Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids
Olivier Beaumont, Arnaud Legrand, Yves Robert

To cite this version:

HAL Id: hal-02101992
https://hal-lara.archives-ouvertes.fr/hal-02101992
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids

Olivier Beaumont, Arnaud Legrand and Yves Robert

May 2002

Research Report Nº 2002-20
Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids

Olivier Beaumont,
Arnaud Legrand and
Yves Robert

May 2002

Abstract
In this paper, we consider the execution of a complex application on a heterogeneous "grid" computing platform. The complex application consists of a suite of identical, independent problems to be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence constraints) between these tasks. A typical example is the repeated execution of the same algorithm on several distinct data samples. We use a non-oriented graph to model the grid platform, where resources have different speeds of computation and communication. We show how to determine the optimal steady-state scheduling strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with each neighbor). This result holds for a quite general framework, allowing for cycles and multiple paths in the platform graph.

Keywords: Heterogeneous processors, scheduling, mixed data and task parallelism.

Résumé
Nous nous intéressons à l’ordonnancement d’une application complexe sur une plateforme de calcul hétérogène. L’application consiste en une suite de problèmes identiques et indépendants à résoudre. Chaque problème correspond à un graphe de tâches, avec contraintes de précédence. Un exemple typique de cette situation est l’exécution répétée d’un même algorithme sur des données différentes. La plateforme de calcul est modélisée par un graphe non-orienté, où les ressources ont des vitesses de calcul et de communication différentes. Nous montrons comment déterminer le régime permanent optimal pour chaque processeur (c’est-à-dire la fraction de temps passée à calculer et celles passées à communiquer avec chacun de ses voisins).

Mots-clés: Processeurs hétérogènes, ordonnancement, parallélisme mixte.
1 Introduction

In this paper, we consider the execution of a complex application, on a heterogeneous "grid" computing platform. The complex application consists of a suite of identical, independent problems to be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence constraints) between these tasks. A typical example is the repeated execution of the same algorithm on several distinct data samples. Consider the simple fork graph depicted in Figure 1. This fork graph models the algorithm. We borrow this example from Subhlok et al. [27]. There is a main loop which is executed several times. Within each loop iteration, there are four tasks to be performed on some matrices. Each loop iteration is what we call a problem instance. Each problem instances operates on different data, but all instances share the same task graph, i.e. the fork graph of Figure 1. For each node in the task graph, there are as many task copies as there are iterations in the main loop.

![Figure 1: A simple fork graph example.](image1)

We use another graph, the platform graph, for the grid platform. We model a collection of heterogeneous resources and the communication links between them as the nodes and edges of an undirected graph. See the example in Figure 2 with four processors and five communication links. Each node is a computing resource (a processor, or a cluster, or whatever) capable of computing and/or communicating with its neighbors at (possibly) different rates. The underlying interconnection network may be very complex and, in particular, may include multiple paths and cycles (just as the Ethernet does).

![Figure 2: A simple platform example](image2)

We assume that one specific node, referred to as the master, initially holds (or generates the data for) the input tasks of all problems. The question for the master is to decide which tasks to execute itself, and how many tasks to forward to each of its neighbors. Due to heterogeneity, the
neighbors may receive different amounts of work (maybe none for some of them). Each neighbor faces in turn the same dilemma: determine how many tasks to execute, and how many to delegate to other processors. Note that the master may well need to send tasks along multiple paths to properly feed a very fast but remote computing resource.

Because the problems are independent, their execution can be pipelined. At a given time-step, different processors may well compute different tasks belonging to different problem instances. In the example, a given processor $P_i$ may well compute the tenth copy of task $T_1$, that corresponding to problem number 10, while another processor $P_j$ computes the eight copy of task $T_3$, which corresponds to problem number 8. However, because of the dependence constraints, note that $P_j$ could not begin the execution of the tenth copy of task $T_3$ before that $P_i$ has terminated the execution of the tenth copy of task $T_1$ and sent the required data to $P_j$ (if $i \neq j$).

In this paper, our objective is to determine the optimal steady state scheduling policy for each processor, i.e. the fraction of time spent computing, and the fraction of time spent sending or receiving each type of tasks along each communication link, so that the (averaged) overall number of problems processed at each time-step is maximum.

This scheduling problem is motivated by problems that are addressed by collaborative computing efforts such as SETI@home [21], factoring large numbers [9], the Merseme prime search [19], and those distributed computing problems organized by companies such as Entropia [10]. Several papers [23, 22, 12, 11, 30, 4, 3] have recently revisited the master-slave paradigm for processor clusters or grids, but all these papers only deal with independent tasks. To the best of our knowledge, the algorithm presented in this paper is the first that allows precedence constraints in a heterogeneous framework. In other words, this paper represents a first step towards extending all the work on mixed task and data parallelism [27, 7, 20, 1, 28] towards heterogeneous platforms.

The rest of the paper is organized as follows. In Section 2, we introduce our base model of computation and communication, and we formally state the steady-state scheduling to be solved. In Section 3, we provide the optimal solution to this problem, using a linear programming approach, and we work out a full example. We briefly survey related work in Section 4. Finally, we give some remarks and conclusions in Section 5.

2 The model

We start with a formal description of the application/architecture framework. Next we state all the equations that hold during steady-state operation.

2.1 Application/architecture framework

The application

- Let $\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots, \mathcal{P}^{(n)}$ be the $n$ problems to solve, where $n$ is large
- Each problem $\mathcal{P}^{(m)}$ corresponds to a copy $G^{(m)} = (V^{(m)}, E^{(m)})$ of the same task graph $(V, E)$. The number $|V|$ of nodes in $V$ is the number of task types. In the example of Figure 1, there are four task types, denoted as $T_1$, $T_2$, $T_3$ and $T_4$.
- Overall, there are $n.|V|$ tasks to process, since there are $n$ copies of each task type.
The architecture

- The target heterogeneous platform is represented by a directed graph, the platform graph.

- There are \( p \) nodes \( P_1, P_2, \ldots, P_p \) that represent the processors. In the example of Figure 2 there are four processors, hence \( p = 4 \). See below for processor speeds and execution times.

- Each edge represents a physical interconnection. Each edge \( e_{ij} : P_i \rightarrow P_j \) is labeled by a value \( c_{ij} \) which represents the time to transfer a message of unit length between \( P_i \) and \( P_j \); in either direction; we assume that the link between \( P_i \) and \( P_j \) is bidirectional and symmetric. A variant would be to assume two unidirectional links, one in each direction, with possibly different label values. If there is no communication link between \( P_i \) and \( P_j \) we let \( c_{ij} = +\infty \), so that \( c_{ij} < +\infty \) means that \( P_i \) and \( P_j \) are neighbors in the communication graph. With this convention, we can assume that the interconnection graph is (virtually) complete.

- We assume a full overlap, single-port operation mode, where a processor node can simultaneously receive data from one of its neighbor, perform some (independent) computation, and send data to one of its neighbor. At any given time-step, there are at most two communications involving a given processor, one in emission and the other in reception. Other models can be dealt with, see [3, 6].

Execution times

- Processor \( P_i \) requires \( u_{i,k} \) time units to process a task of type \( T_k \).

- Note that this framework is quite general, because each processor has a different speed for each task type, and these speeds are not related: they are inconsistent with the terminology of [5]. Of course, we can always simplify the model. For instance we can assume that \( u_{i,k} = u_i \times \delta_k \), where \( u_i \) is the relative speed of processor \( P_i \) and \( \delta_k \) the weight of task \( T_k \).

Communication times

- Each edge \( e_{k,l} : T_k \rightarrow T_l \) in the task graph is weighted by a communication cost \( \text{data}_{k,l} \) that depends on the tasks \( T_k \) and \( T_l \). It corresponds to the amount of data output by \( T_k \) and required as input to \( T_l \).

- Recall that the time needed to transfer a unit amount of data from processor \( P_i \) to processor \( P_j \) is \( c_{i,j} \). Thus, if a task \( T_k^{(m)} \) is processed on \( P_i \) and task \( T_l^{(m)} \) is processed on \( P_j \), the time to transfer the data from \( P_i \) to \( P_j \) is equal to \( \text{data}_{k,l} \times c_{i,j} \); this holds for any edge \( e_{k,l} : T_k \rightarrow T_l \) in the task graph and for any processor pair \( P_i \) and \( P_j \). Again, once a communication from \( P_i \) to \( P_j \) is initiated, \( P_i \) (resp. \( P_j \)) cannot handle a new emission (resp. reception) during the next \( \text{data}_{k,l} \times c_{i,j} \) time units.

2.2 Steady-state equations

We begin with a few definitions:

- For each edge \( e_{k,l} : T_k \rightarrow T_l \) in the task graph and for each processor pair \( (P_i, P_j) \), we denote by \( s(P_i \rightarrow P_j, e_{k,l}) \) the (average) fraction of time spent each time-unit by \( P_i \) to send to \( P_j \) data involved by the edge \( e_{k,l} \). Of course \( s(P_i \rightarrow P_j, e_{k,l}) \) is a nonnegative rational number. Think of an edge \( e_{k,l} \) as requiring a new file to be transferred from the output of each task
\( T_k^{[m]} \) processed on \( P_i \) to the input of each task \( T_k^{[m]} \) processed on \( P_j \). Let the (fractional) number of such files sent per time-unit be denoted as \( \text{sent}(P_i \rightarrow P_j, e_{k,l}) \). We have the relation:

\[
s(P_i \rightarrow P_j, e_{k,l}) = \text{sent}(P_i \rightarrow P_j, e_{k,l}) \times (\text{data}_{k,l} \times c_{i,j})
\]

which states that the fraction of time spent transferring such files is equal to the number of files times the product of their size by the capacity of the communication link.

- For each task type \( T_k \in V \) and for each processor \( P_i \), we denote by \( \alpha(P_i, T_k) \) the (average) fraction of time spent each time-unit by \( P_i \) to process tasks of type \( T_k \), and by \( \text{consumed}(P_i, T_k) \) the (fractional) number of tasks of type \( T_k \) processed per time unit by processor \( P_i \). We have the relation

\[
\alpha(P_i, T_k) = \text{consumed}(P_i, T_k) \times w_{i,k}
\]

We search for rational values of all the variables \( s(P_i \rightarrow P_j, e_{k,l}), \text{sent}(P_i \rightarrow P_j, e_{k,l}), \alpha(P_i, T_k) \) and \( \text{consumed}(P_i, T_k) \). We formally state the first constraints to be fulfilled.

**Activities during one time-unit** All fractions of time spent by a processor to do something (either computing or communicating) must belong to the interval \([0,1]\), as they correspond to the average activity during one time unit:

\[
\forall P_i, \forall T_k \in V, 0 \leq \alpha(P_i, T_k) \leq 1 \quad (3)
\]

\[
\forall P_i, P_j, \forall e_{k,l} \in E, 0 \leq s(P_i \rightarrow P_j, e_{k,l}) \leq 1 \quad (4)
\]

**One-port model for outgoing communications** Because send operations to the neighbors of \( P_i \) are assumed to be sequential, we have the equation:

\[
\forall P_i, \sum_{P_j \in n(P_i)} \sum_{e_{k,l} \in E} s(P_i \rightarrow P_j, e_{k,l}) \leq 1 \quad (5)
\]

where \( n(P_i) \) denotes the neighbors of \( P_i \). Recall that we can assume a complete graph owing to our convention with the \( c_{i,j} \).

**One-port model for incoming communications** Because receive operations from the neighbors of \( P_i \) are assumed to be sequential, we have the equation:

\[
\forall P_i, \sum_{P_j \in n(P_i)} \sum_{e_{k,l} \in E} s(P_j \rightarrow P_i, e_{k,l}) \leq 1 \quad (6)
\]

Note that \( s(P_j \rightarrow P_i, e_{k,l}) \) is indeed equal to the fraction of time spent by \( P_i \) to receive from \( P_j \) files of type \( e_{k,l} \).

**Full overlap** because of the full overlap hypothesis, there is no further constraint on \( \alpha(P_i, T_k) \) except that

\[
\forall P_i, \sum_{T_k \in V} \alpha(P_i, T_k) \leq 1 \quad (7)
\]
For technical reasons it is simpler to have a single input task (a task without any predecessor) and a single output task (a task without any successor) in the task graph. To this purpose, we introduce two fictitious tasks, $T_{begin}$ which is connected to every task with no predecessor in the graph, and $T_{end}$ which is connected to every task with no successor in the graph. Because these tasks are fictitious, we let $w_{i,begin} = w_{i,End} = 0$ for each processor $P_i$. No task of type $T_{begin}$ is consumed by any processor, and no file of type $e_{k,end}$ is sent between any processor pair, for each edge $e_{k,end}: T_k \rightarrow T_{end}$. This is ensured by the following equations:

$$\forall P_{t_i}, consumed(P_{t_i}, T_{begin}) = 0$$

$$\forall P_{t_i}, \forall P_j \in n(P_{t_i}), \forall e_{k,end} : T_k \rightarrow T_{end}, \left\{ \begin{array}{c}
sent(P_{t_i} \rightarrow P_j, e_{k,end}) = 0 \\
sent(P_j \rightarrow P_{t_i}, e_{k,end}) = 0\end{array} \right. \quad (8)$$

Note that we can let $data_{k,end} = +\infty$ for each edge $e_{k,end} : T_k \rightarrow T_{end}$, but we need to add that $s(P_{t_i} \rightarrow P_j, e_{k,end}) = sent(P_{t_i} \rightarrow P_j, e_{k,end}) \times (data_{k,end} \times c_{i,j}) = 0$ (in other words, $0 \times +\infty = 0$ in this equation).

2.3 Conservation laws

The last constraints deal with conservation laws: we state them formally, then we work out an example to help understand these constraints.

Consider a given processor $P_i$, and a given edge $e_{k,l}$ in the task graph. During each time unit, $P_i$ receives from its neighbors a given number of files of type $e_{k,l}$: $P_i$ receives exactly $\sum_{P_j \in n(P_i)} sent(P_j \rightarrow P_i, e_{k,l})$ such files. Processor $P_i$ itself executes some tasks $T_k$, namely $consuming(P_i, T_k)$ tasks $T_k$, thereby generating as many new files of type $e_{k,l}$.

What does happen to these files? Some are sent to the neighbors of $P_i$, and some are consumed by $P_i$ to execute tasks of type $T_k$. We derive the equation:

$$\forall P_{t_i}, \forall e_{k,l} \in E : T_k \rightarrow T_{l_i},$$

$$\sum_{P_j \in n(P_{t_i})} sent(P_j \rightarrow P_{t_i}, e_{k,l}) + consumed(P_{t_i}, T_k) = \sum_{P_j \in n(P_{t_i})} sent(P_{t_i} \rightarrow P_j, e_{k,l}) + consumed(P_{t_i}, T_k) \quad (9)$$

It is important to understand that equation (9) really applies to the steady-state operation. At the beginning of the operation of the platform, only input tasks are available to be forwarded. Then some computations take place, and tasks of other types are generated. At the end of this initialization phase, we enter the steady-state: during each time-period in steady-state, each processor can simultaneously perform some computations, and send/receive some other tasks. This is why equation (9) is sufficient, we do not have to detail which operation is performed at which time-step.

In fact, equation (9) does not hold for the master processor $P_{t_{master}}$, because we assume that it holds an infinite number of tasks of type $T_{begin}$. It must be replaced by the following equation:

$$\forall e_{k,l} \in E : T_k \rightarrow T_{l_i} \text{ with } k \neq \text{begin},$$

$$\sum_{P_j \in n(P_{t_{master}})} sent(P_j \rightarrow P_{t_{master}}, e_{k,l}) + consumed(P_{t_{master}}, T_k) =$$

$$\sum_{P_j \in n(P_{t_{master}})} sent(P_{t_{master}} \rightarrow P_j, e_{k,l}) + consumed(P_{t_{master}}, T_k) \quad (10)$$
Note that dealing with several masters would be straightforward, by writing equation 10 for each of them.

**Working out an example**

We work out the conservation laws for the fork (task) graph of Figure 1, using the simple platform shown in Figure 2. We start by extending the task graph with \( T_{\text{begin}} \) and \( T_{\text{end}} \), as illustrated in Figure 3.

![Diagram](image)

Figure 3: Extending the fork (task) graph with \( T_{\text{begin}} \) and \( T_{\text{end}} \).

We assume that \( P_1 \) is the master processor. The following conservation equations hold for \( P_1 \):

\[
sent(P_2 \rightarrow P_1, e_{1,2}) + sent(P_3 \rightarrow P_1, e_{1,2}) + consumed(P_1, T_1) =
\]
\[
consumed(P_1, T_2) + sent(P_1 \rightarrow P_2, e_{1,2}) + sent(P_1 \rightarrow P_3, e_{1,2})
\]

\[
sent(P_2 \rightarrow P_1, e_{1,3}) + sent(P_3 \rightarrow P_1, e_{1,3}) + consumed(P_1, T_1) =
\]
\[
consumed(P_1, T_3) + sent(P_1 \rightarrow P_2, e_{1,3}) + sent(P_1 \rightarrow P_3, e_{1,3})
\]

\[
sent(P_2 \rightarrow P_1, e_{2,4}) + sent(P_3 \rightarrow P_1, e_{2,4}) + consumed(P_1, T_2) =
\]
\[
consumed(P_1, T_4) + sent(P_1 \rightarrow P_2, e_{2,4}) + sent(P_1 \rightarrow P_3, e_{2,4})
\]

\[
sent(P_2 \rightarrow P_1, e_{3,4}) + sent(P_3 \rightarrow P_1, e_{3,4}) + consumed(P_1, T_3) =
\]
\[
consumed(P_1, T_4) + sent(P_1 \rightarrow P_2, e_{3,4}) + sent(P_1 \rightarrow P_3, e_{3,4})
\]
sent(P_2 \rightarrow P_1, e_{4,\text{end}}) + sent(P_3 \rightarrow P_1, e_{4,\text{end}}) + consumed(P_1, T_4) =
\quad consumed(P_1, T_{\text{end}}) + sent(P_1 \rightarrow P_2, e_{4,\text{end}}) + sent(P_1 \rightarrow P_3, e_{4,\text{end}})

The following conservation equations hold for P_2:

sent(P_1 \rightarrow P_2, e_{\text{begin,1}}) + sent(P_3 \rightarrow P_2, e_{\text{begin,1}}) + sent(P_4 \rightarrow P_2, e_{1,2}) + consumed(P_2, T_1) =
\quad consumed(P_2, T_2) + sent(P_2 \rightarrow P_1, e_{1,2}) + sent(P_2 \rightarrow P_3, e_{1,2}) + sent(P_2 \rightarrow P_4, e_{1,2})

sent(P_1 \rightarrow P_2, e_{1,3}) + sent(P_3 \rightarrow P_2, e_{1,3}) + sent(P_4 \rightarrow P_2, e_{1,3}) + consumed(P_2, T_1) =
\quad consumed(P_2, T_3) + sent(P_2 \rightarrow P_1, e_{1,3}) + sent(P_2 \rightarrow P_3, e_{1,3}) + sent(P_2 \rightarrow P_4, e_{1,3})

sent(P_1 \rightarrow P_2, e_{2,4}) + sent(P_3 \rightarrow P_2, e_{2,4}) + sent(P_4 \rightarrow P_2, e_{2,4}) + consumed(P_2, T_2) =
\quad consumed(P_2, T_4) + sent(P_2 \rightarrow P_1, e_{2,4}) + sent(P_2 \rightarrow P_3, e_{2,4}) + sent(P_2 \rightarrow P_4, e_{2,4})

sent(P_1 \rightarrow P_2, e_{3,4}) + sent(P_3 \rightarrow P_2, e_{3,4}) + sent(P_4 \rightarrow P_2, e_{3,4}) + consumed(P_2, T_3) =
\quad consumed(P_2, T_4) + sent(P_2 \rightarrow P_1, e_{3,4}) + sent(P_2 \rightarrow P_3, e_{3,4}) + sent(P_2 \rightarrow P_4, e_{3,4})

sent(P_1 \rightarrow P_2, e_{4,\text{end}}) + sent(P_3 \rightarrow P_2, e_{4,\text{end}}) + sent(P_4 \rightarrow P_2, e_{4,\text{end}}) + consumed(P_2, T_4) =
\quad consumed(P_2, T_{\text{end}}) + sent(P_2 \rightarrow P_1, e_{4,\text{end}}) + sent(P_2 \rightarrow P_3, e_{4,\text{end}}) + sent(P_2 \rightarrow P_4, e_{4,\text{end}})

3 Computing the optimal steady-state

We summarize the linear programming problem to be solved in order to compute the optimal steady-state. Next we return to the example and fully work out a numerical instance of the application/architecture platform.

3.1 Linear program

The equations listed in the previous section constitute a linear programming problem, whose objective function is the total throughput, i.e. the number of tasks T_{\text{end}} consumed within one time-unit:

$$\sum_i consumed(P_i, T_{\text{end}})$$ (11)

Here is a summary of the linear program:
Steady-State Scheduling Problem SSSP(G)

Maximize
\[ TP = \sum_{i=1}^{p} \sum_{e} \text{consumed}(P_i, T_{end}), \]
subject to
\[
\begin{align*}
\forall i, j, \forall k, & \quad 0 \leq a(P_i, T_k) \leq 1 \\
\forall i, j, \forall e_{k,l} \in E, & \quad 0 \leq s(P_i \rightarrow P_j, e_{k,l}) \leq 1 \\
\forall i, \forall k, & \quad s(P_i \rightarrow P_j, e_{k,l}) = \text{sent}(P_i \rightarrow P_j, e_{k,l}) \times (\text{data}_{k,l} \times c_{i,j}) \\
\forall i, & \quad \alpha(P_i, T_k) = \text{consumed}(P_i, T_k) \times w_{i,k} \\
\forall i, & \quad \sum_{P_j \in (P_i)} \sum_{e_{k,l} \in E} s(P_i \rightarrow P_j, e_{k,l}) \leq 1 \\
\forall i, & \quad \sum_{P_j \in (P_i)} \sum_{e_{k,l} \in E} s(P_i \rightarrow P_j, e_{k,l}) \leq 1 \\
\forall i, & \quad \sum_{T_k \in V} \alpha(P_i, T_k) \leq 1 \\
\forall i, j, \forall e_{k,\text{end}}, & \quad \text{consumed}(P_i, T_{\text{begin}}) = 0 \\
\forall P_i, \forall e_{k,l} \in E & \quad \text{sent}(P_i \rightarrow P_j, e_{k,l}) + \text{consumed}(P_i, T_k) = \\
\forall e_{k,l} \in E \text{ with } k \neq \text{begin}, & \quad \sum_{P_j \in (P_{\text{master}})} \text{sent}(P_i \rightarrow P_j, e_{k,l}) + \text{consumed}(P_{\text{master}}, T_k) = \\
& \quad \sum_{P_j \in (P_{\text{master}})} \text{sent}(P_{\text{master}} \rightarrow P_j, e_{k,l}) + \text{consumed}(P_{\text{master}}, T_k)
\end{align*}
\]

We can state the main result of this paper:

**Theorem 1.** The solution to the previous linear programming problem provides the optimal solution to SSPP(G)

Because we have a linear programming problem in rational numbers, we obtain rational values for all variables in polynomial time (polynomial in the sum of the sizes of the task graph and of the platform graph). When we have the optimal solution, we take the least common multiple of the denominators, and thus we derive an integer period for the steady-state operation.

