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Abstract

In this report we address the issue of loop tiling to minimize the completion time of the loop
when executed on multicomputers� We remove the restriction of atomicity of tiles and internal
parallelism within tiles is exploited by overlapping computation with communication� The
e�ectiveness of tiling is then critically dependent on the execution order of tasks within a tile�
In this paper we present a theoretical framework based on equivalence classes that provides
an optimal task ordering under assumptions of constant and di�erent permutations of tasks
in individual tiles� Our framework is able to handle constant but compile�time unknown
dependences by generating optimal task permutations at run�time and results in signi�cantly
lower loop completion times� Our solution is an improvement over previous approaches and is
optimal for all problem instances� We also propose e�cient algorithms that provide the optimal
solution� The framework has been implemented as an optimization pass in the SUIF compiler
and has been tested on distributed and shared memory systems using a message passing model�
We show that the performance improvement over previous results is substantial�

Keywords� automatic parallelization� tiling� nested loop� reordering� pipelined communications� uni�
form dependances� equivalence classes�

R�esum�e

�Etant donn�e un nid de boucles ��dimensionnel avec des d�ependances uniformes et une distri�
bution reguli�ere des t	aches sur une cha	
ne de processeurs� Nous adressons ici le probl�eme du
r�eordonnancement des t	aches �a l�int�erieur m	eme de chaque tuile a�n de pipeliner les communi�
cations� En fait� nous cherchons �a utiliser le parall�elisme interne �a chaque tuile a�n de r�eduire
la latence dans une direction critique � ces r�esultats pouvant s�appliquer �a des nids de boucles
multidirectionnels� Les approches pr�ecedantes se tenant �a chercher une permutation constante
des t	aches �a l�int�erieur de chaque tuiles� nous avons d�abord r�esolu ce probl�eme de mani�ere op�
timale algorithme �� puis compar�e cet algorithme �a un algorithme utilisant des permutations
non constantes algorithme ��� La construction de l�algorithme � �a n�ecessit�e la mise en oeuvre
d�une formalisation math�ematiques du probl�eme suivit de preuves substentielles� C�est ce qui
constitue le corps de ce rapport�
Si clairement dans le cas ��directionnel nos r�esultats montrent la sup�eriorit�e de l�algorithme
�� certains param�etres laissent �a penser que dans les dimensions sup�erieures� un algorithme de
type � serait peut 	etre plus e�cace���

Mots�cl�es� parall�elisation automatique� pavage� nids de boucle� r�eordonnancement� communications
pipelin�ees� d�ependances uniformes� classes d��equivalence�



Optimal Task Scheduling to Minimize Inter�Tile

Latencies �

Fabrice Rastello

LIP� Ecole Normale

Sup�erieure de Lyon

�� all�ee d�Italie

��	�� Lyon Cedex 
�� France

fabrice�rastello�ens�lyon�fr

Amit Rao

Dept� of ECECS

University of Cincinnati�

Cincinnati� OH ����

arao�ececs�uc�edu

Santosh Pande

Dept� of ECECS

University of Cincinnati�

Cincinnati� OH ����

santosh�ececs�uc�edu

Abstract

In this paper we address the issue of loop tiling
to minimize the completion time of the loop when
executed on multicomputers� We remove the re�
striction of atomicity of tiles and internal paral�
lelism within tiles is exploited by overlapping com�
putation with communication� The e�ectiveness
of tiling is then critically dependent on the execu�
tion order of tasks within a tile� In this paper we
present a theoretical framework based on equiv�
alence classes that provides an optimal task or�
dering under assumptions of constant and di�er�
ent permutations of tasks in individual tiles� Our
framework is able to handle constant but compile�
time unknown dependences by generating optimal
task permutations at run�time and results in sig�
ni�cantly lower loop completion times� Our solu�
tion is an improvement over previous approaches
and is optimal for all problem instances� We also
propose e�cient algorithms that provide the op�
timal solution� The framework has been imple�
mented as an optimization pass in the SUIF com�
piler and has been tested on distributed and shared
memory systems using a message passing model�
We show that the performance improvement over
previous results is substantial�

�This work is supported in part by the National Sci�
ence Foundation through grant no� CCR��������� by the
CNRS�ENS Lyon�INRIA project ReMaP� and by the Eu�
reka Project EuroTOPS

� Introduction

One of the most popular techniques to partition
uniform loop nests and map tasks to processors
in a multicomputer is based on loop tiling� The
motivation behind tiling is to increase the gran�
ularity of computations� locality of data refer�
ences and data reuse ��� ��� ���� Usually tiles
are considered to be atomic i�e�� inter�processor
communication is considered to take place only
after the end of computation in each tile� A num�
ber of research approaches ��� �� ��� ��� ��� ���
use this assumption to derive the optimal param�
eters i�e�� size and shape of the tile� However�
the assumption of atomic tiles is needlessly re�
strictive when targeting parallel machines such
as distributed memory multicomputers that are
capable of overlapping communication with com�
putation� Atomic tile considerations are justi�ed
when the cache size is small since tile size is cho�
sen to �t the underlying data in the cache� How�
ever� if tiles are considered to be atomic� com�
munication cannot be overlapped with compu�
tation� Therefore� intra�tile optimizations given
that computation and communication can over�
lap poses an interesting problem�

Partitioning uniform loop nests to �nd com�
munication free partitions or to minimize com�
munication has motivated a signi�cant amount
of research recently ��� ��� ���� These approaches
involve distribution of data among processors and
�nding a communication optimal loop partition�
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On the other hand we can avoid redistributing
data among processors and order individual tasks
on processors so as to minimize the completion
time of the loop using tiling framework� In gen�
eral� communication free or communication min�
imal partitioning of loops needs a more precise
knowledge of dependences such as dependence
distance vectors�� whereas tiling could be done
with less precise dependence information such as
dependence direction vectors� ����� The compiler
can evaluate the loop completion time of the ap�
proach based on distributing data among proces�
sors and computing communication minimal loop
partitions and compare it to an approach which
avoids data redistribution and computes the opti�
mal order of task execution on each processor ����
Based on the above analysis� the compiler can
then choose the corresponding technique� This
indicates that there is a need to investigate the
bene�t of intra�tile optimizations�

Previous approaches by Chou � Kung ��� and
Dion et al ���� to the problem of �nding an op�
timal task ordering within loop tiles have relied
on heuristics that do not yield the optimal solu�
tion for all instances of the problem even in one
dimension� Thus� �nding the optimal solution in
one dimension is still an open issue� The cen�
tral contribution of this work is to develop a new
formulation of this problem along with a frame�
work based on equivalence classes to derive opti�
mal permutations� Using this framework we also
develop e�cient algorithms that result in an op�
timal solution for all problem instances in one di�
mension� Further� we take into account the pos�
sibility of having di�erent task permutations in
each tile and give the optimal solution for this
case too�

The remainder of the paper is organized as fol�
lows� Section � presents the motivation through a
simple example and the problem statement� Sec�
tion � presents the related work and compares
our solution with previous approaches� Section
� formulates the problem based on equivalence
classes� In section � we develop the theoretical
framework� prove optimality results and give the
algorithms� Section � deals with the more general

case� Section � discusses the solution when di�er�
ent task permutations are considered in each tile�
In section �� we present and discuss the results of
our implementation� Finally� section � provides
concluding remarks�

� Motivation and Problem

Statement

��� Motivating Example

Consider the following example�
Example � �

Do l � � �� L

Do i � � �� N

A�i�l� �� f	A�i�
�

EndDo

EndDo

Let us suppose that we tile the i�loop in the above
example and execute the loop nest on a multicom�
puter with processor caches� We could partition
the above loop so that tasks with dependences
execute on the same processor in order to fully
eliminate communication of data involving array
A� This can be achieved by allocating iterations
i and i�l to the same processor� However� loop
partitioning and data distribution will have to be
done for every value of l which is very costly�
On the other hand� we could partition the it�

eration and data space using a method based
on tiling which allocates consecutive iterations to
the same processor� We do not redistribute data
among processors� By exploiting the parallelism
within loop tiles we overlap communication with
computation� Assuming the tile size to be a con�
stant across all processors for load balancing� the
total loop completion time is critically dependent
on the ordering of tasks within each tile� The task
ordering cannot always be determined at compile�
time for loops such as example � where the de�
pendences are unknown at compile�time� In such
cases� it is necessary to determine the task or�
dering at run�time� Thus� determining optimal
ordering of tasks within a tile to minimize the
loop completion time for loops with constant but
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Figure �� One dimensional tiling

unknown dependences is a key issue which is the
focus of our work�

��� Statement of the problem

Consider a loop with loop size N � tile size
n and dependence distance l� We assume
that there is a single dependence distance vec�
tor and we have P processors� The N tasks
are partitioned into dN

n
e tiles such that for

� � i � dN
n
e � �� the tasks contained in

tile Ti are ftni� tni��� ����� tn�i�����g and TdN
n
e�� �

ftn�dN
n
e���� ����� tN��g� Tile Ti is executed on pro�

cessor Pi for every i� The problem is to �nd an
optimal ordering �� of tasks in a tile� so as to
minimize the overall completion time Ttot� of the
loop respecting the dependences imposed� The
time to perform each task is �calc and the time
required for each communication is �comm� Please
note that the number of processors and tiles need
not be the same�

To simplify the notation� consider an example
in which there are ��� tasks t�� t�� ����� t��� with a
�ow dependence between ti and ti�� for all i� In
order to take advantage of temporal data locality
we use tiling as discussed above� Let us assume
that the tile size n� is �� and number of pro�
cessors P � is ��� For � � i � ��� tile Ti con�
tains the tasks ft��i� t��i��� t��i��� ������ t���i�����g
and T	� � ft���� t��	� ����� t���g� By executing Ti on
processor Pi for every i� the loop space is mapped
onto the processor space� Figure � represents the
constraints of dependences for the �rst two tiles�

We now present a survey of previous work re�
lated to solving this problem and explain the sig�

ni�cance of our contribution�

� Related Work

Tiling bas been the focus of loop partitioning
work in compilers recently� Many di�erent ap�
proaches investigate di�erent aspects of tiling
such as determining size and shape of a tile� de�
termining legality of tiled space to enforce de�
pendences� use of tiling to minimize communica�
tion etc� We present a brief overview of some of
the important recent tiling approaches below and
contrast our work with them�

Irigoin and Triolet ���� and Jingling Xue ����
address the issue of legality of tiling� They intro�
duce the notion of loop partitioning with multiple
hyper�planes� They propose a set of basic con�
straints that should be met by any partitioning
and derive the conditions under which the hyper�
plane partitioning satis�es the constraints�

Agarwal et al ��� address the problem of de�
riving the optimal tiling parameters for minimal
communication in loops with general a�ne in�
dex expressions on cache�coherent multiproces�
sors� They assume tiles to be atomic and only
consider DOALL loops factoring out issues of de�
pendencies and synchronizations that arise from
the ordering of iterations of a loop� Our work is
not restricted to DOALL parallelism�

Ramanujam � Sadayappan ���� address the
problem of compiling perfectly nested loops for
multicomputers using tiling� However� they con�
sider tiles to be atomic and therefore do not al�
low synchronization during the execution of a tile�
They present an approach to partitioning the it�
eration and data space so that communication is
minimized�

Tang and Zigman ���� use loop tiling coupled
with chain�based scheduling and indirect mes�
sage passing to develop e�cient message passing
parallel code for DOACROSS loop nests� Their
work mainly deals with optimizing communica�
tion arising out of tiling which is not the focus of
our work�

Desprez et al ��� investigate the cumulative idle
time of processors during a parallel execution�
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They study perfect loop nests with uniform de�
pendences and determine the solution to param�
eters that relate the shape of the iteration space
to that of the tiles� for all distributions of tiles to
processors� Their work is di�erent from ours as
they assume tiles to be atomic�

D�Hollander ��� presents a partitioning algo�
rithm to identify independent iterations in loops
with constant dependence vectors� He also pro�
poses a scheduling scheme for the dependent it�
erations� The iterations in each set are ordered
lexicographically�
The focus of our work is on intra�tile optimiza�

tions to minimize the loop completion time� More
speci�cally� we focus on the problem of determin�
ing optimal permutations of tasks within a tile to
minimize loop completion time� The problem of
determining permutations of tasks within a tile
to minimize loop completion time has been at�
tempted by Chou � Kung ��� and by Dion et�
al� ��� ���� Before discussing their approaches we
introduce some terms and de�nitions�

��� Terms and De�nitions

We denote the tile length by n� loop size by N

and the dependence distance by l�

De�nition � Let us denote � � ft�� t�� ����� tN��g
as the task space� Each element of � is a task to
be executed�

De�nition � The iteration space is mapped onto
the processor or tile space� Each tile con�
tains n tasks � more precisely� a tile is a set
Tj � ftnj� tnj��� tnj��� ���� tnj�n��g � � with j �
f�� ����� dN

n
e � �g� All the tasks of one tile are to

be executed on one processor only�

Let �calc be the time to perform one task with
one processor� and let �comm be the time for one
communication between two adjacent processors�
The g�c�d of n and l is denoted by n�l� P denotes
the number of processors� k denotes n mod l
while p denotes bn

l
c� Finally�

x � y�l��� x mod l � y mod l

De�nition � T is called the period of ordering
such that for each i� tile Ti is executed from time
iT to time iT � n�calc�

Since� the total loop completion time depends lin�
early on the value of T � the problem reduces to
minimizing T �

De�nition � In each tile� the permutation of
tasks is equal modulo n� Let � denote the per�
mutation of tasks in tile T��

f�� �� ���� ng �� f�� �� ���� ng
We have for all i � f�� �� �����N��g� ti is executed
by the processor j � b i

n
c between time �i � jT �

�i� nj��calc and the time �i � �calc�

De�nition � For a given n� and a given l� and
�calc and �comm being �xed� the minimum period
of ordering Tmin is the smallest reachable value
of T satisfying the above constraints with an ap�
propriate permutation within a tile�

��� Chou � Kung�s Solution

Let us �rst discuss Chou and Kung�s ��� solution
to the one�dimensional tiling problem� Chou and
Kung propose the following ordering of tasks on
each tile processor��
For all i � f�� ��� N � �g� j � b i

n
c  we have nj �

i � nj � n � ��� ti is executed by processor Pj

between time �i � i�nj�	 �calc� j	T and �i�
�calc� The period of ordering is given by

T � n � l � ��	 �calc � �comm

Hence� for all i� the processor Pi starts working
at time i 	 T and ends working at time i 	 T �
n	 �calc�
Chou � Kung�s solution for the case n �

� and l � � is presented in Figure ��
In Figure � we use the following notation�

�� Each 
 represents a task to be executed� The
tasks are numbered from left to right in in�
creasing order starting at ��

�� A rectangle is a tile�

�



Case n=7, l=3 & T=5tcalc+tcom

0 2 3 6 7 96 8 10 11 11 1254 13 14 15 161 5 10

P0 P1 P2

Figure �� Chou � Kung�s solution for the case
n � � and l � �� T � �

�� The set of tasks contained in a tile are exe�
cuted on the same processor�

�� The numbers below each task represent the
times at which the tasks are executed� con�
sidering �calc � � and �comm � ��

�� The arrows between tasks denote the depen�
dences between tasks� For example� t� �� t�
means that t� must be executed before t��

As one can see their approach is non�optimal�
Dion improved over Chou and Kung�s solution by
considering a better ordering of tasks within each
tile so as to decrease the period T of ordering�

��� Dion�s solution

First Dion shows the following results�

Lemma � The best local permutation that per�
mits reaching the minimum period Tmin is inde�
pendent of the values of �calc and �comm� More�
over� if T ���

min is the minimum period for �calc �
� and �comm � � then T

�calc��comm
min � T

���
min	�calc�

�comm�

Lemma � If n � l �� � the problem is equivalent
to a smaller problem with n� � n

n�l
and l� � l

n�l
�

Hence� from now on we can choose n and l such
that n � l � �� �calc will be equal to �� and �comm

will be �� so that the discussion is simpli�ed�
Dion�s permutation leads to a smaller period of

ordering than Chou � Kung�s solution� In fact�
her solution is optimal for the special case l � ��
For example� for the case n � � and l � � Dion�s
solution leads to T � � which is the optimal so�
lution� while Chou and Kung�s solution leads to

4 5 8 7 1110 87 62130

Topt=7

Case n=9 & l=2

Solution given by M. Dion’s algorithm

5 8 110 1 2 3 4 6 7 8 109

T=8 Chou & Kung’s solution

Figure �� Comparison of Dion�s solution and
Chou � Kung�s solution for n � � and l � �

T � �� Larger the value of n� greater will be
the di�erence between the two solutions and thus�
the loop completion times� The solutions are pre�
sented in Figure ��
The following theorem summarizes Dion�s con�

tribution for the special case l � ��

Theorem � For n � �k � �� k � � and l � ��
the optimal ordering has a period of ordering�

Topt � d�n � �
�

e

Dion also gives an algorithm for ordering the
tasks for this special case in order to reach the
optimal period of ordering� Let j � f�� � � �n� �g�

 for j odd� �j � d	n��



e � n�j

�


 for j even�
	 if j � �d	n��



e � ��� n� �j �

j

�

	 if j � �d	n��
 e � ��� n� �j �
j�n��

�

She also derives bounds for T which is stated
in the following theorem�

Theorem � For l  � and n � l � �� we have

�bn
l
c � � � T � �bn

l
c� �

For l  �� Dion gives an algorithm called a cyclic
algorithm that gives a correct permutation or
schedule with T � �bn

l
c � �� However� this is

�



not an optimal solution� This is one of the ma�
jor limitations of the solution given by Dion� The
other limitation is that she has used the simplify�
ing assumption of a constant permutation in ev�
ery processor similar to Chou and Kung�s work�
In later sections we show that the solution can be
greatly improved if we remove this restriction�

Dion�s and Chou and Kung�s solutions are not
optimal for all instances of the problem� Figures �
� � compare their solution to ours� for the case
N � ���� n � ��� l � ��� Figures �a� and �b�
show Chou � Kung�s solution and Dion�s solu�
tion� Figures �a� and �b� show solutions ob�
tained by our two proposed algorithms� The tasks
are represented by dots� The horizontal lines cor�
respond to the starting times of each individual
tile� The vertical lines represent the boundaries
of adjacent tiles� Tasks that have dependences
are shaded in the same color�

However� determining the optimal solution for
both constant and non�constant permutations is
a non�trivial combinatorial problem as outlined
below�

��� Complexity of the Problem

We �rst examine the complexity of the problem of
determining optimal permutations of tasks within
a tile�
Given a tile size n� and a dependence distance

l�� we calculate the total number of possible per�
mutations corresponding to di�erent orderings of
tasks within a tile� For n � ��� l � �� the depen�
dence graph for a single tile is shown in Figure ��

The dependence graph has l connected compo�
nents� Let p � bn

l
c and k � n mod l� Then� k

components contain p � � tasks� and l � k com�
ponents contain p tasks�

To begin with� there are n� possible permuta�
tions of n tasks without considering dependences�
The tasks within each component have to be ex�
ecuted in increasing order to satisfy dependency
constraints� The total number of correct permu�
tations taking dependences into account is

n�

p� ����kp��l�k
�

n�

p� ��kp��l

T0

time

tasks

13512711910395877971635547393123157

Chou & Kung’s heuristic
T   =

111
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Figure �� Timing graph showing solution ob�
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First algorithm (uniform permutation)

Third tile

Second tile

First tile

total time=173
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Second algorithm (non uniform permutation)

Second tile
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total time=107
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Figure �� Timing graph showing solution ob�
tained from a� Algorithm I b� Algorithm II
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Figure �� Task dependence graph for tile at origin

For n � ��� l � �� the number of possible
permutations is ����	 ����� Since this is a very
large number even for a small problem� the prob�
lem is combinatorial in nature� In order to make
it more tractable� a suitable framework must be
developed to solve it in polynomial time�
In order to derive the optimal solution in poly�

nomial time� we formulate the problem in a
di�erent way� We then develop a new frame�
work that helps us derive the optimal period
of ordering Tmin� for all cases of l� in terms of
n� k and l� where n � lp � k � � � k � l� The
framework also gives us an e�cient algorithm
that always reaches the optimal period of order�
ing Tmin�

� Formulation of the Problem

using Equivalence Classes

We introduce the following notation and de�ni�
tions for our subsequent discussion�

�� The set of tasks of the �rst tile is given by
 � ft�� t�� ����� tn��g� Further� we say that
ti � tj i� i � j�l�� Hence� by using a simpli�
�ed notation� we denote task ti by the integer
i�

�� The operator � is an equivalence rela�
tion that de�nes equivalence classes within
f�� �� ���� n � �g� This equivalence relation
de�nes l components or equivalence classes�

�



X�� X�� ���� Xl��� We denote the set of equiv�
alence classes by ! � fX�� X�� ���� Xl��g�

�� We say that� X � Y if�

�x� y� � X� Y � � x � y � n�l�

�� The indices for the equivalence classes are
chosen in a manner such that�


 X� � fi �  � i � ��l�g

 X� � X� � X� � � � � � Xl�� � X�

From the following de�nitions we have�

�Xi � !� p � jXij � p� �

Moreover� there are k classes of size p� � � l� k

of size p�

De�nition 
 For all i in f�� �� � � � � l��g� we de�
�ne �i � jXij � p� In other words� if jXij �
p� � then �i � �� else jXij � p and �i � ��

De�nition � For all i  l� �i � �imodl

Therefore� the ��string can be extended to an
in�nite string periodic with period l��
Example � � Consider n � � and l � �� We have�

X� � f�� �� �g � �� � �
X� � f�� �g � �� � �
X� � f�� �g � �� � �

The problem of �nding an optimal ordering of
tasks now reduces to �nding a suitable permu�
tation of the l equivalence classes� This permu�
tation depends on the relative values of �i i�e��
the property of the string ������ � � ��l�� � � � We
derive the optimal solution in the next section�

� Optimal Solution

��� Formal Framework

Let us recollect that the tile size is n� the depen�
dence distance is l and n � l � �� The equiva�
lence classes are called Xi and their size is p��i�
with p � bn

l
c� We claim that the optimum period

of ordering depends on the relative values of �i�
more speci�cally �i and �i��� Hence� the aim of
theorem � is to discuss the property of the string
��� ��� ���� �l������� in terms of the tile size n� and
the dependence distance l�� This relationship is
quanti�ed in terms of " presented below�

Theorem � If l  � � n � l � � and " �
mini�IN �maxi���j�j���i�l���j � �j����� then


 If l � � 	 k � � then

" � max
��j�j���


�j � �j��� � �


 Else

" � max
��j�j���l��

�j � �j��� �

�������
� if k � �
� if � � k � d l�e
� if k � d l

�
e

As seen above� the de�nition of " is a min�max
de�nition� The above theorem gives the values of
" for all cases of tile size and dependence dis�
tance� The relationship between the value of "
and the optimal period of ordering Tmin� is pre�
sented in theorem �� Thus� theorem � and the�
orem � together allow us to determine the lower
bound on the period of ordering T � given tile size
n� and dependence distance l��
We now illustrate the result of theorem �

through some examples�

Example 
 � Consider n � �� l � � k � ��
�� string � ������������
" � ��

Example � � Consider n � �� l � � k � ��
�� string � �����������
" � �

Example � � Consider n � �� l � � k � � � d�
�
e�

�� string � �������������
" � �

Example  � Consider n � �� l � � k � � � d�
�
e�

�� string � �������������
" � �

The " values calculated above for di�erent tile
sizes and dependence distances allow us to deter�
mine the best period of ordering as per theorem �

�



discussed in section ���� In order to prove theo�
rem � we need a few results�
Lemma � gives us a working de�nition for Xi�

Lemma � If X �
i � fx �  j �� � IN � x �

�l�n��� in � �l � i� ��n�g� then �i� X �
i � Xi�

Proof Refer ����
In order to prove theorem 
� we have to dif�

ferentiate between the cases " � � and " � ��
For this we need to discuss whether there exist
two di�erent integers i � j in f�� �� ����� l��g such
that �i�i�� � �j�j�� � ���
The next lemma formalizes this discussion� It

states the condition that the tile size and the de�
pendence distance should satisfy in order to have
a sub�string �� within the ��string�

Lemma �

�i � f�� ����� l� �g j �i�i�� � �� �� �k � l � �

�� k � d l
�
e

Proof Refer ����
In order to prove theorem �� we have to di�er�

entiate between the cases " � � and " � � the
case " � � is trivial�� To achieve this task we need
to discuss whether there exists i in f�� � � � � l� �g
such that �i�i�� � �� or not� Indeed� we will see
that if k � d l

�
e then ���� � �� and that �l�� � ��

To formalize it� we need to introduce a new
concept � the property of a string to be well bal�
anced�
Let
P
� f�� �g be the alphabet of the ��string�

Let uv be the concatenation of the strings u � v

if u � u�u�u�������un � v � v�v������vm then uv �
u�u������unv�v������vm��

De�nition  �sub�string� v is said to be a sub�
string of u� if there exist two strings � 	 �� such
that u � �v�

De�nition � �length� The length of a string
u � u�u�u	����un is the integer n denoted by juj�

De�nition �� �weight� Let � � P� If u �
u�u������un � P� is a string of length n� then
juj� � jfi � f�� ���� ng� ui � �gj�

De�nition �� �well�balanced� Let u � P�� u
is said to be well�balanced if for any pair of sub�
strings of u� v� v���

jvj � jv�j �� jjvj�� jv�j�j � �
Lemma � The in�nite string � � ����������� is
well�balanced�

Proof Refer �����
Now we can easily prove theorem 
�
Proof� First� note that �� � �� We have�
jX�j � jX �

�j � jf� � IN� � � �l � ngj � p� ��
Also �l�� � ��

jXl��j � jf� � IN� l� ��n � �l � lngj
� jf� � IN� l� ��n � �l � lngj � �
� p� ��� �

�� Case k � ��


 As k � j���������l��j� � �
� �� � � therefore�
" � max��p�p���l���p � �p��� � �


 Consequently� " � ��
�� Case � � k � d l�e�


 �i� j�i�i�������i�l��j � k  �� therefore�
�i� �p � fi� ����� l� i� �g j �p � �
Hence� "  ��


 From the proof of lemma �� we have

" � min
��p�p���l��

�p � �p�� � �


 Consequently� " � ��
�� l � k � d l

�
e�


 We have �n � �pl� �k  �p� ��l� ��
Therefore�

jX �
�j� jX �

�j � jf� � IN� � � �l � �ngj
� �p� �

Hence� ���� � ��


 Suppose that there exists i in
f�� �� ����� l� �g such that �i�i�� � ���
Since i �� l� � this will lead to
" � �

�




 Suppose that there does not exist i �
f�� �� ����� l� �g such that �i�i�� � ���
Then �l�������� � ���� �� � � vio�
lates k � d l

�
e��

Hence� l  �� Let l � ��
From lemma � we have� ����������l��
does not contain the substring ���
So� l is necessarily even l  ��

���������l�� � ������
l��

� �

� ���������
l��

�

But this violates lemma �� because of
the sub�strings ��� � ����
Finally� l � � � k � � gives
�������	�
������ � ���������
and " � max��p�p���
 �p � �p�� � �

��� Lower Bound for the Period of Or	
dering

We now prove the lower bound on the period of
ordering using the properties of the equivalence
classes�

Theorem � For all correct ordering and l �

�� T  �p� "�

We develop a framework that will indeed allow
us to prove the lower bound by contradiction�

Consider a permutation that gives a legal or�
dering of tasks so that the dependences are main�
tained� Let si be the time when the �rst element
of the equivalence class Xix � f�� �� ����� l� �g �
Xi� is executed� Let f be an integer such that
�i � ��� l� �� 
 si � sf �

Let us rename the equivalence
classes X�� X�� X�� ������ Xl�� to A�� A�� A	� �����Al

such that Xf � Al and the relation Al � Al�� �
���� � A� holds� Now� let bi be the time when
the �rst element of Ai is executed and let ei
be the time when the last element of Ai x �
fn� l� n� l� �� ����� n� �g �Ai� is executed� Let
�i � jAij � p�

In order to explain the results of theorem� we
introduce the following notation�

bi �� bk �� bi � bk�� � �j j bi � bj � bk�

The set B � fb�� b�� ���� blg� which is a subset of
IR is totally ordered with respect to the relation
�� bi �� bk means that bi and bk are consecutive
elements of B�
The following notation corresponds to the recur�
rence hypothesis of the theorem�

bi �� �j � j � i� bj � bi

Since� Al is the last equivalence class whose
tasks begin executing� �i j bi
During the transition from a tile to the next�

there is a dependence from the last point of A� to
the �rst point of Al� from the last point Al to the
�rst point of Al��� from the last point of Ai�� to
the �rst point of Ai������ from the last point of A�

to the �rst point A��
Hence� we have the following inequalities be�

tween the beginning and �nishing time instants
of the equivalence sets�

� � i � l� �� ei�� � bi � T � �

� � i � l� ei  bi � p� �i � �
Now lets consider i � f�� �� ������ lg such that bi �
then we either have�
�� bi�� � bi�� � bi or�
�� bi�� � bi�� � bi�
The following two lemmas allow us to induc�

tively apply the hypothesis bi in the two above
cases to determine the lower bound on the period
of ordering�

Lemma 
 Let i � f�� �� ����lg such that bi�� �

bi�� � bi� Then�
�� T  �p� �i��� �i
�� If T � �p� �i�� � �i then bi�� �� bi�

Proof Refer �����

Lemma � Let i � f�� �� ���� lg such that bi�� �

bi�� � bi� and that bi � Then�

��



�� T  �p� �i�� � �i
�� If T � �p� �i�� � �i then

bi�� �� bi�� �� bi and

����� p � � � �i�� � �
or i � �

Proof Refer �����
Proof of theorem �

Now� let us use the following notation�

i � maxfi j � � i � l��i����i � max
��p�p���l

�p��p��g

" � �i�� � �i

Let us assume that T � �p�"� �
Now� let�s consider the smallest integer i�  i

such that bi� � Since� Al is the last equivalence
class to start execution i� exists� Suppose that
i� �� i� This gives rise to two cases�

�� bi��� � bi��� � bi�� Then according to
lemma � if T � �p � �i� � �i��� then�
bi��� �� bi� � Thus� we have bi��� � which

is absurd because i� is minimum�

�� bi��� � bi��� � bi�� Since i� �� i � i� � ��� l��
According to lemma �� we have� �i��� � �
Hence� �i��� � �i��� � �i��� � �i� � "
Therefore� i� � � �� i

Finally� i� � �  i

Also� if T � �p��i���i��� � �p�"�� then
bi��� �� bi��� �� bi� �
Hence� bi��� which is also absurd because i�

is minimum�

Hence� i � i� and according to lemmas  	 ��
T  �p� �i � �i��  �p�"
which contradicts our previous assumption T �
�p�"� ���
Hence� T  �p�"�

��� Constant Permutation Algorithm

Using the framework developed in the previous
sections we are now able to devise an algorithm
that will compute the optimal ordering of tasks
under the assumption that the ordering is the

same in every tile� Algorithm � gives us a cor�
rect permutation of tasks with period of ordering
T � � �p� "� Recall that l  � and n � l � ��

Algorithm �

procedure ComputeOrderingCst n� l�
Input� n tile size�

l dependence distance�
Precondition� l  �

n � l � �
Output� permutation�� � n � �� task ordering�
f Initialize variables p and k g
p �� bn

l
c

k �� n mod l
f Assign the �rst task f to be executed g
if l � � and k � �� then
f �� l� k f because � � f � n��l� g

else f �� �
f Execute the �rst p tasks of Xf g
t �� f

for i �� � to p� � do
permutation�i� �� t

t �� t � l

endfor

f Equivalence classes are executed in the
opposite order to ��� g
t �� t � n� mod l
while t �� f

repeat
permutation�i� �� t

t �� t � l

i �� i� �
until t  n

t �� t � n� mod l
endwhile

f Execute the last task of Xf g
permutation�i� �� f � p	 l

end ComputeOrderingCst

The permutation given by this algorithm clearly
obeys the constraints of dependences in the tile�
To prove that the algorithm is optimal we have to
show that the permutation given by the algorithm
gives us the minimum period of ordering� T �
�p�"�

��



We use notations from section ���� We have�
b� � �
b� � p e� � p� jY�j � �
b� � p� jY�j e� � p� jY�j� jY�j � �
���

���

bj � p�
Pj��

i� jYij ej � p�
Pj

i� jYij � �
���

���

bl�� � p�
Pl��

i� jYij el�� � n � �
e� � el � n� �

Moreover�
�j � ��� l� ��� Yj�� � Yj �
A necessary and su�cient condition for T to be
a correct period of ordering is�
�j � ��� l� ��� ej�� � bj � T i�e��
�j � ��� l� ��� T  ej�� � bj � �
Now� �j � f�� � � � � l� �g

ej�� � bj � � � p�
j��X
i�

jYij � ��

p�
j��X
i�

jYij� ��

� jYjj� jYj��j
e� � b� � � � p� jY�j

el � bl�� � � � n� �� p�
l��X
i�

jYij� � �

� � � jYl��j

Finally�


 If l � � and k � �� we have�

jY�j� jY�j� jY�j� jY	j� � jX�j� jX�j� jX	j� jX�j�
� �� � p� �
� p�

�	 � p� ��� p�

Hence� T � �p � max��q�q���
 �q � �q�� is
correct�


 Else jY�j� jY�j� � � � � jYl��j� � jX�j� jXl��j�
� � � � jX�j� � �l � p� �l�� � p� � � � � �� � p�
Hence� T � �p� max��q�q���l�� �q � �q�� is
correct�

� General Case with Constant

Permutation


�� Optimal Permutation with One
Dependence Vector

Suppose that n� l � d� We illustrate how our ap�
proach �nds a better permutation than M� Dion�s
approach�

Let us consider a correct ordering with T as the
period� Consider the sub�set of tasks t�i�i����n���
such that �i� t�i � tid� Let us call the tile consist�
ing of the tasks t�i� a derived tile� The length of
the derived tile is n� � n

d
� The derived depen�

dence distance is l� � l

d
� We assume that the de�

rived permutations in each tile are constant i�e��
they are the same for all processors�

Hence� according to the last part T 
Tminn

�� l���

Now� let us show that Tminn� l� � �bn�
l�
c �

"n�� l��

Let �� � f�� � � � � n���g � f�� � � � � n���g be the
permutation of tasks that gives the period T �

min�
Then� consider �v � f�� � � � � d � �g� �i �
f�� � � � � n� � �g �v � id� � v � ��i�d
Clearly� this permutation permits to reach the pe�
riod T � T �

min� Thus� Algorithm � generates the
optimal permutation for this case also simply by
using n� and l� as inputs instead of n and l�

The task execution times given by our algo�
rithm for n � �� and l � � is shown in Ta�
ble �� Since n � l � �� tile � has two compo�
nents viz�� f���������������g and f���������������g�
Each of them form sub�tiles with n� � � and
l� � �� The �rst component has equivalence
classes X� � f�� �� ��g�X� � f�� ��g� X� � f�� �g�
First� p tasks of X� are executed followed by all
the tasks of X� and X� in that order� Finally the
last task of X� is executed� The second compo�
nent is then executed with a similar task ordering�

The period of ordering reached by our algo�
rithm is � while that reached by Dion�s algorithm
is ��

��



Case n � �	 
 l � �
Tile � Tasks � � � � 	  � � � � �� �� �� ��

Times � � � � 	 �� � � � ��  �� � ��
Tile � Tasks �	 � �� �� �� �� �� �� �� �� �	 � �� ��

Times 	 �� � �� � �  �� � �	 � �� �� ��
Tile � Tasks �� �� �� �� �� �� �	 � �� �� �� �� 	� 	�

Times � � �� �� �� �� � �� �� �� �� �� �	 ��

Table �� Optimal ordering with constant permu�
tation in each tile n � ��� l � ��


�� Several Dependence Vectors

The problem with several constant dependence
vectors is complicated and we do not propose an
optimal algorithm� Let v be the number of de�
pendence vectors with l� � l� � � � � � lv being
the lengths of the dependence vectors� Let us de�
note l � l�� l� � � � �� lv� Dion has shown that for
large n� Tminn� l�� l�� � � � � lv�� � Tminn� l�
Hence� the heuristic proposed is to simply use

the algorithm for the single dependence vector
problem ComputeOrderingCst�n� l� with n and
l as de�ned above�

� Optimal Solution with Non�

constant Permutation

We can further optimize the solution if we relax
the constraint of maintaining a constant permu�
tation in every tile� We also show that comput�
ing the optimal permutation in every tile does
not result in any overhead because the optimal
permutation in each tile is a simple shift of the
permutation in the previous tile� By removing
the constraint� we can reach the optimal period
of ordering which is half smaller than that in the
case of constant permutation�

��� Case n � l � �

Recall that from section �� we have X� � X� �
� � � � Xl�� � X�� In fact� the optimal algo�
rithm is the most natural algorithm� The �rst
processor executes tasks belonging to X� then
X�� X� and �nally Xl��� The second processor

starts working jX�j�calc � �comm units of time af�
ter the �rst one� and executes the tasks ofX� then
X�� X	 � � �Xl�� and �nally X�� The third proces�
sor starts working jX�j�calc � �comm units of time
after the second one� and executes the tasks of
X� then X	� X
 � � �X� and �nally X�� This leads
to the following algorithm�

procedure ComputeOrderingNoncst n� l� i�
Input� n tile size�

l dependence distance�
i tile number�

Precondition� n � l � �
Output� permutation�� � n � �� task ordering�
f Initialize variables m and f g
m �� dni

l
e

f �� ml� mod n
f Assign the �rst task d to be executed g
x �� �
permutation�x� �� f

f Execute each equivalence class in the
order of ���g
j �� f � l� mod n
while j �� f do

x �� x� �
permutation�x� �� j

j �� j � l� mod n
endwhile

end ComputeOrderingNoncst

In the above algorithm we have�


 i is the subscript of the tile being executed�


 m is the smallest integer such that ni � ml �

ni� ���


 f is the �rst task to be executed by processor
i�

The time o�set Oi for each tile is the number of
time units between the start of execution of tile
i and tile i � �� The o�set Oi as opposed to the
period of ordering need not be the same for every
tile� The o�set Oi in computational�time units�
corresponds to the size of the following set�

Xi � fm � N� in � ml � i� ��ng

��



Case n � � � l � �

Tile � Order � � � � �
O�set �

Tile � Order � � � � �
O�set �

Tile � Order � � � � �
O�set �

Table �� Optimal ordering with non�constant per�
mutation in each tile n � �� l � ��

Hence�

Oi � dni� ��� dni
l
el

l
e�calc � �comm

Consider the example n � � and l � �� We
have�
� � 	 � �  � 	 � �  � 	 � � � � �
� � � � � � � � � � � � � � � � � �

Table �� illustrates how the algorithm Com�
puteOrderingNoncst reaches the above ordering�

��� General Case

In the general case i�e�� with n � l � d and with
several dependence vectors� the treatment is sim�
ilar to the method used for the constant permu�
tation case� Let v be the number of constant de�
pendence vectors with l� � l� � � � �� lv denoting
their lengths� Let l � l� � l� � � � � � lv� Algorithm
� is presented below�

Algorithm �

procedure ComputeOrderingNoncstGen n� l� i�
Input� n tile size�

l dependence distance�
i tile number�

Output� permutation�� � n� �� task ordering�
f Initialize variables d� nd and ld g
d �� gcdn� l�
nd ��

n

d

�The subscripts of tasks are modulo n�

ld ��
l

d

f Initialize variables m and f g
m �� dndi

ld
e

f �� mld� mod nd
for id �� � to d� � do

f Assign the �rst task f to be executed g
x �� �
permutation�x� �� fd� id

f Execute each equivalence class in the
order of ���g

j �� f � ld� mod nd
while j �� f do

x �� x� �
permutation�x� �� jd� id
j �� j � ld� mod nd

endwhile
endfor

end ComputeOrderingNoncstGen

The o�set in computation time units� is given
by the following function�

function O�set n� l� i�
Input� n tile size�

l dependence distance�
i tile number�

Output� OiO�set for tile i�
fInitialize d� nd and ldg
d �� gcdn� l�
nd ��

n

d

ld ��
l

d

f Initialize variables m and f g
m �� dndi

ld
e

f �� mld� mod nd
f Compute O�set g
Oi �� dnd�f

ld
e

returnOi�
end O�set

Table � presents an example n � �� � l � ��
As stated earlier� when n � l � d �� �� the prob�
lem is reduced to a smaller problem with tile size
n� � n

d
and dependence distance l� � l

d
� Con�

sider the equivalence classes X� � X� � � � � �
Xl��� � X� as de�ned in section �� Consider the
equivalence class X�� It starts executing on tile
T� at t � � and completes execution at t � jX�j�

��



Case n � �� � l � �

Tile � Order � � � �� � � �� � �� � � �� � �� �
O�set �

Tile � Order � �� � � � � �� � � �� � �� � � ��
O�set �

Tile � Order � � � � �� � � �� � �� � � �� � ��
O�set �

Table �� Optimal ordering with non�constant per�
mutation in each tile n � ��� l � ��

Now� at time t � jX�j� equivalence class X� starts
executing on tile T�� Note that simultaneously�
X� starts executing on tile T�� In general� tasks
corresponding to Xi and tile Tj are being exe�
cuted by processor Pj at the same time as tasks
corresponding to Xi and tile Tj�� are being exe�
cuted by processor Pj��� Clearly� we can see that
all dependences are satis�ed�

It is easy to show that the period of order�
ing reached by Algorithm � is optimal� Consider
two tiles Tj and Tj��� Suppose that equivalence
class Xi starts executing on Tj at t � t�� Since
Xi � Xi�� the earliest time at which Xi�� can
start execution on Tj�� is t � t� � jXij� This is
precisely the time o�set between two consecutive
tiles obtained through Algorithm ��

� Results

��� Performance Evaluation

The performance evaluation of the proposed
methods was carried out using several signal pro�
cessing applications consisting of matrix transfor�
mations� We tested our proposed algorithms us�
ing a sample test routine shown below�

Do i� � �� N

c�i� � computeintensivefunc	i


If 	i �geq� l


A�i� � c�i��A�i � l� � �

Endif

Enddo

We tiled the above uniform loop using the tiling
transformation provided by the SUIF ���� com�
piler varying the tile size n� and the dependence
distance l�� Since the dependence distance is
a compile�time unknown in the above loop� the
code which computes the permutation is gener�
ated at the entry point of the tiled loop as shown
below� At run time this code will thus generate an
appropriate permutation in each tile for ordering
tasks within the tiled loop�

Do itile� � �� N by n �tiled loop�

�code for generating permutation�

Do i� itile �� min	N�itile�n��


c�i� � computeintensivefunc	i


If 	i �geq� l


A�i� � c�i��A�i � l� � �

Endif

Enddo

Enddo

We then carried out a parallel execution by insert�
ingMPI ���� calls in order to achieve the synchro�
nization imposed by the dependency constraints�
The complete framework has been incorporated
in the SUIF compiler as an optimization pass�
The �nal transformed code was targeted on


 SGI Power Challenge � A shared memory
multiprocessor system consisting of sixteen
�� MHz IP�� processors and �GB of main
memory� Each processor has a MIPS R����
CPU and a MIPS R���� �oating point unit�


 CRAY T�D � A parallel processing system
consisting of ��� DEC Alpha ����� RISC
processors linked via a high bandwidth� low�
latency torus interconnection network� T�D
memory is globally distributed but logically
shared among the processors�

The metric used to evaluate the performance of
our algorithms in comparison to previous algo�
rithms was the total loop completion time� Fig�
ure � presents results obtained using the two pro�
posed algorithms Algorithm � and � presented
in sections ��� and ���� in comparison to previous
approaches on the SGI Power Challenge� Figure �
presents results obtained on the CRAY T�D�

��
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Figure �� Loop completion time v#s dependence
distance on SGI PC for a� P � ��� n � �� and
N � ��� and b� P � �� n � �� and N � ���

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

2 4 6 8 10 12 14

Lo
op

 co
mp

let
ion

 tim
e (

T)
 (m

icr
os

ec
)

Dependence distance (l)

Loop completion times v/s dependence distance 
 with P=16, tile-size=16, loop-size=256

Chou & Kung
M. Dion

Algo 1
Algo 2

a�

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 5 10 15 20 25 30

Lo
op

 co
mp

let
ion

 tim
e (

T)
 (m

icr
os

ec
)

Dependence distance (l)

Loop completion times v/s dependence distance 
 with P=8, tile-size=32, loop-size=256

Chou & Kung
M. Dion

Algo 1
Algo 2

b�

Figure �� Loop completion time v#s dependence
distance on Cray T�D for a� P � ��� n � �� and
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As seen in Figures � and �� the performance
obtained by using the two proposed algorithms
is superior to that obtained by using algorithms
proposed by Dion and Chou � Kung� This is true
in the case of shared memory systems	 as well as
distributed memory systems�

From the implementation for the single dimen�
sional tiling problem we observed that for small
tile sizes we need long or compute intensive tasks
so that the ratio �comm

�calc
� �� The results indi�

cate the following performance hierarchy of the
algorithms proposed in this paper� For small tile
sizes�
Algorithm � � Algorithm � � Dion�s algorithm

Algorithm � is also the most natural and ef�
�cient algorithm� For large tile sizes the results
indicate that Algorithm � yields the best solution
which is superior to solutions obtained by all con�
stant permutation algorithms� The performance
hierarchy of the algorithms for large tile sizes is
shown below�
Algorithm � � Algorithm� � Dion�s algorithm

��� Eect of tile size

An interesting issue is to study the e�ect of varia�
tion of tile size on performance� As the dimension
of the problem increases the tile size is limited by
the cache size� In case of the multi�dimensional
tiling problem n� 	 n� 	 � � � 	 nd� the gain of our
method using Algorithm � over Dion�s algorithm
will be linear in

Qd��
i� ni�

For the ��dimensional problem the cache size
is usually not limited and n � N

P
or n is chosen

as discussed below�


Desprez et al ��� have addressed the issue of
�nding the optimal grain size that minimizes the

�The legend Algo� denotes results for Algorithm � and
Algo � denotes the results for Algorithm ��

�The minor performance gain of M� Dion�s algorithm
over algorithm � in �gure ��a� can be attributed to the
fact that the optimal permutation generation of algorithm
� is more complex than that of M� Dion�s algorithm

�For the multi�dimensional problem cache size becomes
a limiting factor and we have Algorithm � � Dion�s al�
gorithm� Whether a constant permutation algorithm like
Algorithm � yields a better solution than a non�constant
permutation algorithm like Algorithm � is an open issue�

execution time by improving pipeline communica�
tions on parallel computers� Our goal is to deter�
mine the optimal tile size for minimal loop com�
pletion time given our framework� The following
discussion presents the e�ect of tile size n� on
the total loop completion time Ttot��
Using Algorithm �� we obtain the following pe�

riod of ordering�

T � n

l
�calc � �comm

The total loop completion time is given by�

Ttot � N

n
T � n�calc

�
N�calc

l
� n�calc �

N�comm

n

� A� Bn �
C

n

Minimizing the above expression we get�

nopt �

s
C

B
�

s
N�comm

�calc

Let �comm
�calc

� c� Therefore�

nopt �
p
cN

Also we have�

n

l
�calc � �comm

This leads to�
n � lc

In order to compare the above analytical so�
lution with experimental results we observed the
total loop completion time Ttot� varying the tile
size n� keeping P �xed� Figure �a� presents
this comparison for N � ������� and l � �� Fig�
ure �b� presents the comparison for N � ������
and l � �� Figure � shows that the analytical
expression derived for the loop completion time
closely matches the experimental results� The
knee of the analytical solution curve corresponds
to the optimum tile size that yields the minimum
loop completion time� The deviation of the ana�
lytical solution from the experimental results for

��



small tile sizes is due to the fact that for small tile
sizes n � lc c � ����� indicating that the com�
munication time exceeds the total computation
time�
On conventional parallel architectures� it is

clear that the non�constant permutation algo�
rithm yields the least loop completion time for
the single dimensional tiling problem�

	 Conclusions

Tiling is typically carried out to increase gran�
ularity of computations� locality of data refer�
ences and data reuse on cache�based multicom�
puters� A signi�cant amount of work has been
done to solve the important problem of deriving
the optimal shape and size of the tile to minimize
communication� Once the parameters of the tile
have been determined� the e�ectiveness of tiling
is critically dependent on the execution order of
tasks within a tile� In this work� we have ad�
dressed the problem of �nding an optimal order�
ing of tasks within tiles executed on multicomput�
ers for constant but compile�time unknown de�
pendences� We remove the restriction of atom�
icity on tiles and exploit the internal parallelism
within each tile by overlapping computation with
communication� We have formulated the problem
and developed a new framework based on equiv�
alence classes in order to prove optimality results
for single dimensional tiles with single constant
dependences� Using the framework we have also
developed two e�cient algorithms that provide
the optimal solution in both cases�

�� Same constant� task ordering in every tile�

�� Di�erent non�constant� task ordering in
each tile�

We have shown that the two proposed algorithms
yield superior results to the previous approaches
when tested on distributed and shared memory
systems� We also show that the non�constant
permutations in our approach signi�cantly reduce
the loop completion time unlike the constant per�
mutations in previous approaches� Finally� we
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SGI PC for a� P � ��� l � � and N � �������
and b� P � ��� l � � and N � ������
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have investigated the relationship between tile
size and the loop completion time and developed
a methodology to obtain optimal tile size given
our framework�

On conventional parallel architectures� it is
clear that the non�constant permutation algo�
rithm yields the least loop completion time� It
is an open question whether the non�constant
permutations yield better results in the multi�
dimensional case as well� A performance compari�
son of these algorithms on a VLSI array processor
based architecture ���� for which Chou and Kung
had originally proposed their algorithm� could be
interesting� A comparison of approaches based
on constant and non�constant permutations us�
ing the architectural characteristics such as spe�
cialized hardware for generating and transforming
permutations� could also be interesting�
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