
HAL Id: hal-02101989
https://hal-lara.archives-ouvertes.fr/hal-02101989v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Procedure placement using temporal-ordering
information: dealing with code size expansionin

Thierry Bidault, Christophe Guillon, Florent Bouchez, Fabrice Rastello

To cite this version:
Thierry Bidault, Christophe Guillon, Florent Bouchez, Fabrice Rastello. Procedure placement using
temporal-ordering information: dealing with code size expansionin. [Research Report] LIP RR-2004-
16, Laboratoire de l’informatique du parallélisme. 2004, 3+25p. �hal-02101989�

https://hal-lara.archives-ouvertes.fr/hal-02101989v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Procedure placement using

temporal-ordering information:
dealing with code size expansion

Thierry Bidault,
Christophe Guillon,
Florent Bouchez
and Fabrice Rastello

Avril 2004

Research Report No 04-16

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Procedure placement using temporal-ordering information:

dealing with code size expansion

Thierry Bidault,
Christophe Guillon,

Florent Bouchez
and Fabrice Rastello

Avril 2004

Abstract
Instruction cache performance is one of the bottle-necks of processor perfor-
mance. In this paper, we study the effects of procedure placement in memory
on a direct-mapped instruction cache. These caches differ from associative
memory caches by the fact that each address in the memory is assigned to
one and only one address in the cache. This means that two procedures
with addresses that share the same place in the cache, and that are called
alternatively will create a conflict-miss: one will overwrite the other in the
cache. The goal of procedure placement is to minimize these cache-misses.
Pettis and Hansen give in [7] a greedy algorithm that doesn’t increase the
code size. The Gloy and Smith algorithm [3] greatly decreases the number of
cache-misses but authorizes gaps between procedures, hence it increases the
code size. The latter comprises of two main stages: in the “cache-placement”
phase, the procedures are given the location they will occupy in the instruction
cache; in the “memory-placement” phase, procedures are placed in memory
in such a way that code expansion is minimized, with the constraints of their
cache placement. In this article, we prove the NP-completeness of the first
stage, and the polynomiality of the second stage of [3]. Indeed, we show
that our algorithm provides the optimal solution in a time complexity of
O(nL log∗(L + n)) where n is the number of procedures, and L the cache size.
Thus nearly linear for a fixed cache size. We also provide an algorithm which,
given the cache-placement, quickly returns an approximation of the code
expansion. This makes the cache-placement stage take into consideration the
final program size. Our modifications to the Gloy and Smith algorithm give
on average a code size expansion of 8% over the original program size, while
the initial algorithm gave an expansion of 177%. The cache miss reduction
is nearly the same as the Gloy and Smith solution with 35% cache miss
reduction.

Keywords: Instruction cache, code placement, code size, cache miss, min-matching,
hamiltonian-path, profiling

Résumé
Cet article traite du problème de placement de procédures en mémoire pour
optimiser l’utilisation d’un cache d’instructions “direct-mapped”. Ce type de
mémoire cache se distingue des mémoires dites “associatives” par le fait qu’à
chaque adresse de la mémoire est associée une unique adresse dans le cache.
Ainsi, deux procédures dont les adresses mémoire partagent la même adresse
dans le cache et appelées consécutivement créent un “conflit” ou “défaut de
cache” : le code de la seconde va écraser le celui de la première. Le but du
placement de procédures est de minimiser le nombre de défauts de cache.
Pettis et Hansen ont donné dans [7] un algorithme glouton qui n’augmente
pas la taille du code ; l’algorithme de Gloy et Smith [3] diminue de beaucoup
le nombre de défauts de cache par rapport à [7] mais autorise l’existence de
mémoire inutilisée entre les procédures, et donc augmente la taille du code. Ce
dernier algorithme est constitué de deux parties principales : la première est
une phase de placement dans le cache : chaque procédure se voit attribuer la
place qu’elle occupera quand elle sera chargée dans le cache d’instructions ;
la seconde partie est une phase de placement en mémoire : les procédures
sont placées en mémoire en respectant les contraintes liées au placement dans
le cache et de manière à minimiser l’expansion de code. Dans cet article,
nous prouvons la NP-complétude de la première partie et la polynomialité
de la seconde. En effet, nous exhibons un algorithme qui renvoie la solution
optimale au problème de minimisation de l’expansion de code. Sa complexité
en temps est en O(nL log∗(L + n)) où n est le nombre de procédures, et L la
taille du cache. L’algorithme est donc presque linéaire pour une taille de cache
fixée. Nous donnons aussi un outil qui fournit rapidement une approximation
de l’expansion de code qui résulte d’un placement dans le cache donné. Ceci
permet de prendre en compte la taille finale du programme dans la phase
de placement dans le cache. Les modifications apportée à l’algorithme de
Gloy et Smith font que celui-ci augmente la taille du code d’environ 8% en
moyenne, contre une expansion de code originale d’environ 177%. La réduction
du nombre de défauts de cache est quasiment la même que dans l’algorithme
original, environ 35% de conflits en moins.

Mots-clés: Cache d’instruction, placement de code, taille de code, defaut de cache,
min-matching, chemin hamiltonien, profiling

2

1 Introduction

Instruction cache performance is one of the bottle-necks of processor performance. In this paper,
we study the effects of procedure placement in memory on a direct-mapped instruction cache.
An instruction cache is one of the level of the memory hierarchy. When an instruction is not
in the cache, it has to be fetched from a deeper level of the memory hierarchy, which consumes
cycle and power. We worked on the instruction cache of the ST220 processor, which is a VLIW
implementation of the LX/ST200 [1] family. This cache is direct-mapped. These caches differ
from associative memory caches by the fact that each address in the memory is assigned to one
and only one address in the cache: if L is the cache-size, the address number i in the cache can
contain only the instructions whose memory address is kL + i. The goal of procedure placement
is to avoid setting at the same address modulo L two procedures that are often called together,
because such configuration creates cache conflicts. Here, we focus on procedure placement that uses
execution profile. An execution profile provides temporal-ordering information, which is important
as shown in [3]. There are already several procedure placement algorithms in the litterature, as
enumerated below. However, the best techniques for reducing cache conflicts increase the global
code size, which make themselves unusable in the embedded context. Taking into account code
size expansion during procedure placement for conflict-miss minimization is the main goal of this
paper.

State of the art of code layout Pettis and Hansen in [7] build a “call-graph” from the
execution profile of a program where the vertices are the procedures of the program and the edges
are weighted by the number of calls between procedures. From this call-graph their solution to
the procedure placement uses a “closest is best” strategy. Two procedures which often call each
other must have a different place in the cache. The idea is that this will be the case if they are
put one next to the other in memory. Their algorithm is greedy on the call-graph: it chains the
procedures linked by the heaviest edge and merges the corresponding vertices in the graph until
all vertices have been merged. This solution is effective in reducing the cache conflicts when the
size of the program remains reasonable compared to the size of the cache. An essential property
of the Pettis and Hansen placement is that it does not incur code size expansion.

Hashemi, Kaeli and Calder in [4] also build a call-graph. The placement algorithm works
with compounds that maintain set of procedures and for each procedure the set of unavailable
cache location or “colors”. The algorithm merges compounds greedily in decreasing order of edge
weights. When two compounds are merged, the unavailable set of colors is updated and some
hole can be inserted between procedures when there are color conflicts. This more sophisticated
placement algorithm leads to better results than [7] for reducing cache conflicts. On the other
hand, the drawback compared to the Pettis and Hansen solution is that inserting holes leads to a
code size expansion.

Kalamantianos and Kaeli in [5] build a “conflict miss graph” which modelizes better the in-
teraction between procedures. The placement part is identical to [4]. This leads to better results
than Hashemi et al. solution for reducing cache conflicts.

Gloy and Smith in [3] build a more detailed graph from an execution trace: the “temporal
relationship graph” (TRG). The vertices are the procedures and if P and Q are two vertices,
the edge (P, Q) is weighted by an approximation of the number of conflict cache misses between
these procedures. The procedure placement algorithm is composed of two phases: first, the cache-
relative placement of each procedure is determined. We call this phase cache-placement. The
second phase performs the final layout of each procedure in memory constrained by the cache-
placement. We call this phase memory-placement. These two phases are precisely described below.
This solution is the most effective at reducing cache conflicts, however it results in an large code
size expansion which make it unusable for embedded applications.

Our approach We implemented in our compiler toolchain the different solutions presented
above and we made quantitative experiments that resulted in the following two statements. The
Pettis and Hansen solution is the best trade-off between cache conflict reduction and code size
expansion. The Gloy and Smith [3] solution outperforms the later in cache conflict reduction on

1

some applications. Thus, we decided to improve the procedure placement phase of the solution
in [3] in order to reduce the code size expansion. We attack the problem on the two phases of
their algorithm: the cache-placement phase and the memory-placement phase.

The cache-placement problem The cache-placement phase finds the cache-relative position of
each procedure in order to minimize cache conflicts. Cache-relative position is the offset, in cache
lines, of the beginning of the procedure from the beginning of the cache.

Our first contribution to this problem is to formalize it as the Min-Cache-Miss problem in
section 2 and to prove that it is NP-complete in Appendix B.

The solution to this problem given in [3] is an heuristic solution which works well in practice.
The algorithm processes the Temporal Relationship Graph (TRG), a previously computed call-
graph enhanced with temporal information, in decreasing order of weight. It repeatedly merges
the two nodes of the current maximum edge until no edges remain. A TRG node contains a set
of procedures. For each of these procedures, the node holds its previously-computed node-relative
cache offset. Initially a node contains only one procedure, whose node-relative offset is 0. So,
when merging two nodes, a cache offset for the second node is computed, to minimize a metric
between the sets of procedures of the first and second nodes: the all L possible offsets are scanned,
and the best one is kept. Once this offset is found, all the individual node-relative offsets of the
procedures in the second node are shifted by this offset. This solution only focuses on reducing

P0 P1

P2

P3

P5

P4

P4

P2

P3

P0

P1

TRG graph

P4

P0 P1 P2 P3 P4 P5

cache size cache size

(a) memory placement (b) memory placement

P5

Figure 1: An example of a TRG that could result in a layout of 5 cache-size (a) whereas a layout
within 1 cache-size (b) would provide an equivalent miss-rate cost.

the cache conflicts. For instance, the TRG graph in Figure 1 could result in a large code size
expansion whereas there exists a less consuming code size solution without increasing the miss
rate. Our contribution to this solution is to make this phase sensitive to code size expansion. This
is the goal of section 3.

The memory-placement problem The memory-placement phase finds the final procedure
layout, i.e. the address in memory of each procedure, given the previously computed cache-
placement offsets. In this final layout all procedures are placed in order to minimize the overall
code size. The heuristic given in [3] is a greedy algorithm: the algorithm begins with a procedure
with an offset of 0; once a procedure is placed, to find the next one, all procedures are scanned
and the one having the nearest offset to the end of the already placed procedures is chosen. This
algorithm is not optimal1.

Our first contribution to this phase is to formally state this problem as the Min-String

problem in section 2. Then we give an optimal solution to the problem, namely String-Merge

in section 4, i.e. we guarantee that for the given cache-placement the code expansion of our memory
placement is minimal. We also give in section 4 an efficient implementation of this String-Merge

1We can prove that it is optimal within an additive constant of 2L: the proof is similar to the proof of optimality
of Matching-Greedy. There are examples where the bound 2L − 2 is reached. Because our codes have a size of
only few times the cache size, the code size expansion due to the use of the greedy algorithm can be consequent.

2

algorithm in time O(nL log∗(L + n)) where n is the number of procedures and L the number of
lines in the cache.

Layout of the article In section 2, we formally state the two problems introduced above: Min-

Cache-Miss for the cache-placement phase and Min-String for the memory-placement phase.
In section 3, we give our solution to the cache-placement phase. In section 4, we give our solution
to the memory-placement phase. In section 5, we give experimental results.

2 Statement of the problems

In this section we state formally the two problems Min-Cache-Miss and Min-String. We also
give some preliminary definitions that will be used in the following sections.

2.1 The Min-Cache-Miss problem

Even if it is not exact with architectures which support instruction prefetching, as it is done in
the article of Gloy and Smith [3], our modelization supposes that cache-misses only depend on the
cache placement of the code. Hence, we will use the following notations: L is the cache size, l(F)
is the code size of the procedure F ; a cache-placement of the procedures is a function o where
for each procedure F , o(F) is the cache address of the beginning of the procedure. With those
notations, a procedure F would use the cache-addresses covered by a cyclic interval Io(F) of size
l(F):

Definition 1 (cyclic interval) A cyclic interval I is determined by an offset o(I) and an end
e(I) (I = [o(I); e(I))). Both are in Z/LZ where L is a constant. The size (or length) of a cyclic
interval is l(I) = l(F) mod L = (e(I) − o(I)) mod L.

Figure 2 gives an example of five cyclic intervals and their cache-placment in a chache of size
L = 14.

I2

I3

I1

I3

I4

I5

I2

1

4

I4

6

9

I5I1
12
13

L = 14

5

11

0

Figure 2: An example of cyclic intervals and its corresponding modular representation. The
convention for interval I1 is a 0 size interval.

Definition 2 (collision) Given two procedures A and B. The collision col(A, B) between A and
B is true if and only if either l(A) ≥ L or l(B) ≥ L or their corresponding cyclic intervals intersect
ie [o(A), e(A)) ∩ [o(B), e(B)) �= ∅.

Definition 3 (trace) The trace of a program execution is the sequence of the fonctions it went
through. Given the following program :
program S

do i = 1, 7
if condition(i) then call A
else call B

A trace of S would be a word of the regular expression (S(A|B))7S.

3

Definition 4 (cache miss) Given a trace T = Fi1Fi2 . . . FiT . Let t ∈ {1, . . . , T}, there is a
cache-miss at time t, if and only if there is a cold miss or a conflict miss. It is a cold miss
whenever it is the first occurence of Fit in T , i.e. at the first invocation of Fit . A conflict miss
is when between times t′ < t, where t′ is the largest time such that Fit′ = Fit , there is a time t′′

with t′ < t′′ < t such that col(Fit , Fit′′) is true, i.e. Fit′′ has evicted Fit from the cache. We set
M̂iss(t) to 1 in case of a cache miss, and to 0 otherwise.

Definition 5 (allocation cost) The allocation cost for a trace T = Fi1Fi2 . . . FiT is M̂issT (o) =∑T
t=1 M̂iss(t).

Definition 6 (Min-Cache-Miss(T , P, k, L)) Given a trace T of a program P = Fi1Fi2 . . . Fim , k

an integer and a cache of fixed size L, find an allocation o for its procedures so that M̂issT (o) < k.

This problem is NP-complete. The complete proof is in Appendix B, but we will give the
main ideas: cache-misses can be represented by a complete graph where the nodes are the pro-
cedures of the program, and the edges are weighted by an approximation of the number of cache
conflicts between procedures (TRG in [3]). This approximation is exact on some particular con-
figurations. In such cases, if all the procedures have the size 1, the problem is similar to finding
a coloration of the nodes which minimizes the sum of the weights of edges whose nodes have the
same color (i.e. the corresponding procedures are at the same place in the cache). This problem
corresponds to the MAX-kCUT problem [2] which reduces to Graph K-Colorability when all
edges have the same weight. Hence the proof of NP-completeness uses a reduction from Graph

K-Colorability [2]: given any instance of Graph K-Colorability, i.e. given the graph G,
we construct a program S such that finding the best procedure cache-placement for S provides a
L-coloration of G.

2.2 The Min-String problem

This paragraph provides a formal definition of the memory-placement problem namely the Min-

String problem. Functions on which respective offsets have been provided by the cache-placement
phase are represented by cyclic intervals on Z/LZ. Functions have then to be “ordered” in memory.
The sum of all gaps between procedures induced by the offset constraint is the code size expansion:
we say, the cost of the obtained mapping. The goal is to minimize this cost.

Definition 7 (cost) The cost ĉ of a couple of intervals (Ii, Ij) is equal to the size of the cyclic
gap [e(Ii); o(Ij)), i.e.

ĉ(Ii, Ij) = (o(Ij) − e(Ii)) mod L

Definition 8 (string, cost of a string, length of a string) Given a set I = {I1, . . . , In} of
cyclic intervals, a string is an ordering Ii1 , . . . , Iin of I. This string is denoted by Ii1Ii2 . . . Iin .
Let S be a string Ii1 . . . Iin , its cost is Ĉ(S) =

∑
1≤k<n ĉ(Iik

, Iik+1), i.e. the total size of the cyclic
gaps between the intervals of the string. The length of S is l(S) = Ĉ(S) +

∑
1≤k≤n l(Iik

), i.e. the
total length of the intervals and gaps of the string.

Definition 9 (Min-String) Let I = {I1, . . . , In} be a set of cyclic intervals of Z/LZ.
Find a string of I such that its cost is minimized.

3 Cache-placement phase sensitive to code size expansion

In this article, we do not address the problem of minimizing cache misses. Instead we aim at
modifying the algorithm of Gloy and Smith [3] to take into account code size expansion. Hence,
we work on the TRG graph and consider it like if it were an exact representation of the final cache
miss cost. Formally, the TRG is a non complete graph where each vertex is labeled by a procedure.
Edges are weighted with positive costs: the weight of an edge M̂iss(P, Q) is an approximation of

4

the conflict miss cost we would pay if procedures P and Q share a common place in the cache.
A cache-placement o associates to each vertex P a cyclic interval Io(P) of size l(P). The conflict
miss cost of a cache-placement can be defined as follow:

Definition 10 (conflict miss cost) Let G = (V, E) be a TRG graph, o a cache-placement. Then
the cost of o is

M̂issTRG(o) =
∑

(P,Q)∈E, Io(P)
⋂ Io(Q) �=∅

M̂iss(P, Q)

The problem addressed by Gloy and Smith is to find an allocation o that minimizes M̂issTRG(o).
This problem, namely the SHIP-BUILDING problem is still NP-complete. Their solution is
a greedy algorithm that merges agregates of vertices into larger agregates where the relative
placement within an agregate is fixed by the merge. All L possibilities to merge two agregates
together are compared using a cost for this agregate cache-placement. One of our goal will be to
modify this cost to take into account the code size expansion. The pseudo-code for the heuristic
of Gloy and Smith is given in algorithm 1.

Algorithm 1
GloySmith cache placement(G)
{G is a weighted TRG graph}
let G′ = (V ′, E′) with [{P} ∈ V ′ ⇔ P ∈ V] and [({P}, {Q}) ∈ E′ ⇔ (P, Q) ∈ E]
forall {P} ∈ V ′

o(P) = 0
forall e = ({P}, {Q}) ∈ E′

w(e) = M̂iss(P, Q)
while cardV ′ > 1

let (A, B) ∈ E′ s.t. w(A,B) = maxe∈E′ w(e)
let A = {A1, . . . , Ap} and B = {B1, . . . , Bq}
forall λ ∈ [0, L)

Ĉλ(A, B) = M̂issλ(A, B) =
∑

(Ai,Bj)∈A×B s.t. Io(Ai)
⋂ Io(Bj) �=∅ M̂iss(Ai, Bj)

let λmin s.t. Ĉλmin(A, B) = minλ∈[0,L) Ĉλ(A, B)
forall Bi ∈ B

o(Bi) = (o(Bi) + λmin) mod L
merge A and B in G′ with

forall C ∈ V ′

w(A
⋃

B, C) = w(A, C) + w(B,C)
return o

In this section we present our modifications to the cache-placement phase. The objective is to
find a trade-off between cache conflict reduction and code size expansion. In order to account for
code size expansion, we modify the cost of a merge Ĉλ of the GloySmith cache placement

algorithm. For this we define two metrics, the running time expansion cost Êxptime and the code
size expansion cost Êxpsize. We will first give definitions for the new cost metrics and then we
will present our method for estimating the Êxpsize metric.

3.1 Cost of a merge, running time and code size expansion costs

We define our new cost metric for a merge as

Definition 11 (cost of a merge) Let G = (V, E) be a TRG graph and G′ = (V ′, E′) the merged
graph before the current merge. Let (A, B) ∈ E′ the edge considered for the merge. We suppose
o(A) = 0, and we define Ĉλ(A, B) the cost of the merge where o(B) = λ as

Ĉλ(A, B) = αÊxptimeλ
(A, B) + (1 − α)Êxpsizeλ

(A, B)

where Êxptimeλ
(A, B) is the estimated running time expansion cost and Êxpsizeλ

(A, B) is the
estimated code size expansion cost for the merge of A and B.

5

The α value is a real parameter in [0, 1] to control the trade-off between running time and code
size expansion. Note that for α = 1 the cache-placement phase will give the same placement as
the original cache-placement algorithm 1. With α = 0 only code size expansion is minimized and
in this case all temporal information is lost, giving a solution similar to the Pettis and Hansen
“closest is best” solution .

We define the running time expansion cost for a merge as

Êxptimeλ
(A, B) =

M̂issλ(A, B) × Timemiss + Timemin

Timemin

where Timemin is an estimation of the minimal running time for any placement, M̂issλ(A, B) is
the cost of the placement defined in algorithm 1 and Timemiss is the running time cost of a single
miss. The Timemin value is constant for a given trace and is estimated in our implementation as
the number of cycles of the input trace with a perfect cache that never causes conflict miss. Thus
the Êxptimeλ

(A, B) can be computed trivially in the merge phase.
The code size expansion cost is estimated as

Êxpsizeλ
(A, B) =

Ŝizeλ(A, B)

Ŝizemin(A, B)

where Ŝizemin(A, B) is the minimal memory-placement size for any cache-placement and Ŝizeλ(A, B)
is an estimation of the memory-placement size for a cache-placement o that verifies o(A) = 0 and
o(B) = λ. The Ŝizemin(A, B) is estimated as the sum of the size of the procedures to be merged,
thus Ŝizemin(A, B) =

∑
Pi∈A

⋃
B l(Pi). It is the final size of the memory-placement with no cache-

placement constraint. The Ŝizeλ(A, B) is explained in next section. An implementation could use
the solution to the Min-String problem that we give in this paper, however, while our solution
is nearly linear in the number of functions for a constant cache size L, it is too costly for the
cache-placement algorithm as it has to be run for each λ value at each merge thus Ln times.

Our solution provides a fast estimation of the memory-placement cost given a cache-placement.

3.2 Estimating the memory-placement cost

To estimate Ŝizeλ(A, B) we compute an estimation of the cost of the memory-placement of A
⋃

B

given a cache-placement o. We will call our estimation Ŝizeo.
We first introduce the interval histogram as

Definition 12 (histogram) Let o be the cache-placement for a set of procedures {P1, . . . , Pn}.
Let I = {I1, . . . , In} be the set of cyclic intervals such that Ii = Io(Pi). We define the histogram
for o as the function

∀h ∈ {0, . . . , L − 1},Ho(h) =
∑
Ii∈I

(1 if h ∈ Ii, 0 otherwise)

The histogram gives for each cache location the number of distinct intervals that are mapped
to this location, i.e. the number of procedures that will share this location in the cache. We
define Hmaxo the value such that Hmaxo = maxh∈{0,...,L−1}Ho(h), i.e. the largest number of
procedures that will share the same location in the cache. As we have at least one location in the
cache where Hmaxo procedures must be placed, we need at least Hmaxo−1 cache size in memory
to hold the procedures. Thus for all valid memory-placement string So we have

l(So) ≥ (Hmaxo − 1)L

In case Hmaxo = 1 and there are only few intervals, this metric is clearly too optimistic. In
that case, l(So) is tightly bounded by the size of the smallest cyclic interval Icover that verifies
∀Ii ∈ I, Ii ⊂ Icover. In the more general case our approximation can be refined to

l(So) ≥ (Hmaxo − 1)L + Hcovero

6

where Hcovero is defined as

Definition 13 (minimum cover) Let Ho be the histogram for a placement o, we define a min-
imum cover interval as a cyclic interval Icover of minimum length Hcovero = l(Icover) with
∀h s.t. Ho(h) = Hmaxo, h ∈ Icover.

Thus, for instance, in the case where the α parameter of our merge cost metric is 0, i.e. the
procedure placement is biased toward code size reduction, at each merge step the Ŝizeo value will
be minimal for a placement that inserts no gap. Thus the final cache-placement will be such that
an optimal memory-placement will give no size expansion.

4 Optimal solution to the memory-placement problem

This part is devoted to the description of our solution to the memory-placement phase namely
the String-Merge algorithm. Proofs and details are provided in Appendix A. Section 4.1 intro-
duces notations and exposes the relationship between our Min-String problem, the NP-complete
Hamiltonian-Path problem and the polynomial Min-Matching problem. Section 4.2 presents
our algorithm which uses the solution to a particular Hamiltonian-Circuit problem that itself
uses the solution to a particular Min-Matching problem.

4.1 Cyclic intervals, string, cycle and matching

In this part and in the following we consider the set of cyclic intervals denoted by I = {I1, I2, . . . , In}.
ĉ is the cost defined on page 4.

4.1.1 String, path and cycle

Let us consider the complete weighted and oriented graph GI = (V, V 2) with n vertices la-
beled by I1, . . . , In. Each vertex (Ii, Ij) is weighted by ĉ(Ii, Ij). Then, the minimum string
is an Hamiltonian path of minimum weight. We say minimum string because usually on the
Hamiltonian path problem extremums Ii1 and Iin are fixed. By adding a vertex I0 to GI
with a zero weight on all edges coming from and going to this vertex, Min-String(I) relies
on MIN-HAMILTONIAN-CIRCUIT(GI

⋃
{I0}) [6]. Like this our problem seems to be NP-

complete. An issue is toward the metric properties of our graph: there exists approximation
results on the metric version of the traveling salesman problem with triangular inequality. But
this version is still APX-complete and in our case the metric is cyclic and the triangular inequality
property is not checked everywhere. Hence, as far as we know, till now there are no known results
for our optimization problem, and it looks like a difficult problem.

Fortunately, our cyclic-metric version of the traveling salesman problem is polynomial:

Definition 14 (cycle, Hamiltonian circuit, cost of a circuit) let I = {I1, . . . , In} be a set
of cyclic intervals. Let I′ = {Ii1 , Ii2 , . . . , Iim} be a subset of I, and Ii1 , Ii2 , . . . , Iim an ordering of
this subset. Then, �(Ii1 , Ii2 , . . . , Iim) is a cycle of I. Notice that �(Iik

, Iik+1 , . . . , Iim , Ii1 , . . . , Iik−1)
would also denote the same cycle. If m = n then it is said to be an Hamiltonian circuit. The cost
of a circuit is Ĉ(�(Ii1 , . . . , Iin)) = ĉ(Ii1 , Ii2) + · · ·+ ĉ(Iin−1 , Iin) + ĉ(Iin , Ii1). Notice that it is the
cost of the string Ĉ(Ii1 . . . Iin) plus the cost of the “closing gap” ĉ(Iin , Ii1).

The following definition states the cyclic-metric minimum Hamiltonian cycle problem:

Definition 15 CMetric-MH-Circuit Let I be a set of cyclic intervals, GI the corresponding
cyclic-metric weighted complete graph. Find the Hamiltonian cycle of minimum weight. In other
words find an ordering (i1, . . . , in) such that Ĉ(�(Ii1 , . . . , Iin)) is minimized.

Because GI
⋃
{I0} as defined above is not a cyclic-metric graph, CMetric-MH-Circuit is not

strictly equivalent to our Min-String problem. But, a first approach shows at most a coefficient
of L2 between those two problems: we consider all L2 possible dummy intervals of Z/LZ say Ig,
evaluate the L2 strings CMetric-MH-Circuit(GI

⋃
{Ig}); Min-String(I) is the minimal one.

7

I1

I2

I3

I5

0
13

8

9
3

1
3

1

7

2
9

3

11

5

13

5
1

13
9

5

7

3

11

I4

7

12

I4

I1

I2

I3

I5

I4

I1

I2

I3

I5

I0

(a) (b) (c)

Figure 3: (a) The weighted oriented complete graph GI corresponding to the example of Figure 2;
(b) (I1, I2, I4, I5, I3) is a minimum Hamiltonian cycle for this graph ; (c) (I1, I2, I4, I5, I0, I3) is a
minimum Hamiltonian cycle for GI

⋃
{I0} so I3I1I2I4I5 is a minimum string for I.

4.1.2 Matching

Consider GI and split each vertex Ii into two vertices e(Ii) and o(Ii); join each e(Ii) to each o(Ij)
with an edge of weight ĉ(Ii, Ij). This is the corresponding split complete bipartite graph of GI ,
say BGI . To an Hamiltonian circuit of GI corresponds a perfect matching of BGI . On the other
hand, the set of edge of a perfect matching of BGI does not provide a unique cycle in GI , but
more generally a set of disjoint cycles.

e(I1)

e(I3)

e(I4)

e(I2)

e(I5)

o(I1)

o(I5)

o(I4)

o(I3)

o(I2)

I4

I1

I2

I3

I5

(a) (b)

Figure 4: (a) A solution to the Min-Matching problem for the example of Figure 3; (b) This
solution does not provide an Hamiltonian circuit, but several disjoint cycles instead.

Definition 16 (Matching, cost of a matching) Let BG = (V, U, V × U) be a weighted bipar-
tite complete graph with weights ĉ(v, u) ≥ 0. A matching is a bijective assignment σ which connects
every v ∈ V to one σ(v) ∈ U . The cost of a matching is Ĉ(σ) =

∑
v∈V ĉ(v, σ(v)).

