce a redistribution� In this case� the data arrays are
copied into temporary arrays for which the resulting loop nest may be simpler
to analyze by an HPF compiler� This is because when doing this redistribution�
the complicated array access functions are moved out of the main loop nest
to the surrounding FORALL loops that realize the redistribution� Thus� the
array access functions become translations that are better optimized by HPF

compilers� The resulting HPF program is program ��
The FORALL statements express the redistribution before and after the com�

putation of the transformed loop nest using the temporary arrays� Note that
the array access functions are translations in this case and are more complicated
without the redistribution�

��� Shifted linear scheduling case

We study here shifted linear scheduling without redistribution� It is possible to
redistribute the arrays as in the previous section but it would not show anything
new and would only complicate the code here�
The shifted linear scheduling functions� are���

�
schedule��I� �

j
�

�
���� ���I�

k
schedule��I� �

j
�

�
���� ���I �
�

k
The mapping of the arrays �and the computations� is the same as the one

obtained for linear scheduling and the resulting code is decomposed in three
stages�

�� The initial stage �see program ��� is limited to one unit of time �T � ��
and we can see the max function in the lower bound of the loops over
the virtual time VT� This function ensures that the computations start at
the right time considering the time shifting constants� Each statement is
inside a loop nest of depth two� the VT index iterates over the instances
of the statement that are scheduled at the same time �here T � ��� and
the P� index iterates over the �virtual� processors�

� The steady�state stage �see program ��� is the main stage when there is
no time boundary problem and every thing is regular� Once again we
have the two parallel loop nests inside the sequential loop over the time�

�� The nal stage �see program �
� matches the initial stage to deal with
the end of the computations with respect to the shifting constants�

�schedulei�I� is the scheduling function of statement i

��

Program Example� HPF program with linear schedule and redistribution
PROGRAM boucle

INTEGER I�

INTEGER I�

INTEGER P�

INTEGER T

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

REAL ROTa���n	��n�

REAL ROTb���n	��n�

�HPF� TEMPLATE BCLT���template���n�n���

�HPF� DISTRIBUTE BCLT���template���BLOCK�

�HPF� ALIGN ROTa�i��i�� WITH BCLT���template�i���i��

�HPF� ALIGN ROTb�i��i�� WITH BCLT���template�i��i����

FORALL �I� � ����n	��I� � ��n�

ROTa�I��I�� � �

END FORALL

FORALL �I� � ����n	��I� � ��n�

ROTb�I��I�� � �

END FORALL

FORALL �I� � ��n�I� � ��n�

ROTa���I�I�	��I�� � a�I��I��

END FORALL

FORALL �I� � ��n�I� � ��n�

ROTb���I�I�	��I�� � b�I��I��

END FORALL

DO T � ��� ��n	��

�HPF� INDEPENDENT

DO P� � ceiling�max��	nT����������� floor�min��T�����	��n	
��

ROTa�T	��P�� � �ROTa�T	��P���ROTb�T	��P�	��	ROTa�T��P�
���

ROTb�T	��P��� � ROTa�T	��P��

END DO

END DO

FORALL �I� � ��n�I� � ��n�

a�I��I�� � ROTa���I�I�	��I��

END FORALL

FORALL �I� � ��n�I� � ��n�

b�I��I�� � ROTb���I�I�	��I��

END FORALL

END

��

Program �� Example� shifted linear schedule� the initialization stage
PROGRAM boucle

INTEGER T

INTEGER VT

INTEGER P�

PARAMETER �n � ����

REAL a�n�n�

REAL b�n�n�

�HPF� TEMPLATE BCLT���template�n��n��

�HPF� DISTRIBUTE BCLT���template�BLOCK���

�HPF� ALIGN a�i��i�� WITH BCLT���template�i��i���

�HPF� ALIGN b�i��i�� WITH BCLT���template�i���i��

T � �

�HPF� INDEPENDENT

DO VT � max����
�T��
�T�

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

a�P��VT	��P�� � �a�P��VT	��P�	
�

� �b�P�	��VT	��P���	a�P�
�VT	��P�	����

END DO

END DO

�HPF� INDEPENDENT

DO VT � max����
�T	���
�T

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

b�P���VT	��P�	�� � a�P��VT	��P�	��

END DO

END DO

Program �� Example� shifted linear schedule� the steady�state stage
DO T �
� �floor����n	����
���	��

�HPF� INDEPENDENT

DO VT �
�T�
�T�

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

a�P��VT	��P�� � �a�P��VT	��P�	
�

� �b�P�	��VT	��P���	a�P�
�VT	��P�	����

END DO

END DO

�HPF� INDEPENDENT

DO VT �
�T	��
�T

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

b�P���VT	��P�	�� � a�P��VT	��P�	��

END DO

END DO

END DO

��

Program �� Example� shifted linear schedule� the nal stage
DO T � floor����n	����
���� floor����n	����
���

�HPF� INDEPENDENT

DO VT �
�T� min���n	���
�T��

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

a�P��VT	��P�� � �a�P��VT	��P�	
�

� �b�P�	��VT	��P���	a�P�
�VT	��P�	����

END DO

END DO

�HPF� INDEPENDENT

DO VT �
�T	�� min���n	���
�T�

�HPF� INDEPENDENT

DO P� � ceiling�max��	nVT����������� floor�min��VT	�������n	
��

b�P���VT	��P�	�� � a�P��VT	��P�	��

END DO

END DO

END DO

END

� Conclusion

We have presented in this paper the problems to solve for code generation in
the Bouclettes tool and the solutions that have been implemented� We have
chosen HPF as output language and this choice has proven critical for the code
generation� Indeed� the use of HPF has relieved us from generating all the low
level communications in the output parallel program� On the other hand� some
complications arise from some current limitations of HPF�

	 the fact that HPF respects the owner computes rule has forced us to
generate some temporary arrays when the mapping is not compatible
with this rule� It should be pointed out that the user can select an option
in Bouclettes that force the mapping to respect the owner computes rule�

	 the data distributions allowed in HPF are not always powerful enough to
express the mapping� We have then developed a redistribution scheme to
deal with all our mappings�

	 the pure data parallelism of HPF does not allow control parallelism that
would be necessary to express all the parallelism exposed by some shifted
linear schedules�

References

��� Jean�Fran!ois Collard� Paul Feautrier� and Tanguy Risset� Construction
of do loops from systems of a�ne constraints� Technical Report ������
Laboratoire de l�Informatique du Parall�lisme� may �����

�
� Alain Darte� Leonid Khachiyan� and Yves Robert� Linear scheduling is
nearly optimal� Parallel Processing Letters� ��
����"��� �����

�

��� Alain Darte and Yves Robert� The alignment problem for perfect uni�
form loop nest� Np�completeness and heuristics� In J�J� Dongarra and
B� Tourancheau eds� editors� Environments and Tools for Parallel Scien�

ti�c Computing II� SIAM Press� pages ��"�
� �����

��� Alain Darte and Yves Robert� Constructive methods for scheduling uni�
form loop nests� IEEE Trans� Parallel Distributed Systems� ��������"�

�
�����

��� Paul Feautrier� Parametric integer programming� RAIRO Recherche

Op�rationnelle�

�
��"
��� September �����

��� Paul Feautrier and Nadia Tawbi� R�solution de syst�mes d�in�quations
lin�aires� mode d�emploi du logiciel PIP� Technical Report ���
� Institut
Blaise Pascal� Laboratoire MASI �Paris�� January �����

��� Stanford Compiler Group� Suif compiler system� World Wide Web docu�
ment� URL�
http��suif�stanford�edu�suif�suif�html�

��� The group of Pr� Lengauer� The loopo project� World WideWeb document�
URL�
http��brahms�fmi�uni�passau�de�cl�loopo�index�html�

��� Charles H� Koelbel� David B� Loveman� Robert S� Schreiber� Guy L� Steele
Jr�� and Mary E� Zosel� The High Performance Fortran Handbook� The
MIT Press� �����

���� William Pugh and the Omega Team� The omega project� World Wide
Web document� URL�
http��www�cs�umd�edu�projects�omega�index�html�

���� PIPS Team� Pips �interprocedural parallelizer for scientic programs��
World Wide Web document� URL�
http��www�cri�ensmp�fr��pips�index�html�

��
� PRiSM SCPDP Team� Systematic construction of parallel and distributed
programs� World Wide Web document� URL�
http��www�prism�uvsq�fr�english�parallel�paf�autom	us�html�

�

