Pierre Boulet 
email: <pierre.boulet@lip.ens-lyon.fr>michledion<michele.dion@lip.ens-lyon.fr>november20
  
Mich Le 
  
Dion Novembe 
  
Code generation in Bouclettes

Keywords: automatic parallelization, loop nest, HPF, compiler, code generation parall lisation automatique, nid de boucles, HPF, compilation, g n ration de code

Bouclettes is a source to source loop nest parallelizer. It takes as input Fortran uniform, perfectly nested loops and gives as output a HPF (High Performance Fortran) program with data distribution and parallel ($HPF! INDEPENDENT) loops. This paper explains how the HPF program is built from some scheduling and allocation functions automatically generated by Bouclettes.

Introduction 1.What is Bouclettes?

Bouclettes is a source to source loop nest parallelizer. It takes Fortran 77 loops as input and returns an equivalent parallel program in HPF (High Performance Fortran).

Bouclettes has been written to validate some scheduling and mapping techniques based on the hyperplane method. These techniques are brie y sketched in section 2. The goal persued when building Bouclettes was to have a completely automatic parallelization tool. This goal has b e e nreached and the input of the user is only required to choose the parallelization methodologies to b e applied.

We have chosen HPF as the output language because we believe it can b ecome a standard for parallel programming. Furthermore, data parallelism is a programmation paradigm that provides a simple way of describing data distributions and of managing the communications induced by the computations. It thus relieves the programmer (or the parallelization tool) of generating the low-level communications.

This paper is organized as follows: after the introduction, we recall in section 2 how the parallelism is extracted from the input program and in the following two sections, we explain how the code is rewritten in HPF. We rst describe the issues of rewriting a program scheduled with a linear schedule in section 3, and then propose a technique to rewrite a program scheduled with a shifted linear schedule in section 4. We then present a detailed example in section 5. Finally we conclude in section 6.

Related work

Automatic parallelization has b e e nstudied by many researchers and some tools for automatic parallelization have b e e nwritten: SUIF 7], at Stanford University, California, PIPS 11,[START_REF] Feautrier | Parametric integer programming[END_REF] at the cole Nationale Sup rieure des Mines de Paris, France, the Omega Library 10] at the University of Maryland, Maryland, LooPo 8] at the University of Passau, Germany, and PAF 12] at the University of Versailles, France, among others.

The particularities of Bouclettes in regards of these other tools are the methodologies employed and the output language. Indeed, Bouclettes takes as input perfectly nested loops with translations as array access functions and uses more complicated techniques to parallelize this kind of loops into HPF programs.

Data analysis and parallelism extraction

The parallelization process can b edecomposed into several inter-dependent tasks. See gure 2. The dependence analysis consists in building a graph representing the constraints on the execution order of the instances of the statements. The scheduling uses the dependences to build a function that associates an execution time to an instance of a statement. The mapping stage maps the data arrays and the instances of the statements to a virtual mesh of processors. The two previous stages (the scheduling and the mapping) are inter-dependent: we want the global transformation of the original loop nest to respect data dependences. The last stage is the code generation. We generate here code with parallel loops (INDEPENDENT loops) and a data allocation (DISTRIBUTE and ALIGN directives).

Scheduling Code Generation

The Bouclettes system is organized as a succession of stages: 1. the input program is analyzed and translated into an internal representation, 2. this representation is used to compute the data dependences, in our case, data dependences are uniform, so a simple custom dependence analyzer is enough to get the exact data dependences, 3. from these data dependences, a linear or shifted linear schedule is computed, 4. the schedule and the internal representation are used to compute a mapping compatible with the schedule, 5. nally, the HPF code is generated following the previously computed transformation. We detail below the analysis and parallelism extraction phases. A complete example illustrating these phases (and the rewriting one) is given in section 5.

Dependence analysis

The dependence analysis consists in nding the constraints on the execution order of the iterations of the statements. The dependence analysis is quite simple in the restricted context we have here. It basically consists in nding all the data dependences b e t ween the inner statements. The three kinds of dependences (direct, anti and output dependences) can b ecomputed in the same way: the dependence vectors are di erences b e t ween two data access functions that address the same array and reciprocally, all the di erences b e t ween two data access functions that address the same array are dependence vectors. Currently, the user has the choice b e t ween the linear schedule and the shifted linear schedule. A schedule is a function that associates to each computation p o i n t (each iteration of a statement) the time when it is computed in the parallel program.

Scheduling

the linear schedule is a linear function that associates a time t to an iteration point ĩ ( ĩ = (i j k) if the loop nest is three dimensional) as follows: t = p q : ĩ where p q are mutually prime integers and is a vector of integers of dimension d (the depth of the loop nest) whose components are relatively prime.

the shifted linear schedule is an extension of the linear schedule where each statement of the loop nest b o d yhas its own scheduling function. All these functions share the same linear part and some (possibly di erent) shifting constant are added for each statement. The time t for statement k is computed as follows: t = p q : ĩ + c k q where p q c k are integers and is a vector of integers of dimension d (the depth of the loop nest) whose components are relatively prime.

The computation of these schedules is done by techniques which guarantee that the result is optimal in the considered class of schedules. Here optimal means that the total latency is minimized. A mapping function is a function that associates to each computation p o i n t the processor which will do the computation and to each array element the processor whose memory it will b estored in.

Mapping

Based on the computation of the so called communication graph , a structure that represents all the communications that can o c c u rin the given loop nest, a projection M and some shifting constants are computed. The base idea is to project the arrays (and the computations) on a virtual processor grid of dimension d ; 1. Then, the arrays and the computations are aligned (by the shifting constants) to suppress some computations.

More precisely, M , the projection matrix, is a (d ;1) d full ranked matrix of integers and the constants x are vectors of integers and of dimension d ; 1.

To each array or statement x is then associated an allocation function de ned by: alloc x ( ĩ) = M ĩ + x As the considered loop nests are uniform, choosing a di erent matrix for di erent arrays or statements would not improve the mapping. The schedule has to b etaken into account to choose the matrix M . E ectively, the transformed loop nest will have as iteration domain, the image of the initial iteration domain by the transformation:

ĩ 7 ! " M # ĩ
It is mandatory to have this iteration domain mapped onto N d , as otherwise we would need rationally indexed processors. As the choice of M does not have a high impact on the numb e rof communications that remain, M ] is just computed as the unimodular completion of vector .

Once M has been computed, the alignment constants are determined in order to minimize the numb e rof computations. Here the user can choose if he wants to respect the owner computes rule (as in HPF) or not. If he chooses not to respect this rule, some temporary arrays may b egenerated in the next stage to take it into account.

3 Coding the linear schedule

Loop rewriting

Bouclettes uses techniques presented by Collard, Feautrier and Risset in 1] to rewrite the loops after reindexation. Reindexation yields a new iteration space, which is a convex integer polyhedron de ned by a set of a ne constraints. Rewriting the nested loop needs to scan all the integer points of this convex and the algorithm relies on a parameterized version of the Dual Simplex, PIP (see 5]).

Consider the initial perfect loop nest (see program 1), where z is a vector of structure parameters (see 1]):

Program 1 Initial perfect loop nest do i 1 =i l 1 (z), i u 1 (z) do i 2 =i l 2 (i 1 z), i u 2 (i 1 z) : : : do i d =i l d (i 1 : : : i d;1 z), i u d (i 1 : : : i d;1 z) S 1 (i 1 i 2 : : : i d z)

: : : S k (i 1 i 2 : : : i d z) enddo : : :

enddo enddo
We rewrite the loop nest after an unimodular linear transformation U . The vector coordinates ĩ = (i 1 : : : i d ) T and j = (j 1 : : : j d ) T , respectively in the old and new basis, are related by: j = U ĩ where U is a d d unimodular matrix (det(U) = 1). Since we are dealing with perfect loop nests, the iteration spaces are nite convex polyhedra of Z d that can b ede ned by a set of inequalities such as:

D(z) = f ĩj ĩ 2 Z d C ĩ + C 0 z + b 0g
where C, C 0 are constraints matrix and b is a constant vector. In the new iteration space, the polyhedra can b ede ned as :

D(z) = f jj j 2 Z d C U ;1 j + C 0 z + b 0g:
Collard, Feautrier and Risset have proved that the initial loop nest (program 1) can b erewritten in the new iteration space in the form given in program 2 where the loop bounds j l n and j u n , 1 n d are simple enough (for an HPF compiler) expressions of the structure parameters and of the surrounding indices j 1 : : : j n;1 . For a perfect loop nest of depth d, the new loop bounds are obtained after 2d successive calls to PIP.

