Fabrice Rastello
email: fabrice.rastello@ens-lyon.fr

Amit Rao
email: arao@ececs.uc.edu

Santosh Pande
email: santosh@ececs.uc.edu

Task Ordering in Linear Tiles

Keywords: automatic parallelization, tiling, nested loop, reordering, pipelined communications, uniform dependances, equivalence classes parall elisation automatique, pavage, nids de boucle, r eordonnancement, communications pipelin ees, d ependances uniformes, classes d' equivalence

In this report we address the issue of loop tiling to minimize the completion time of the loop when executed on multicomputers. We r e m o ve the restriction of atomicity of tiles and internal parallelism within tiles is exploited by o verlapping computation with communication. The e ectiveness of tiling is then critically dependent on the execution order of tasks within a tile. In this paper we present a theoretical framework based on equivalence classes that provides an optimal task ordering under assumptions of constant and di erent p e r m utations of tasks in individual tiles. Our framework is able to handle constant but compile-time unknown dependences by generating optimal task permutations at run-time and results in signi cantly lower loop completion times. Our solution is an improvement o ver previous approaches and is optimal for all problem instances. We also propose e cient algorithms that provide the optimal solution. The framework has been implemented as an optimization pass in the SUIF compiler and has been tested on distributed and shared memory systems using a message passing model. We show that the performance improvement o ver previous results is substantial.

R esum e

Etant donn e un nid de boucles 1-dimensionnel avec des d ependances uniformes et une distribution reguli ere des tâches sur une cha^ ne de processeurs. Nous adressons ici le probl eme du r eordonnancement des tâches a l ' i n t erieur même de chaque tuile a n de pipeliner les communications. En fait, nous cherchons a utiliser le parall elisme interne a c haque tuile a n de r eduire la latence dans une direction critique ces r esultats pouvant s'appliquer a des nids de boucles multidirectionnels. Les approches pr ecedantes se tenant a c hercher une permutation constante des tâches a l'int erieur de chaque tuiles, nous avons d'abord r esolu ce probl eme de mani ere optimale (algorithme 3) puis compar e cet algorithme a un algorithme utilisant des permutations non constantes (algorithme 4). La construction de l'algorithme 3 a n ecessit e la mise en oeuvre d'une formalisation math ematiques du probl eme suivit de preuves substentielles. C'est ce qui constitue le corps de ce rapport. Si clairement dans le cas 1-directionnel nos r esultats montrent la sup eriorit e de l'algorithme 4, certains param etres laissent a penser que dans les dimensions sup erieures, un algorithme de type 3 serait peut être plus e cace...

Introduction

One of the most popular techniques to partition uniform loop nests and map tasks to processors in a multicomputer is based on loop tiling. The motivation behind tiling is to increase the granularity of computations, locality of data references and data reuse 2, [START_REF] Kung | VLSI Array Processors[END_REF][START_REF] Tang | Reducing Data Communication Overhead for DOACROSS Loop Nests[END_REF]. Usually tiles are considered to be atomic i.e., inter-processor communication is considered to take place only after the end of computation in each tile. A number of research approaches 1, 5 , 1 2 , 1 6 , 1 7 , 2 2] use this assumption to derive the optimal parameters i.e., size and shape of the tile. However, the assumption of atomic tiles is needlessly restrictive when targeting parallel machines such as distributed memory multicomputers that are capable of overlapping communication with computation. Atomic tile considerations are justi ed when the cache size is small since tile size is chosen to t the underlying data in the cache. However, if tiles are considered to be atomic, communication cannot be overlapped with computation. Therefore, intra-tile optimizations given that computation and communication can overlap poses an interesting problem.

Partitioning uniform loop nests to nd communication free partitions or to minimize communication has motivated a signi cant amount of research recently 1, [START_REF] Ohta | Optimal Tile Size Adjustment in Compiling General DOACROSS Loop Nests[END_REF][START_REF] Tang | Reducing Data Communication Overhead for DOACROSS Loop Nests[END_REF]. These approaches involve distribution of data among processors and nding a communication optimal loop partition.

On the other hand we c a n a void redistributing data among processors and order individual tasks on processors so as to minimize the completion time of the loop using tiling framework. In general, communication free or communication minimal partitioning of loops needs a more precise knowledge of dependences (such as dependence distance vectors) whereas tiling could be done with less precise dependence information (such a s dependence direction vectors) 11]. The compiler can evaluate the loop completion time of the approach based on distributing data among processors and computing communication minimal loop partitions and compare it to an approach which avoids data redistribution and computes the optimal order of task execution on each processor 3]. Based on the above analysis, the compiler can then choose the corresponding technique. This indicates that there is a need to investigate the bene t of intra-tile optimizations.

Previous approaches by Chou & Kung 4] a n d Dion et al 10] to the problem of nding an optimal task ordering within loop tiles have r e l i e d on heuristics that do not yield the optimal solution for all instances of the problem even in one dimension. Thus, nding the optimal solution in one dimension is still an open issue. The central contribution of this work is to develop a new formulation of this problem along with a framework based on equivalence classes to derive optimal permutations. Using this framework we a l s o develop e cient algorithms that result in an optimal solution for all problem instances in one dimension. Further, we t a k e i n to account t h e p o ssibility o f h a ving di erent t a s k p e r m utations in each tile and give the optimal solution for this case too.

The remainder of the paper is organized as follows. Section 2 presents the motivation through a simple example and the problem statement. Section 3 presents the related work and compares our solution with previous approaches. Section 4 formulates the problem based on equivalence classes. In section 5 we develop the theoretical framework, prove optimality results and give the algorithms. Section 6 deals with the more general case. Section 7 discusses the solution when di erent task permutations are considered in each tile. In section 8, we present and discuss the results of our implementation. Finally, section 9 provides concluding remarks.

Motivation and Problem Statement

Motivating Example

Consider the following example, Example 1 :

D o l : 1 -> L Do i : 0 -> N A i+l] <-f(A i]) EndDo EndDo
Let us suppose that we tile the i-loop in the above example and execute the loop nest on a multicomputer with processor caches. We could partition the above loop so that tasks with dependences execute on the same processor in order to fully eliminate communication of data involving array A. This can be achieved by allocating iterations i and i+l to the same processor. However, loop partitioning and data distribution will have t o b e done for every value of l which i s v ery costly.

On the other hand, we could partition the iteration and data space using a method based on tiling which allocates consecutive iterations to the same processor. We do not redistribute data among processors. By exploiting the parallelism within loop tiles we o verlap communication with computation. Assuming the tile size to be a constant across all processors for load balancing, the total loop completion time is critically dependent on the ordering of tasks within each tile. The task ordering cannot always be determined at compiletime for loops such a s example 1 where the dependences are unknown at compile-time. In such cases, it is necessary to determine the task ordering at run-time. Thus, determining optimal ordering of tasks within a tile to minimize the loop completion time for loops with constant but

Statement of the problem

Consider a loop with loop size N, tile size n and dependence distance l. We assume that there is a single dependence distance vector and we h a ve P processors. The N tasks are partitioned into d N n e tiles such that for 0 i < d N n e ; 1, the tasks contained in tile T i are ft ni t ni+1 :::: t n(i+1);1 g and T d N n e;1 = ft n(d N n e;1) :::: t N;1 g. Tile T i is executed on processor P i for every i. The problem is to nd an optimal ordering () of tasks in a tile, so as to minimize the overall completion time (T tot) o f t h e loop respecting the dependences imposed. The time to perform each t a s k i s calc and the time required for each communication is comm . Please note that the number of processors and tiles need not be the same.

To simplify the notation, consider an example in which there are 700 tasks t 0 t 1 :::: t 699 with a ow dependence between t i and t i+8 for all i. I n order to take a d v antage of temporal data locality we use tiling as discussed above. Let us assume that the tile size (n) is 22 and number of processors (P) is 32. For 0 i 30, tile T i contains the tasks ft 22i t 22i+1 t 22i+2 ::::: t 22(i+1);1 g and T 31 = ft 682 t 683 : : : : t 699 g. By executing T i on processor P i for every i, the loop space is mapped onto the processor space. Figure 1 represents the constraints of dependences for the rst two tiles.

We n o w present a survey of previous work related to solving this problem and explain the sig-ni cance of our contribution.

Related Work

Tiling bas been the focus of loop partitioning work in compilers recently. Many di erent a pproaches investigate di erent aspects of tiling such as determining size and shape of a tile, determining legality of tiled space to enforce dependences, use of tiling to minimize communication etc. We present a brief overview of some of the important recent tiling approaches below a n d contrast our work with them.

Irigoin and Triolet 11] and Jingling Xue 23] address the issue of legality of tiling. They introduce the notion of loop partitioning with multiple hyper-planes. They propose a set of basic constraints that should be met by a n y partitioning and derive the conditions under which the hyperplane partitioning satis es the constraints.

Agarwal et al 1] address the problem of deriving the optimal tiling parameters for minimal communication in loops with general a ne index expressions on cache-coherent m ultiprocessors. They assume tiles to be atomic and only consider DOALL loops factoring out issues of dependencies and synchronizations that arise from the ordering of iterations of a loop. Our work is not restricted to DOALL parallelism.

Ramanujam & Sadayappan 17] address the problem of compiling perfectly nested loops for multicomputers using tiling. However, they consider tiles to be atomic and therefore do not allow synchronization during the execution of a tile. They present an approach to partitioning the iteration and data space so that communication is minimized.

Tang and Zigman 20] use loop tiling coupled with chain-based scheduling and indirect message passing to develop e cient message passing parallel code for DOACROSS loop nests. Their work mainly deals with optimizing communication arising out of tiling which is not the focus of our work.

Desprez et al 7] investigate the cumulative idle time of processors during a parallel execution.

They study perfect loop nests with uniform dependences and determine the solution to parameters that relate the shape of the iteration space to that of the tiles, for all distributions of tiles to processors. Their work is di erent from ours as they assume tiles to be atomic. D' Hollander 8] presents a partitioning algorithm to identify independent iterations in loops with constant dependence vectors. He also proposes a scheduling scheme for the dependent i terations. The iterations in each set are ordered lexicographically.

The focus of our work is on intra-tile optimizations to minimize the loop completion time. More speci cally, w e focus on the problem of determining optimal permutations of tasks within a tile to minimize loop completion time. The problem of determining permutations of tasks within a tile to minimize loop completion time has been attempted by Chou & Kung 4] and by Dion et. al. 9, 1 0]. Before discussing their approaches we introduce some terms and de nitions.

Terms and De nitions

We denote the tile length by n, l o o p s i z e b y N and the dependence distance by l.

De nition 1 Let us denote = ft 0 t 1 :::: t N;1 g as the task space. Each element of i s a t a s k t o be executed.

De nition 2

The iteration space is mapped onto the processor or tile space. Each tile contains n tasks more p r ecisely, a tile is a set T j = ft nj t nj+1 t nj+2 ::: t nj+n;1 g \ with j 2 f0 :::: d N n e ; 1g. A ll the tasks of one tile are t o be executed on one processor only.

Let calc be the time to perform one task with one processor, and let comm be the time for one communication between two adjacent processors. The g.c.d of n and l is denoted by n^l. P denotes the number of processors. k denotes n mod l while p denotes b n l c. Finally, x y l] () x mod l = y mod l

De nition 3 T is called t h e p eriod o f o r dering such that for each i, t i l e T i is executed f r om time iT to time iT + n calc .

Since, the total loop completion time depends linearly on the value of T, the problem reduces to minimizing T.

De nition 4

In each tile, the permutation of tasks is equal modulo n. Let denote the permutation of tasks in tile T 0 . f0 1 ::: n g ! f 0 1 ::: ng We have for all i 2 f 0 1 : : : : N ;1g t i is executed by the processor j = b i n c between time i = jT+ (i ; nj) calc and the time i + calc . De nition 5 For a given n, a n d a g i v e n l, a n d calc and comm being xed, the minimum period of ordering T min is the smallest reachable value of T satisfying the above constraints with an appropriate permutation within a tile.

Chou & Kung's Solution

Let us rst discuss Chou and Kung's 4] solution to the one-dimensional tiling problem. Chou and Kung propose the following ordering of tasks on each tile (processor), For all i 2 f 0 :: N ; 1g j= b i n c (w e h a ve nj i nj + n ; 1), t i is executed by processor P j between time i = (i;nj) calc +j T and i + calc . The period of ordering is given by T = (n ; l + 1) calc + comm Hence, for all i, the processor P i starts working at time i T and ends working at time i T + n calc .

Chou & Kung's solution for the case n = 7 and l = 3 is presented in Figure 2.

In Figure 2 we use the following notation, 1. Each represents a task to be executed. The tasks are numbered from left to right in increasing order starting at 0. 2. A rectangle is a tile. 3. The set of tasks contained in a tile are executed on the same processor. 4. The numbers below e a c h task represent the times at which the tasks are executed, considering calc = 1 and comm = 0 . 5. The arrows between tasks denote the dependences between tasks. For example, t 1 ;! t 2 means that t 1 must be executed before t 2 .

As one can see their approach is non-optimal. Dion improved over Chou and Kung's solution by considering a better ordering of tasks within each tile so as to decrease the period T of ordering. Hence, from now o n w e c a n c hoose n and l such that n ^l = 1 , calc will be equal to 1, and comm will be 0, so that the discussion is simpli ed. Dion's permutation leads to a smaller period of ordering than Chou & Kung's solution. In fact, her solution is optimal for the special case l = 2 . For example, for the case n = 9 a n d l = 2 Dion's solution leads to T = 7 w h i c h is the optimal solution, while Chou and Kung's solution leads to

Dion's solution

T=8

Chou & Kung's solution Dion also gives an algorithm for ordering the tasks for this special case in order to reach t h e optimal period of ordering. Let j 2 f 0 n ; 1g. for j odd, j = d 3n;1 4 e ; n;j not an optimal solution. This is one of the major limitations of the solution given by Dion. The other limitation is that she has used the simplifying assumption of a constant p e r m utation in every processor similar to Chou and Kung's work.

In later sections we show that the solution can be greatly improved if we remove this restriction. Dion's and Chou and Kung's solutions are not optimal for all instances of the problem. However, determining the optimal solution for both constant and non-constant p e r m utations is a non-trivial combinatorial problem as outlined below.

Complexity of the Problem

We rst examine the complexity of the problem of determining optimal permutations of tasks within a tile.

Given a tile size (n) and a dependence distance (l), we calculate the total number of possible permutations corresponding to di erent orderings of tasks within a tile. For n = 2 2 l = 8, the dependence graph for a single tile is shown in Figure 6.

The dependence graph has l connected components. Let p = b n l c and k = n mod l. Then, k components contain p + 1 tasks, and l ; k components contain p tasks.

To begin with, there are n! possible permutations of n tasks without considering dependences.

The tasks within each component h a ve t o b e e xecuted in increasing order to satisfy dependency constraints. The total number of correct permutations taking dependences into account i s n! For n = 2 2 l = 8, the number of possible permutations is 6:02 10 15 . Since this is a very large number even for a small problem, the probl e m i s c o m binatorial in nature. In order to make it more tractable, a suitable framework must be developed to solve it in polynomial time.

((p + 1) !) k (p!) l;k = n! (p + 1) k (p!) l
In order to derive the optimal solution in polynomial time, we f o r m ulate the problem in a di erent w ay. We then develop a new framework that helps us derive the optimal period of ordering T min , for all cases of l, in terms of n k and l where n = lp + k & 0 k < l . The framework also gives us an e cient algorithm that always reaches the optimal period of ordering T min .

Formulation of the Problem using Equivalence Classes

We i n troduce the following notation and de nitions for our subsequent discussion, 1. The set of tasks of the rst tile is given by = ft 0 t 1 :::: t n;1 g. F urther, we s a y that t i t j i i j l]. Hence, by using a simplied notation, we denote task t i by the integer i.

2. The operator is an equivalence relation that de nes equivalence classes within f0 1 : : : n; 1g. This equivalence relation de nes l components or equivalence classes, X 0 X 1 ::: X l;1 . W e denote the set of equivalence classes by = fX 0 X 1 ::: X l;1 g. 3. We s a y that, X ! Y if, 9(x y) 2 (X Y) x y + n l]

4. The indices for the equivalence classes are chosen in a manner such t h a t ,

X 0 = fi 2 i 0 l]g X 0 ! X 1 ! X 2 ! ! X l;1 ! X 0
From the following de nitions we h a ve, 8X i 2 p j X i j p + 1 Moreover, there are k classes of size p + 1 & l ; k of size p. De nition 6 For all i in f0 1 l ;1g, w e d ene i = jX i j ; p. In other words, if jX i j = p + 1 then i = 1 else jX i j = p and i = 0 . De nition 7 For all i l i = imodl Therefore, the ;string can be extended to an in nite string (periodic with period l). Example 2 : Consider n = 7 a n d l = 3 . W e h a ve, X 0 = f0 3 6g , 0 = 1 X 1 = f2 5g , 1 = 0 X 2 = f1 4g , 2 = 0

The problem of nding an optimal ordering of tasks now reduces to nding a suitable permutation of the l equivalence classes. This permutation depends on the relative v alues of i i.e., the property of the string 0 1 2 l;1 We derive the optimal solution in the next section.