3.2 Back to the example

We return to our little example, adding numerical values for the \(w_{i,k}\), the \(c_{i,j}\) and the \(\text{data}_{k,l}\); see Figure 4. The values of the \(\text{data}_{k,l}\) are indicated along the edges of the task graph. The values of the \(c_{i,j}\) are indicated along the edges of the platform graph. For the sake of simplicity, we let \(w_{i,k} = w_i \times \delta_k\) for all tasks \(T_k\), where the corresponding values for \(w_i\) are indicated close to the nodes of the platform graph and the corresponding values for \(\delta_k\) are indicated close to the nodes of the dependency graph. The master processor \(P_1\) is circled in bold.

We feed the values \(c_{i,j}, w_{i,k}\) and \(\text{data}_{k,l}\) into the linear program, and compute the solution using a tool like the Maple simplex package [8]. We obtain the optimal throughput \(TP = 7/64\). This means that the whole platform is equivalent to a single processor capable of processing 7 tasks every 64 seconds. The actual period is equal to 91840. The resulting values for \(\alpha(P_i, T_k)\) are gathered in Table 1, and those for \(\text{consumed}(P_i, T_k)\) are gathered in Table 2.

The resulting values for \(\text{sent}(P_i \rightarrow P_j, e_{k,l})\) can be summarized in the following way:

- \(P_1 \rightarrow P_2\) : a fraction 299/1435 of the time is spent communicating (files for edge) \(e_{1,2}\) and a fraction 531/1435 of the time is spent communicating (files for edge) \(e_{1,3}\);
- \(P_1 \rightarrow P_3\) : 11/82 of the time is spent communicating \(e_{1,3}\) and 165/574 of the time is spent communicating \(e_{3,4}\);
Figure 4: The application/architecture example with numerical values.

<table>
<thead>
<tr>
<th></th>
<th>$T_1$</th>
<th>$T_2$</th>
<th>$T_3$</th>
<th>$T_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1$</td>
<td>7/64</td>
<td>13719/91840</td>
<td>7213/18368</td>
<td>4573/13120</td>
</tr>
<tr>
<td>$P_2$</td>
<td>0</td>
<td>1851/11480</td>
<td>531/1148</td>
<td>617/1640</td>
</tr>
<tr>
<td>$P_3$</td>
<td>0</td>
<td>33/82</td>
<td>0</td>
<td>49/82</td>
</tr>
<tr>
<td>$P_4$</td>
<td>0</td>
<td>6/41</td>
<td>0</td>
<td>35/41</td>
</tr>
</tbody>
</table>

Table 1: Optimal solutions for $\alpha(P_i, T_k)$

<table>
<thead>
<tr>
<th>$T_{begin}$</th>
<th>$T_1$</th>
<th>$T_2$</th>
<th>$T_3$</th>
<th>$T_4$</th>
<th>$T_{end}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1$</td>
<td>0</td>
<td>7/64  $\approx$ 0.11</td>
<td>4573/91840 $\approx$ 0.05</td>
<td>7213/91840 $\approx$ 0.08</td>
<td>4573/91840 $\approx$ 0.05</td>
</tr>
<tr>
<td>$P_2$</td>
<td>0</td>
<td>0     $\approx$ 0.02</td>
<td>617/34440 $\approx$ 0.02</td>
<td>177/5740 $\approx$ 0.03</td>
<td>617/34440 $\approx$ 0.02</td>
</tr>
<tr>
<td>$P_3$</td>
<td>0</td>
<td>0     $\approx$ 0.03</td>
<td>11/328 $\approx$ 0.03</td>
<td>0 $\approx$ 0.03</td>
<td>7/328 $\approx$ 0.02</td>
</tr>
<tr>
<td>$P_4$</td>
<td>0</td>
<td>0     $\approx$ 0.01</td>
<td>1/123 $\approx$ 0.01</td>
<td>0 $\approx$ 0.01</td>
<td>5/246 $\approx$ 0.02</td>
</tr>
</tbody>
</table>

Total |       |       |       |       |       | 0.11   |

Table 2: Optimal solutions for $\text{consumed}(P_i, T_k)$

- $P_2 \rightarrow P_1$: 4/41 of the time is spent communicating $e_{1,2}$ and 445/1148 of the time is spent communicating $e_{3,4}$;
- $P_3 \rightarrow P_4$: 12/41 of the time is spent communicating $e_{2,4}$ and 255/1148 of the time is spent communicating $e_{3,4}$;
- the link $P_2 \leftrightarrow P_3$ is not used.