When the OCR is not respected

HPF compilers respect the owner computes rule (OCR): each processor computes its own data only. In the mapping process of Bouclettes, the user can chose not to respect the OCR. Let us consider an array element a( ĩ + c a ) computed in a statement S( ĩ). The mapping process can return allocation functions such that: (M( ĩ + c a ) + a ) 6 = M ĩ + S . To make both the allocation functions and the OCR compatible, we need to add temporary arrays during the code generation stage.

Program 2 Rewritten perfect loop nest do j 1 =j l 1 (z), j u 1 (z) do j 2 =j l 2 (j 1 z), j u 2 (j 1 z) : : : do j d =j l d (j 1 : : : j d;1 z), j u d (j 1 : : : j d;1 z) S 1 (U ;1 j z)

: : : The new allocation functions are deduced from the initial functions to respect the OCR:

alloc a ( ĩ) = M ĩ + a alloc S 1 ( ĩ) = M ĩ + s alloc a tmp ( ĩ) = M ĩ + S ; M c a alloc S 2 ( ĩ) = M ĩ + M c a + a :

Array alignment

In HPF, the programmer can specify the data mapping at two levels. First the arrays are aligned with respect to one another with the directive ALIGN. Then, the aligned data are distributed to the processors with the directive DISTRIBUTE 9].

The general alignment statement is:

!HPF$ ALIGN array WITH target
This speci es to the compiler that the array should b ealigned with the target. The target can b eeither another array of the program or a TEMPLATE (a virtual array). An example of alignement statement is:

!HPF$ ALIGN A(i,j) WITH B(j+1,i+1)
The general distribution statement is:

!HPF$ PROCESSORS proc !HPF$ DISTRIBUTE arrays ONTO proc]
The programmer can also specify the way to distribute the arrays on the processors (BLOCK, CYCLIC or BLOCK_CYCLIC). Bouclettes can generate any type of distribution. The b e s tone would certainly b ea BLOCK_CYCLIC one where the size of the block would depend on the target machine. As in current HPF compilers, only BLOCK distributions are implemented, we have chosen to make Bouclettes generate BLOCK distributions.

According to the projection matrix M , we adopt two di erent strategies in the code generation to align the data: if the projection is along one axis of the iteration, we are able to align directly the arrays as we explain in the following, otherwise, we need to redistribute the arrays before aligning them (see Section 3.4).

When the projection is along one direction of the iteration space D Let a k , (1 k n) b ethe arrays of a loop nest of depth d. Let alloc a k ( ĩ) = M ĩ + a k b ethe allocation function for array a k . Let b ethe linear scheduling vector for the loop nest. Let ĩ 2 D and j = ĩ + ( M ) ;1 ; 0 k . We have

M j = M ĩ + M M ! ;1 0 k ! : Let ( M ) ;1 = (X 1 X 2 ), we have M ! (X 1 X 2 ) = X 1 X 2 M X 1 M X 2 ! = Id :
Hence, M X 2 = Id and

M j = M ĩ + M (X 1 X 2 ) 0 k ! M j = M ĩ + k Let p = M ĩ + k (
the processor p receives the value a k ( ĩ)). p and the image of j by M correspond to the same p o i n t in the virtual processor space. To align all arrays a k with respect to one another, one possibility is to declare a template BCLT_template of dimension d and to align each array with the following directive:

!HPF$ ALIGN a k ( ĩ) WITH BCLT_template 0 @ĩ + M ! ;1 0 k ! 1 A
The distribution of the aligned data onto the processors is then speci ed with the directive: !HPF$ DISTRIBUTE BCLT_template (BLOCK,: : : ,BLOCK,*,BLOCK,: : : ,BLOCK)

The * corresponds to the direction of the projection. Let us notice that this is possible only b e c a u s ethe projection is parallel to one direction of the iteration space.

Array rotation

When this projection is not along one axis, we need to redistribute the arrays to write the HPF directives.