5 Optimal Solution

Formal Framework

Let us recollect that the tile size is n, the dependence distance is l and n ^l = 1 . The equivalence classes are called X i and their size is p + i , with p = b n l c. W e claim that the optimum period of ordering depends on the relative v alues of i , more speci cally i and i+1 . Hence, the aim of theorem 3 is to discuss the property of the string 0 1 : : : l;1 ::::: in terms of the tile size (n) and the dependence distance (l). This relationship is quanti ed in terms of presented below.

Theorem 3 If l 3 , n ^l = 1 and = min i2IN max i+1 j j+1 i+l;1 (j + j+1)], then

If l = 4 & k = 3 then =max 2 j j+1 4 (j + j+1) = 1 Else = max 1 j j+1 l;1 (j + j+1) = 0 if k = 1 1 if 1 < k d l 2 e 2 if k > d l 2 e
As seen above, the de nition of is a min-max de nition. The above theorem gives the values of for all cases of tile size and dependence distance. The relationship between the value of and the optimal period of ordering (T min) is presented in theorem 4. Thus, theorem 3 and theorem 4 together allow us to determine the lower bound on the period of ordering (T) g i v en tile size (n) and dependence distance (l).

We n o w illustrate the result of theorem 3 through some examples. Suppose that there d o es not exist i 2 f2 3 : : : : l ; 1g such that i i+1 = 11.

Then l;1 0 1 2 = 0111 (2 = 0 v i olates k > d l 2 e). Hence, l 4. Let l > 4. From lemma 5 we h a ve, 0 1 ::::: l;1 does not contain the substring 00. So, l is necessarily even (l 6) 0 1 :::: l;1 = 111(01) l;4 We n o w prove the lower bound on the period of ordering using the properties of the equivalence classes.

Theorem 4 For all correct ordering and l > 2 T 2p + .

We d e v elop a framework that will indeed allow us to prove the lower bound by contradiction.

Consider a permutation that gives a legal ordering of tasks so that the dependences are maintained. Let s i be the time when the rst element of the equivalence class X i (x 2 f 0 1 :::: l ; 1g \ X i) is executed. Let f be an integer such that 8i 2 0 l ; 1] s i s f .

Let

us rename the equivalence classes X 0 X 1 X 2 : : : : : X l;1 to A 1 A 2 A 3 :::::A l such that X f = A l and the relation A l ! A l;1 ! :::: ! A 1 holds. Now, let b i be the time when the rst element o f A i is executed and let e i be the time when the last element o f A i (x 2 fn ; l n; l + 1 : : : : n ; 1g \ A i) is executed. Let i = jA i j ; p.

In order to explain the results of theorem, we introduce the following notation. The following notation corresponds to the recurrence hypothesis of the theorem. b i () 8 j j < i) b j < b i Since, A l is the last equivalence class whose tasks begin executing, 9i j b i During the transition from a tile to the next, there is a dependence from the last point o f A 1 to the rst point o f A l , from the last point A l to the rst point o f A l;1 , from the last point o f A i+1 to the rst point o f A i ,...., from the last point o f A 2 to the rst point A 1 .

Hence, we h a ve the following inequalities between the beginning and nishing time instants of the equivalence sets, 1 i l ; 1 e i+1 b i + T ; 1 1 i l e i b i + p + i ; 1 Now lets consider i 2 f 3 4 : : ::: l g such that b i , then we either have,

1. b i;2 < b i;1 < b i or, 2. b i;1 < b i;2 < b i .
The following two lemmas allow us to inductively apply the hypothesis b i in the two a b o ve cases to determine the lower bound on the period of ordering. Lemma 6 Let i 2 f 3 4 : : : :lg such that b i;2 < b i;1 < b i . Then, 1. T 2p + i;1 + i 2. IfT= 2 p + i;1 + i then b i;1 > b i .

Proof Refer 18]. Lemma 7 Let i 2 f 3 4 ::: lg such that b i;1 < b i;2 < b i , and that b i . Then, 1. T 2p + i;1 + i 2. If T = 2 p + i;1 + i then b i;1 > b i;2 > b i and p = 1 & i;2 = 0 or i = 3

Proof Refer 18]. Proof of theorem 4

Now, let us use the following notation, i = maxfi j 3 i l i;1 + i = max 2 p p+1 l p + p+1 g = i;1 + i Let us assume that T = 2 p + ; 1 Now, let's consider the smallest integer i 0 i such that b i 0 . Since, A l is the last equivalence class to start execution i 0 exists. Suppose that i 0 6 = i. This gives rise to two cases, 1. b i 0 ;2 < b i 0 ;1 < b i 0. Then according to lemma 6, i f T = 2p + i 0 + i 0 ;1 then, b i 0 ;1 > b i 0. Thus, we h a ve b i 0 ;1 , which is absurd because i 0 is minimum. 2. b i 0 ;1 < b i 0 ;2 < b i 0. Since i 0 6 = i) i 0 2 4 l].

According to lemma 7, w e h a ve, i 0 ;2 = 0 Hence, i 0 ;2 + i 0 ;1 i 0 ;1 + i 0 < Therefore, i 0 ; 1 6 = i Finally, i 0 ; 2 i Also, if T = 2 p+ i 0 + i 0 ;1 = 2 p+ ;1 then b i 0 ;1 > b i 0 ;2 > b i 0. Hence, b i 0 ;2 which is also absurd because i 0 is minimum.

Hence, i = i 0 and according to lemmas 6 & 7, T 2p + i + i;1 2p + which contradicts our previous assumption (T = 2p + ; 1). Hence, T 2p + .

Constant P ermutation Algorithm

Using the framework developed in the previous sections we a r e n o w able to devise an algorithm that will compute the optimal ordering of tasks under the assumption that the ordering is the same in every tile. Algorithm 1 gives us a correct permutation of tasks with period of ordering (T) = 2 p + . Recall that l 3 and n ^l = 1 . Algorithm 1 procedure ComputeOrderingCst (n l) Input: n (tile size) l (dependence distance) Precondition: l 3 n ^l = 1 Output: permutation 0 : n ; 1] (task ordering) f Initialize variables p and k g p := b n l c k := n mod l f Assign the rst task f to be executed g if (l = 4 and k = 3) then f := l ; k f because 0 = (f + n) l] g else f := 0 f Execute the rst p tasks of X f g t := f for i := 0 to p ; 1 do The permutation given by this algorithm clearly obeys the constraints of dependences in the tile.

To prove that the algorithm is optimal we h a ve t o show that the permutation given by the algorithm gives us the minimum period of ordering, T = 2p + .

We use notations from section 5.2. We h a ve, b 0 = 0 b 1 = p e 1 = p + jY 1 j ; 1 b 2 = p + jY 1 j e 2 = p + jY 1 j + jY 2 j ; 1 b j = p + P j;1 i=1 jY i j e j = p + P j i=1 jY i j ; 1 b l;1 = p + P l;2 i=1 jY i j e l;1 = n ; 2 e 0 = e l = n ; 1 Moreover, 8j 2 0 l ; 2] Y j+1 ! Y j .

A necessary and su cient condition for T to be a correct period of ordering is, 8j 2 0 l ; 1] e j+1 < b j + T i.e., 8j 2 0 l ; 1] T e j+1 ; b j + 1 Now, 8j 2 f 1 l ; 2g e j+1 ; b j + 1= p + j+1 X i=1 jY i j ; 1 ;

(p + j;1 X i=1 jY i j + 1)
= jY j j + jY j+1 j e 1 ; b 0 + 1= p + jY 1 j e l ; b l;1 + 1= n ; 1 ; (p + l;2 X i=1 jY i j) + 1 = 1 + jY l;1 j Finally, If l = 4 and k = 3 , w e h a ve, (jY 0 j jY 1 j jY 2 j jY 3 j) = (jX 1 j jX 0 j jX 3 j jX 2 j) = (5 + p 4 + p 3 + p 2 + p)

Hence, T = 2 p + max 2 q q+1 4 q + q+1 is correct.

Else (jY 0 j jY 1 j jY l;1 j) = (jX 0 j jX l;1 j jX 1 j) = (l + p l;1 + p 1 + p) Hence, T = 2 p + m a x 1 q q+1 l;1 q + q+1 is correct.

6 General Case with Constant Permutation

Optimal Permutation with One Dependence Vector

Suppose that n^l = d. W e illustrate how our approach n d s a b e t t e r p e r m utation than M. Dion's approach.

Let us consider a correct ordering with T as the period. Consider the sub-set of tasks (t 0 i) i2 0 n;1] such that 8i t 0 i = t id . Let us call the tile consisting of the tasks (t 0 i) a derived tile. The length of the derived tile is n 0 = n d . The derived dependence distance is l 0 = l d . W e assume that the derived permutations in each tile are constant i.e., they are the same for all processors.

Hence, according to the last part T T min (n 0 l 0). Now, let us show that T min (n l) = 2 b n 0 l 0 c + (n 0 l 0) Let 0 : f0 n 0 ;1g ! f 0 n 0 ;1g be the permutation of tasks that gives the period T 0 min .

Then, consider 8v 2 f0 d; 1g 8i 2 f0 n 0 ; 1g (v + id) = v + 0 (i)d

Clearly, this permutation permits to reach the period T = T 0 min . T h us, Algorithm 1 generates the optimal permutation for this case also simply by using n 0 and l 0 as inputs instead of n and l.

The task execution times given by our algorithm for n = 14 and l = 6 i s s h o wn in Table 1. Since n ^l = 2, tile 0 has two c o m p onents viz., f0,2,4,6,8,10,12g and f1,3,5,7,9,11,13g. Each of them form sub-tiles with n 0 = 7 and l 0 = 3 . The rst component has equivalence classes X 0 = f0 6 12g X 1 = f4 10g X 2 = f2 8g. First, p tasks of X 0 are executed followed by all the tasks of X 2 and X 1 in that order. Finally the last task of X 0 is executed. The second component is then executed with a similar task ordering.

The period of ordering reached by our algorithm is 4 while that reached by Dion's algorithm is 6.

Case n = 1 4 & l = 6 Tile 0 Tasks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Times 0 7 2 9 4 11 1 8 3 10 5 12 6 13 Tile 1 Tasks 14 [START_REF] Li | Compiler Cache Optimizations for Banded Matrix Problems[END_REF]

Several Dependence Vectors

The problem with several constant dependence vectors is complicated and we do not propose an optimal algorithm. Let v be the number of dependence vectors with l 1 < l 2 < < l v being the lengths of the dependence vectors. Let us denote l = l 1 ^l2 ^ lv . Dion has shown that for large n T min (n (l 1 l 2 l v)) T min (n l)

Hence, the heuristic proposed is to simply use the algorithm for the single dependence vector problem ComputeOrderingCst(n, l) with n and l as de ned above.

Optimal Solution with Nonconstant P ermutation

We can further optimize the solution if we relax the constraint of maintaining a constant p e r m utation in every tile. We also show that computing the optimal permutation in every tile does not result in any o verhead because the optimal permutation in each tile is a simple shift of the permutation in the previous tile. By removing the constraint, we can reach the optimal period of ordering which is half smaller than that in the case of constant p e r m utation.