The relatively weak throughput of our platform is to be compared to the efficiency of the master processor $P_1$, which is the fastest one. If $P_1$ had been used alone, it would have been possible to process 4 tasks every 64 units of time. Instead, we achieve 7 tasks every 64 units of time,
despite all the dependences, despite the communication overheads, and despite the fact that the other processors are at least three times slower than \( P_1 \). This clearly demonstrates the usefulness of deploying the target problem suite on the heterogeneous platform.

Also, it is worth pointing out that the solution is not trivial, in that processors do not execute tasks of all types. In the example, the processors are equally efficient on all task types: \( w_{i,k} = w_i \times \delta_k \), hence only relative speeds count. We could have expected each problem to be processed by a single processor, that would execute all the tasks of the problem, in order to avoid extra communications; in this scenario, the only communications would correspond to the input cost \( c_{\text{begin}}, 1 = 2 \). However, the intuition is misleading. In the optimal steady state solution, some processors do not process some task types at all (see \( P_3 \) and \( P_4 \)), and some task types are executed by one processor only (see \( T_1 \)). This example demonstrates that in the optimal solution, the processing of each problem may well be distributed over the whole platform. This illustrates the full potential of the mixed data and task parallelism approach.

## 4 Related problems

We classify several related papers along the following three main lines:

**Scheduling task graphs on heterogeneous platforms** Several heuristics have been introduced to schedule (acyclic) task graphs on different-speed processors, see Maheswaran and Siegel [17], Oh and Ha [18], Topcuoglu, Hariri and Wu [29], and Sih and Lee [24] among others. Unfortunately, all these heuristics assume no restriction on the communication resources, which renders them somewhat unrealistic to model real-life applications. Recent papers by Hollermann, Hsu, Lopez and Vertanen [13], Hsu, Lee, Lopez and Royce [14], and Sinnen and Sousa [26, 25], suggest to take communication contention into account. Among these extensions, scheduling heuristics under the one-port model (see Johnsson and Ho [15] and Krumme, Cybenko and Venkataraman [16]) are considered in [2]: just as in this paper, each processor can communicate with at most another processor at a given time-step.

**Master-slave on the computational grid** Master-slave scheduling on the grid can be based on a network-flow approach (see Shao, Berman and Wolski [23] and Shao [22]), or on an adaptive strategy (see Heymann, Senar, Luque and Livny [12]). Note that the network-flow approach of [23, 22] is possible only when using a full multiple-port model, where the number of simultaneous communications for a given node is not bounded. Enabling frameworks to facilitate the implementation of master-slave tasking are described in Goux, Kulkarni, Linderoth and Yoder [11], and in Weissman [30].

**Mixed task and data parallelism** There are a very large number of papers dealing with mixed task and data parallelism. We quote the work of Subhlok, Stidnoth, O’Hallaron and Gross [27], Chakrabarti, Demmel and Yelick [7], Ramaswamy, Sapatnekar and Banerjee [20], Bal and M. Haines [1], and Subhlok and Vandran [28], but this list is by no means meant to be comprehensive. We point out, however, that (to the best of our knowledge) none of the papers published in this area is dealing with heterogeneous platforms.

## 5 Conclusion

In this paper, we have dealt with the implementation of mixed task and data parallelism onto heterogeneous platforms. We have shown how to determine the best steady-state scheduling strategy for a general task graph and for a general platform graph, using a linear programming approach.
This work can be extended in the following two directions:

- On the theoretical side, we could try to solve the problem of maximizing the number of tasks that can be executed within $K$ time-steps, where $K$ is a given time-bound. This scheduling problem is more complicated than the search for the best steady-state. Taking the initialization phase into account renders the problem quite challenging.

- On the practical side, we need to run actual experiments rather than simulations. Indeed, it would be interesting to capture actual architecture and application parameters, and to compare heuristics on a real-life problem suite.

References