Let U = ( M ). For each array a k of the loop nest, we de ne the new array a k rot such that a k rot ( ĩ) = a k (U ;1 ( ĩ)): We compute the new allocation function for array a k rot from the allocation function for array a k . Let alloc a k ( ĩ) = M ĩ + k , we choose alloc a k rot ( ĩ) = M U ;1 ĩ + k ( a k rot ( ĩ) and a k (U ;1 ( ĩ)) are in the memory of the same processor).

As in Section 3.3, let U ;1 = (X 1 X 2 ). Hence, we have

M U ;1 = (M X 1 M X 2 ) and U U ;1 = X 1 X 2 M X 1 M X 2 ! = Id: Hence, M U ;1 = 0 B B B @ 0 : : Id 0 1 C C C A :
The projection matrix for the new rotated arrays de nes a projection parallel to the rst dimension of the processor space.

Besides, after rewriting, the access to array a k in the new loop nest is a k (U ;1 j + c a k ). We have

a k (U ;1 j + c a k ) = a k rot (U(U ;1 j + c a k )) = a k rot ( j + U c a k ):
If we replace in the new loop nest, all the occurrences of array a k by the corresponding occurrences of array a k rot , we obtain again a rewritten loop nest with uniform access to arrays.

Summary

To summarize our approach, the strategy to generate the code after a linear scheduling is: 1. verify if the data and computation mapping is compatible with the OCR, if not insert temporary arrays, 2. rewrite the loop nest, 3. verify if the projection matrix corresponds to a projection along one dimension of the iteration space, if not replace the initial arrays by rotated arrays, generate the parallel loops at the beginning and at the end of the program to respectively initialize with the correct values the rotated values and to copy the values of the rotated arrays in the initial arrays, 4. generate the alignment directives to align each array of the loop nest with respect to a template, 5. generate the distribute directive to map the template to virtual processors. Let us consider the following schedule:

schedule(I) = 1 q (pLI + c) (1) 
for a given statement. The previous transformations uses t = LI. So the execution time following the shifted linear schedule (equation 1) can b erewritten as exe(t) = 1 q (pt + c) :

(2)

In the above transformed code, the processors on which the computations are executed depend only on the execution time t (and on the parameters of the program). So, if we can inverse the exe function, we will b eable to rewrite the loop nest with a new time variable corresponding to the time given by the schedule.

We now show that this inverse is:

lin(T) = 1 p (q T; c) : (3) 
We have to prove the following proposition.

Proposition 1 8t 2 Z (t 2 lin(T) lin(T + 1) , exe(t) = T ) Otherwise 0 < < p and so l p m = 1. We would like to have 1 q (p; ) < 1. This is equivalent to prove 1 < q + p : [START_REF] Feautrier | Parametric integer programming[END_REF] If p < q then equation 6 is veri ed.

Else, as p ^q = 1, p > q. Rememb e rthe hypothesis (equation 4):

1 p (q T; c) t < 1 p (q(T + 1) ; c) :

This implies that 1 p (q T; c) < 1 p (q(T + 1) ; c) :

Introducing and (equation 5) in this equation leads to

+ p < + + q p :
As is a integer, we have p < + q p : As l p m = 1, we have 1 < + q p which implies equation 6.

We have proven that in all cases, bf(T)c = T , which implies exe(t) = T and 8t 2 Z (t 2 lin(T) lin(T + 1) ) exe(t) = T ) :

We know have to prove the opposite. It is immediate to see that T 2Z lin(T) lin(T + 1) = Z:

So, let t 2 Z and T = exe(t). The previous equation implies that 9T 0 lin(T 0 ) t < lin(T 0 + 1):

We have just proven that this implies that exe(t) = T 0 . We can now conclude that T 0 = T and that 8t 2 Z (T = exe(t) ) t 2 lin(T) lin(T + 1) ):

4.2 The formal transformation

The time boundaries

After the linear transformation, the time t varies from t l to t u . We have to nd the boundaries of the nal time T which corresponds to the interval t l t u ]. We take as execution time:

exe i (t l ) T exe i (t u ) [START_REF] Feautrier | R solution de syst mes d'in quations lin aires mode d'emploi du logiciel PIP[END_REF] where exe i (t) = j 1 q (pt + c i ) k .

Using Let us verify that this transformation is the one we were looking for: does the T loop index de ned above corresponds to the schedule? Consider index p o i n t I. Statement S i (I) should b eexecuted at time T = exe i (LI). Proposition 1 proves that LI is in the de nition interval of t. So statement S i (I) is indeed executed at the required time on the processors computed in the mapping phase.

When there are several instructions

It would b einteresting here to have a construct to express control parallelism in HPF. For the moment the current speci cation is HPF 1 and can b efound in 9] such a construct does not exist, but at the time of writing, it is discussed into the HPF Forum to consider its inclusion in the HPF 2 speci cation.

Indeed, we would like to execute in parallel all the statements that have the same schedule. As it is not currently possible, we just execute them sequentially it is likely that they would b esequentialized by the compiler anyway.

The last problem we have to solve is how to deal with di erent shifting constants for di erent statements. It is not very di cult: rst, let the sequential time T go from the lower bound of the time given by the smallest constant to the upper bound of the time given by the largest constant: T varies from T l to T u de ned as T l = 1 q pt l + min i c i T u = 1 q pt u + max i c i and then verify for each instruction that the corresponding linear time t does not exceed its de nition interval t l t u ]. This can b edone by letting t vary from max(t l lin i (T)) to min(t u lin i (T + 1) ; 1).

Note: this style of program writing is correct because in Fortran, if a do loop has its lower bound greater than its upper bound, its body is not executed.

Some last optimizations

To avoid as much as possible the computation of min and max functions, we can distinguish three stages in the execution of the parallelized program:

1. The initial stage when at each time some statements may not execute: we compute the lower bound as max(t l lin i (T)) but let the upper bound without the min: lin i (T + 1) ; 1. This is for values of T varying form 1 q (pt l + min i c i ) : to 1 q (pt l + max i c i ) ; 1 2. The steady-state phase when all statements always execute: there are no min and no max. This is for values of T varying form 1 q (pt l + max i c i ) to 1 q (pt u + min i c i ) ; 1:

3. The nal stage when some statements may have nished to execute: we let the lower bound without the max: lin i (T) and compute the upper bound as min(lin i (T + 1) ; 1). This is for values of T varying form 1 q (pt u + min i c i ) to 1 q (pt u + max i c i ) :

We suppose here that n the size parameter of the program is large enough. We have also worked on the symbolic simpli cation of loop bounds. The module that work on symbolic expressions puts a ne expressions in a normalized form (each symbolic constant appears only once) then the oor and ceil functions are deleted if the expression on which they apply is a integer expression and the numb e rof division is reduced by factorizing the common denominators of fractions. This leads to more readable code and less expensive computations to determine loop bounds.

A third optimization addresses the case of non executed loops because their lower b o u n d sis greater than their upper bound. If it is always the case for a loop, this loop is discarded. And if a loop has the same lower and upper bounds, the do statement is replaced by an a ectation of the common bounds value to the loop index. These simpli cations give a more readable form for a human being, which is also easier to analyze for a compiler program.

A detailed example

We will study here the whole rewriting scheme on an example.

The input program

The example that we consider (see program 7) is a two dimensional loop nest with two inner statements. This is not a real world code but it has b e e ndesigned to show the di culty of rewriting (and even to nd the parallelism). Statement 1 a(i,j)=a(i,j-5)+b(i-1,j+3)-a(i+5,j-4) c

Statement 2 b(i+1,j-2)=a(i,j-1) enddo enddo There are four data dependences which are:

From

To Dependence statement statement vector 2 1 2 ;5]

1 2 0 1] 1 1 5 ;4] 1 1 0 5]
The rst line means that the data item produced by the instance i j] of statement 2 is used by the instance i + 2 j ; 5] of statement 1.

Linear scheduling without redistribution

The optimal linear scheduling vector is 3 1]. The projection matrix is 1 0] and the alignment constants are:

array shift statement shift a 0 1 0 b 1 2 0
We can easily check that the owner computes rule is respected here. Actually forcing to respect this rule here gives another equivalent mapping. As the owner computes rule is respected, we will not see any temporary arrays in the produced code to enforce this rule. As the projection matrix is 1 0], the projection of the two-dimensional arrays is done on the rst dimension following the second direction. Hence the redistribution is not necessary.