Case n ^l = 1

Recall that from section 4, we h a ve X 0 ! X 1 ! !X l;1 ! X 0 . In fact, the optimal algorithm is the most natural algorithm. The rst processor executes tasks belonging to X 0 then X 1 X 2 and nally X l;1 . The second processor starts working jX 0 j calc + comm units of time after the rst one, and executes the tasks of X 1 then X 2 X 3 X l;1 and nally X 0 . The third processor starts working jX 1 j calc + comm units of time after the second one, and executes the tasks of X 2 then X 3 X 4 X 0 and nally X 1 . This leads to the following algorithm. In the above algorithm we h a ve, i is the subscript of the tile being executed. m is the smallest integer such that ni ml < n(i + 1). f is the rst task to be executed by processor i. Table 2 1 illustrates how the algorithm Com-puteOrderingNoncst reaches the above ordering.

General Case

In the general case i.e., with n ^l = d and with several dependence vectors, the treatment is similar to the method used for the constant p e r m utation case. Let v be the numb e r o f c o n s t a n t d ependence vectors with l 1 < l 2 < < l v denoting their lengths. Let l = l 1 ^l2 ^ lv . Algorithm 2 is presented below. sider the equivalence classes X 0 ! X 1 ! ! X l 0 ;1 ! X 0 as de ned in section 4. Consider the equivalence class X 0 . It starts executing on tile T 0 at t = 0 and completes execution at t = jX 0 j. Now, at time t = jX 0 j, equivalence class X 1 starts executing on tile T 1 . Note that simultaneously, X 1 starts executing on tile T 0 . In general, tasks corresponding to X i and tile T j are being executed by processor P j at the same time as tasks corresponding to X i and tile T j+1 are being executed by processor P j+1 . Clearly, w e can see that all dependences are satis ed.

It is easy to show that the period of ordering reached by Algorithm 2 is optimal. Consider two tiles T j and T j+1 . Suppose that equivalence class X i starts executing on T j at t = t 0 . Since X i ! X i+1 the earliest time at which X i+1 can start execution on T j+1 is t = t 0 + jX i j. This is precisely the time o set between two consecutive tiles obtained through Algorithm 2.

8 Results

Performance Evaluation

The performance evaluation of the proposed methods was carried out using several signal processing applications consisting of matrix transformations. We tested our proposed algorithms using a sample test routine shown below,

Do i: 0 -> N c i] = compute_intensive_func(i) If (i .geq. l) A i] = c i]*A i -l] + 3 Endif Enddo
We tiled the above uniform loop using the tiling transformation provided by the SUIF 19] compiler varying the tile size (n) and the dependence distance (l). Since the dependence distance is a compile-time unknown in the above loop, the code which computes the permutation is generated at the entry point of the tiled loop as shown below. At run time this code will thus generate an appropriate permutation in each tile for ordering tasks within the tiled loop. Do i_tile: 0 -> N by n <tiled loop> <code for generating permutation> Do i: i_tile -> min(N,i_tile+n-1)

c i] = compute_intensive_func(i)

If (i .geq. l) A i] = c i]*A i -l] + 3 Endif Enddo Enddo
We then carried out a parallel execution by inserting MPI 15] calls in order to achieve the synchronization imposed by the dependency constraints. The complete framework has been incorporated in the SUIF compiler as an optimization pass. The nal transformed code was targeted on SGI Power Challenge : A shared memory multiprocessor system consisting of sixteen 90 MHz IP21 processors and 2GB of main memory. Each processor has a MIPS R8000 CPU and a MIPS R8010 oating point unit. CRAY T3D : A parallel processing system consisting of 128 DEC Alpha 21064 RISC processors linked via a high bandwidth, lowlatency torus interconnection network. T3D memory is globally distributed but logically shared among the processors. The metric used to evaluate the performance of our algorithms in comparison to previous algorithms was the total loop completion time. Figure 7 presents results obtained using the two proposed algorithms (Algorithm 1 and 2 presented in sections 5.3 and 7.2) in comparison to previous approaches on the SGI Power Challenge. Figure 8 presents results obtained on the CRAY T3D. As seen in Figures 7 and8 2 the performance obtained by using the two proposed algorithms is superior to that obtained by using algorithms proposed by Dion and Chou & Kung. This is true in the case of shared memory systems 3 as well as distributed memory systems.

From the implementation for the single dimensional tiling problem we observed that for small tile sizes we need long or compute intensive t a s k s so that the ratio comm calc < 1. The results indicate the following performance hierarchy of the algorithms proposed in this paper. For small tile sizes, Algorithm 2 > Algorithm 1 > Dion's algorithm Algorithm 2 is also the most natural and efcient algorithm. For large tile sizes the results indicate that Algorithm 2 yields the best solution which is superior to solutions obtained by all constant permutation algorithms. The performance hierarchy of the algorithms for large tile sizes is shown below, Algorithm 2 > Algorithm1 Dion's algorithm

E ect of tile size

An interesting issue is to study the e ect of variation of tile size on performance. As the dimension of the problem increases the tile size is limited by the cache size. In case of the multi-dimensional tiling problem n 1 n 2 n d , the gain of our method using Algorithm 1 over Dion's algorithm will be linear in

Q d;1 i=1 n i .
For the 1-dimensional problem the cache size is usually not limited and n = N P or n is chosen as discussed below. 4 Desprez et al 6] h a ve addressed the issue of nding the optimal grain size that minimizes the 2 The legend Algo1 denotes results for Algorithm 1 and Algo 2 denotes the results for Algorithm 2. 3 The minor performance gain of M. Dion's algorithm over algorithm 1 in gure 7(a) can be attributed to fact that the optimal permutation generation of algorithm 1 is more complex than that of M. Dion's algorithm 4 For the multi-dimensional problem cache size becomes a limiting factor and we h a ve Algorithm 1 >

n > l c

In order to compare the above analytical solution with experimental results we observed the total loop completion time (T tot) v arying the tile size (n) k eeping P xed. Figure 9 9 shows that the analytical expression derived for the loop completion time closely matches the experimental results. The knee of the analytical solution curve corresponds to the optimum tile size that yields the minimum loop completion time. The deviation of the analytical solution from the experimental results for small tile sizes is due to the fact that for small tile sizes n < l c (c = 2048) indicating that the communication time exceeds the total computation time.