The resulting code is program 8.1 Following the declarations, there are the distribution and alignment directives. They are generated from the mapping projection and the shifting constants. The DISTRIBUTE directive uses a BLOCK strategy to map the template on the processors. As mentioned before, any strategy could b eused here and a block-cyclic approach with a block size depending on the target machine would probably b ea b e t t e rsolution.

The loop nest consists in a sequential loop (index T) surrounding a parallel loop (index P1). T and P1 are obtained from the initial loop indices as:

T P1 ! = 3 1 1 0 ! i j ! :

Linear scheduling with redistribution

The user can choose to enforce a redistribution. In this case, the data arrays are copied into temporary arrays for which the resulting loop nest may b esimpler to analyze by an HPF compiler. This is because when doing this redistribution, the complicated array access functions are moved out of the main loop nest to the surrounding FORALL loops that realize the redistribution. Thus, the array access functions b e c o m etranslations that are better optimized by HPF compilers. The resulting HPF program is program 9.

The FORALL statements express the redistribution b e f o r eand after the computation of the transformed loop nest using the temporary arrays. Note that the array access functions are translations in this case and are more complicated without the redistribution.

Shifted linear scheduling case

We study here shifted linear scheduling without redistribution. It is possible to redistribute the arrays as in the previous section but it would not show anything new and would only complicate the code here.

The shifted linear scheduling functions2 are: The mapping of the arrays (and the computations) is the same as the one obtained for linear scheduling and the resulting code is decomposed in three stages:

1. We have presented in this paper the problems to solve for code generation in the Bouclettes tool and the solutions that have b e e nimplemented. We have chosen HPF as output language and this choice has proven critical for the code generation. Indeed, the use of HPF has relieved us from generating all the low level communications in the output parallel program. On the other hand, some complications arise from some current limitations of HPF:

the fact that HPF respects the owner computes rule has forced us to generate some temporary arrays when the mapping is not compatible with this rule. It should b ep o i n ted out that the user can select an option in Bouclettes that force the mapping to respect the owner computes rule. the data distributions allowed in HPF are not always p o werful enough to express the mapping. We have then developed a redistribution scheme to deal with all our mappings. the pure data parallelism of HPF does not allow control parallelism that would b enecessary to express all the parallelism exposed by some shifted linear schedules.

Figure 1 :

 1 Figure 1: The parallelization stages

  loop nest which does not verify the OCR real a(n,n) do ĩ S( ĩ) a( ĩ + c a ) = expr enddo Program 4 Loop nest which veri es the OCR after the addition of temporary arrays real a(n n) real a tmp (n n) do ĩ S 1 ( ĩ) a tmp ( ĩ + c a ) = expr S 2 ( ĩ) a( ĩ + c a ) = a tmp ( ĩ + c a ) enddo Hence, the loop nest of program 3, where expr is an expression of other array elements of the program is transformed by adding temporary arrays into the loop nest of program 4.

Program 7

 7 Example: input program parameter (n=100) integer i,j real a(n,n) real b(n,n) do i= 2, n-5 do j= 6, n-3 c

Program 8

 8 Example: HPF program with linear schedule and no redistribution TEMPLATE BCLT_0_template(n+1,n+3) !HPF$ DISTRIBUTE BCLT_0_template(BLOCK,*) !HPF$ ALIGN a(i1,i2) WITH BCLT_0_template(i1,i2+3) !HPF$ ALIGN b(i1,i2) WITH BCLT_0_template(i1+1,i2) DO T = 12, 4*n-18 !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+T)/3.0+1,2)), floor(min((T)/3.0-2,n-5)) a(P1,T-3*P1) = (a(P1,T-3*P1-5)+(b(P1-1,T-3*P1+3)-a(P1+5,T-3*P1-4))) b(P1+1,T-3*P1-2) = a(P1,T-3*P1-1) END DO END DO END