On conventional parallel architectures, it is clear that the non-constant permutation algorithm yields the least loop completion time for the single dimensional tiling problem.

Conclusions

Tiling is typically carried out to increase granularity of computations, locality of data references and data reuse on cache-based multicomputers. A signi cant a m o u n t o f w ork has been done to solve the important problem of deriving the optimal shape and size of the tile to minimize communication. Once the parameters of the have been determined, the e ectiveness of tiling is critically dependent on the execution order of tasks within a tile. In this work, we h a ve a ddressed the problem of nding an optimal ordering of tasks within tiles executed on multicomputers for constant but compile-time unknown dependences. We remove the restriction of atomicity on tiles and exploit the internal parallelism within each tile by o verlapping computation with communication. We h a ve f o r m ulated the problem and developed a new framework based on equivalence classes in order to prove optimality results for single dimensional tiles with single constant dependences. Using the framework we h a ve a l s o developed two e cient algorithms that provide the optimal solution in both cases, 1. Same (constant) task ordering in every tile, 2. Di erent (non-constant) task ordering in each tile.

We h a ve s h o wn that the two proposed algorithms yield superior results to the previous approaches when tested on distributed and shared memory systems. We also show that the non-constant permutations in our approach signi cantly reduce the loop completion time unlike the constant p e rmutations in previous approaches. Finally, w e have i n vestigated the relationship between tile size and the loop completion time and developed a methodology to obtain optimal tile size given our framework. On conventional parallel architectures, it is clear that the non-constant permutation algorithm yields the least loop completion time. It is an open question whether the non-constant permutations yield better results in the multidimensional case as well 5 A performance comparison of these algorithms on a VLSI array processor based architecture 13] (for which Chou and Kung had originally proposed their algorithm) could be interesting. A comparison of approaches based on constant and non-constant permutations using the architectural characteristics (such a s s p ecialized hardware for generating and transforming permutations) could also be interesting.

Figure 1 :

 1 Figure 1: One dimensional tiling

Figure 2 :

 2 Figure 2: Chou & Kung's solution for the case n = 7 and l = 3 T= 5

First

 Dion shows the following results, Lemma 1 The best local permutation that permits reaching the minimum period T min is independent of the values of calc and comm . Moreover, if T 1 0 min is the minimum period f o r calc = 1 and comm = 0 then T calc comm min = T 1 0 min calc + comm .Lemma 2 If n ^l 6 = 1 the problem is equivalent to a smaller problem with n 0 = n n^l and l 0 = l n^l .

Figure 3 :T = 8 .

 38 Figure 3: Comparison of Dion's solution and Chou & Kung's solution for n = 9 and l = 2

 Figures 4 & 5 compare their solution to ours, for the case (N = 700 n= 2 2 l= 8). Figures 4(a) and 4(b) show Chou & Kung's solution and Dion's solution. Figures 5(a) and 5(b) show solutions obtained by our two proposed algorithms. The tasks are represented by dots. The horizontal lines correspond to the starting times of each individual tile. The vertical lines represent the boundaries of adjacent tiles. Tasks that have dependences are shaded in the same color.

Figure 4 :FirstFigure 5 :

 45 Figure 4: Timing graph showing solution obtained from (a) Chou & Kung's algorithm (b) Dion's algorithm (N = 7 0 0 n = 2 2 l = 8) .

 t

Figure 6 :

 6 Figure 6: Task dependence graph for tile at origin

Example 3 :Example 6 :

 36 Consider n = 7 l = 3 (k = 1) ; string = 100100100::: Consider n = 9 l = 5 (k = 4 > d 5 2 e) ; string = 1111011110::: = 2 The values calculated above for di erent tile sizes and dependence distances allow us to determine the best period of ordering as per theorem 4

 and = max 2 p p+1 4 p + p+1 = 1 5.2 Lower Bound for the Period of Ordering

 b i > b k () (b i < b k) : (9j j b i < b j < b k) The set B = fb 1 b 2 ::: b l g, which is a subset of IR is totally ordered with respect to the relation <. b i > b k means that b i and b k are consecutive elements of B.

procedure

 ComputeOrderingNoncst (n l i) Input: n (tile size) l (dependence distance) i (tile number) Precondition: n ^l = 1 Output: permutation 0 : n ; 1] (task ordering) f Initialize variables m and f g m := d ni l e f := (ml) m o d n f Assign the rst task d to be executed g x := 0 permutation x] : = f f Execute each equivalence class in the order of (;!)g j := (f + l) m o d n while j 6 = f do x := x + 1 permutation x] : = j j := (j + l) m o d n endwhile end ComputeOrderingNoncst

3 Tile

 3 The time o set O i for each tile is the number of time units between the start of execution of tile i and tile i + 1. The o set O i as opposed to the period of ordering need not be the same for every tile. The o set O i (in computational-time units) corresponds to the size of the following set, X i = fm 2 N in ml < (i + 1) ng Case n = 5 & l = Optimal ordering with non-constant p e rmutation in each tile (n = 5 l = 3) Hence, O i = d n(i + 1) ; d ni l el l e calc + comm Consider the example n = 5 and l = 3

f

 0 : n ; 1] (task ordering) f Initialize variables d n d and l d g d := gcd(n l) n d := n d for i d := 0 to d ; 1 do f Assign the rst task f to be executed g x := 0 permutation x] : = fd+ i d f Execute each equivalence class in the order of (;!)g j := (f + l d) m o d n d while j 6 = f do x := x + 1 permutation x] : = jd+ i d j := (j + l d) m o d n d endwhile endfor end ComputeOrderingNoncstGen The o set (in computation time units) is given by the following function, function O set (n l i) Input: n (tile size) l (dependence distance) i (tile number) Output: O i (O set for tile i) fInitialize d n d and l d g d := gcd(Initialize variables m and f g m := d ndi ld e f := (ml d) m o d n d f Compute O set g O i := d nd;f ld e return(O i) end O set Table 3 presents an example (n = 1 5 & l = 9) As stated earlier, when n ^l = d 6 = 1, the problem is reduced to a smaller problem with tile size n 0 = n d and dependence distance l 0 = l d . Con-

Table 3 :

 3 Optimal ordering with non-constant p e rmutation in each tile (n = 1 5 l = 9)

Figure 7 :Figure 8 :

 78 Figure 7: Loop completion time v/s dependence distance on SGI PC for (a) P = 16, n = 16 and N = 256 and (b) P = 8, n = 32 and N = 256

 (a) presents this comparison for N = 2097152 and l = 7. Figure 9(b) presents the comparison for N = 524288 and l = 7 .

Figure

Figure 9 :

 9 Figure 9: Loop completion time v/s tile size on S G I P C f o r (a) P = 1 6 , l = 7 a n d N = 2 0 9 7 1 5 2 and (b) P = 16, l = 7 and N = 524288

for j even, { if j 2(d

3n;1 4 e + 1) ; n j = j 2 { if j > 2(d 3n;1 4 e + 1) ; n j = j+n;1 2 She also derives bounds for T which is stated in the following theorem, Theorem 2 For l 3 and n ^l = 1 , we have 2b n l c ; 1 T 2b n l c + 2 For l 3, Dion gives an algorithm called a cyclic algorithm that gives a correct permutation or schedule with T = 2 b n l c + 2 . However, this is

The subscripts of tasks are modulo n. l d := l d f Initialize variables m and f g m := d ndi ld e f := (ml d) m o d n d

The general problem of determining optimal permutations in the multi-dimensional case is very hard.

This work is supported in part by the National Science Foundation through grant no. CCR-9696129 by t h e CNRS{ENS Lyon{INRIA project ReMaP a n d b y the Eureka Project EuroTOPS

discussed in section 5.2. In order to prove theor e m 3 w e need a few results.

Lemma 3 gives us a working de nition for X i . Lemma 3 If X 0 i = fx 2 j 9 2 IN (x l n]) ^(in l < (i + 1) n)g then 8i X 0 i = X i .

Proof Refer 18] In order to prove theorem 3, w e h a ve t o d i fferentiate between the cases = 1 and = 2. For this we need to discuss whether there exist two di erent i n tegers i & j in f0 1 : : :: l;1g such that i i+1 = j j+1 = 1 1 .

The next lemma formalizes this discussion. It states the condition that the tile size and the dependence distance should satisfy in order to have a sub-string 11 within the -string. Lemma 4 9i 2 f 1 :::: l ; 1g j i i+1 = 1 1() 2k > l + 1 () k > d l 2 e Proof Refer 18] In order to prove theorem 3, we h a ve t o d i e rentiate between the cases = 1 and = 2 (the case = 0 is trivial). To a c hieve this task we n e e d to discuss whether there exists i in f2 l ; 1g such that i i+1 = 11 or not. Indeed, we w i l l s e e that if k > d l 2 e then 0 1 = 1 1 a n d t h a t l;1 = 0 .

To formalize it, we n e e d t o i n troduce a new concept -the property of a string to be well balanced.

Let P = f0 1g be the alphabet of the -string. Let uv be the concatenation of the strings u & v (if u = u 0 u 1 u 2 ::::::u n & v = v 0 v 1 :::::v m then uv = u 0 u 1 :::::u n v 0 v 1 :::::v m).

De nition 8 (sub-string) v is said to be a substring of u, if there exist two strings & , s u c h that u = v De nition 9 (length) The length of a string u = u 1 u 2 u 3 ::::u n is the integer n denoted b y juj. De nition 10 (weight) Let 2 P . If u = u 1 u 2 :::::u n 2 P is a string of length n, then juj = jfi 2 f 1 ::: ng u i = gj.

De nition 11 (well-balanced) Let u 2 P . u is said to be well-balanced if for any pair of substrings of u, (v v 0), jvj = jv 0 j =) j j vj 1 ; j v 0 j 1 j 1 Lemma 5 The in nite string = 0 1 2 ::::: is well-balanced.

Proof Refer 18]. Now w e can easily prove theorem 3, Proof: First, note that 0 = 1 . W e h a ve, jX 0 j = jX 0 0 j = jf 2 IN 0 l < ngj = p + 1 .

Also l;1 = 0 .

jX l;1 j = jf 2 IN (l ; 1)n l < lngj = jf 2 IN (l ; 1)n l lngj ; 1 (p + 1) ; 1 1. Case k = 1 :

As k = j 0 1 :::: l;1 j 1 = 1 & 0 = 1 therefore, max 1 p p+1 l;1 (p + p+1) = 0 Consequently, = 0 .

Case 1 < k d l

2 e: 8 i j i i+1 :::: i+l;1 j = k 2 therefore, 8i 9p 2 f i :::: l + i ; 2g j p = 1 Hence, 1. From the proof of lemma 4, w e h a ve min 1 p p+1 l;1 p + p+1 1 Consequently, = 1 .

l > k > d l

2 e: We h a ve 2 n = 2 pl + 2 k (2p + 1) l + 1 . Therefore, jX 0 0 j + jX 0 1 j = jf 2 IN 0 l < 2ngj = 2p + 2 Hence, 0 1 = 1 1 Suppose that there exists i in f2 3 : : : : l ; 1g such that i i+1 = 1 1 . Since i 6 = l ; 1 this will lead to = 2