  TEMPLATE BCLT_0_template(n+1,n+7) !HPF$ DISTRIBUTE BCLT_0_template(BLOCK,*) !HPF$ ALIGN a(i1,i2) WITH BCLT_0_template(i1,i2+7) !HPF$ ALIGN b(i1,i2) WITH BCLT_0_template(i1+1,i2) T = 4 !HPF$ INDEPENDENT DO VT = max(20,5*T), 5*T+4 !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) a(P1,VT-7*P1) = (a(P1,VT-7*P1-5)+ & (b(P1-1,VT-7*P1+3)-a(P1+5,VT-7*P1-4))) END DO END DO !HPF$ INDEPENDENT DO VT = max(20,5*T-4), 5*T !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) b(P1+1,VT-7*P1-2) = a(P1,VT-7*P1-1) END DO END DO Program 11 Example: shifted linear schedule, the steady-state stage DO T = 5, (floor((8*n-38)/5.0)-1) !HPF$ INDEPENDENT DO VT = 5*T, 5*T+4 !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) a(P1,VT-7*P1) = (a(P1,VT-7*P1-5)+ & (b(P1-1,VT-7*P1+3)-a(P1+5,VT-7*P1-4))) END DO END DO !HPF$ INDEPENDENT DO VT = 5*T-4, 5*T !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) b(P1+1,VT-7*P1-2) = a(P1,VT-7*P1-1) END DO END DO END DO Program 12 Example: shifted linear schedule, the nal stage DO T = floor((8*n-38)/5.0), floor((8*n-34)/5.0) !HPF$ INDEPENDENT DO VT = 5*T, min(8*n-38,5*T+4) !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) a(P1,VT-7*P1) = (a(P1,VT-7*P1-5)+ & (b(P1-1,VT-7*P1+3)-a(P1+5,VT-7*P1-4))) END DO END DO !HPF$ INDEPENDENT DO VT = 5*T-4, min(8*n-38,5*T) !HPF$ INDEPENDENT DO P1 = ceiling(max((-n+VT+3)/7.0,2)), floor(min((VT-6)/7.0,n-5)) b(P1+1,VT-7*P1-2) = a(P1,VT-7*P1-

  Darte and Robert have presented techniques to compute schedules for a given uniform loop nest 2, 4]. These techniques are part of the theoretical basis of

	Bouclettes.

  From linear scheduling to shifted linear schedulingAs explained before, we have rewritten the initial loop nest taking into account only the linear part of the schedule. This transformed loop nest looks like program 5.

	Program 5 Aloop nest after the linear transformation
	do t=t l , t u
	$HPF! INDEPENDENT do pr 1 =pr 1 l (t), pr 1 u (t)
	: : :
	$HPF! INDEPENDENT
	do pr d =pr d l (t), pr d u (t) S 1 (t pr 1 : : : p r d )
	: : : S k (t pr 1 : : : p r d )
	enddo
	: : :
	enddo
	enddo
	4 Coding shifted linear schedules
	4.1

  The initial stage (see program 10) is limited to one unit of time (T = 4) and we can see the max function in the lower b o u n dof the loops over the virtual time VT. This function ensures that the computations start at the right time considering the time shifting constants. Each statement is inside a loop nest of depth two: the VT index iterates over the instances of the statement that are scheduled at the same time (here T = 4), and the P1 index iterates over the (virtual) processors. 2. The steady-state stage (see program 11) is the main stage when there is no time boundary problem and every thing is regular. Once again we have the two parallel loop nests inside the sequential loop over the time. 3. The nal stage (see program 12) matches the initial stage to deal with the end of the computations with respect to the shifting constants.

The variables have be e nrenamed for improved readability

schedule i (I ) is the scheduling function of statement i

Proof Let t 2 Z such that: lin(T) t < lin(T + 1)

We can successively deduce: 1 p (q T; c) t < 1 p (q(T + 1) ; c) (4) and 1 q p 1 p (q T; c) + c 1 q (pt + c) < 1 q p 1 p (q(T + 1) ; c) + c :

Let f (T) = 1 q p l 1 p (q T; c) m + c , we then have: f (T) 1 q (pt + c) < f (T + 1): There always exist and such that q T; c = p + 0

= 1 q (p + c) + p p = 1 q (q T; ) + p p = T + 1 q p p ; : If we proved that bf(T)c = T , we would obtain T 1 q (pt + c) < T + 1 which is equivalent to exe(t) = T , thereby establishing the proof.

Let us discuss the value of bf(T)c = T + 1 q p p ; in function of .

If = 0 then f (T) = T and bf(T)c = T .