The weighted matching problem of a bipartite graph is a known polynomial problem that can
be solved in O(n3) using the Hungarian method [6]:

Definition 17 (Min-Matching) Let BG = (V, U, V ×U) be a weighted bipartite complete graph
with weights ĉ(v, u) ≥ 0. Find a matching σ of minimum cost.

The restriction of the matching problem to BGI can be stated as follow: find a bijective as-
signment σ which connects every Ii to one σ(Ii) such that the cost Ĉ(σ) =

∑n
i=1 ĉ(Ii, σ(Ii)) is

minimized.

8

In the general case, a solution to the Min-Matching problem does not provide a solution
to the Min-Hamiltonian-Circuit problem. But in our particular case, from a solution to
Min-Matching(I), it is possible to merge the obtained disjoint cycles into a unique cycle that
would be solution to CMetric-MH-Circuit.

4.1.3 From Min-Matching to Min-String

To summarize, to a set of n cache-placed procedures represented by the cyclic intervals I =
{I1, . . . , In}, our code expansion minimization problem relies on Min-String(I). In the general
case, Min-String is NP-complete slightly similar to the traveling salesman problem. An Hamil-
tonian circuit in an oriented graph, provides a perfect matching. In the general case, the minimum
perfect matching problem which is polynomial is not very useful to solve the minimum Hamilto-
nian circuit problem. Our problem is slightly different in the way that our initial graph has the
particular property that we call cyclic-metric. Under these conditions, Min-Matching can be
solved in O(n log∗(L)); then the obtained disjoint cycles can be merged into a minimum Hamilto-
nian circuit solution of CMetric-MH-Circuit in O(n log∗(n)); finally, solving Min-String can
be done by solving CMetric-MH-Circuit on different sets of intervals I

⋃
{Ig} where Ig takes

all L2 possible cyclic interval values Z/LZ. This provides an algorithm in O(nL2 log∗(L+n). Note
that only 2L intervals have to be considered which reduces the complexity to O(nL log∗(L + n)).

4.2 The String-Merge algorithm

This section presents our solution to the Min-String problem: the Matching-Greedy algo-
rithm given in Paragraph 4.2.1 solves the Min-Matching problem in O(n log∗(L)); then, Para-
graph 4.2.2 describes the Cycle-Merge algorithm that merges the obtained disjoint cycles into a
minimum Hamiltonian circuit in O(n log∗(n)); finally, our String-Merge algorithm that solves
the Min-String problem in O(nL log∗(L + n)) is given in Paragraph 4.2.3.

4.2.1 Optimal matching with Matching-Greedy

Following is the formal definition of the Matching-Greedy algorithm.

Definition 18 (Matching-Greedy)
Let π be a permutation of {1, 2, . . . , n}.
Matching-Greedy(π)

not taken = {I1, . . . , In}
do i=1,n

let Ik ∈ not taken such that
ĉε(Iπ(i), Ik) minimum

not taken = not taken - {Ik}
σ(Iπ(i)) = Ik

return σ
This greedy algorithm returns a matching where the couples are determined in the order of the
permutation π. The order corresponding to the permutation π is <π such that Iπ(1) <π Iπ(2) <π

· · · <π Iπ(n). Assignments are made following the rule “the nearest, the best”2.

This algorithm provides an optimal solution to the Min-Matching problem. The proof is given
in Appendix A. The complexity of this algorithm corresponds to n iterations of finding a minimum
over n elements. Naively, it would cost O(n log(n)). In fact, the elements are bounded by 0 and L
and the complexity can be reduced to O(n log∗(L)) thanks to the implementation in algorithm 2.
In the following pseudo-code, DSF is for Disjoint-Sets-Forest and RDL is for Ranked-Disjoint-Lists
ie an array of lists. The procedures used in these pseudo-code are described in Appendix C.

2ĉε provides a deterministic algorithm: if there is more than one possibility, the bigger interval (in terms of
length) is chosen. If there is still more than one interval, the one with the smallest index is chosen.

9

Implementation and complexity of Matching-Greedy

Algorithm 2
procedure Matching-Greedy(I, σ)

Λo←DSF-New(L)
Build-Nearest-Origins-DSF(I, Λo)
Lo←Array-New(L)
Build-Interval-Origins-RDL(I,Lo)
foreach i←(1, . . . , n) do

λo←DSF-Root(Λo, e(I[i]))
j←RDL-Pop(Lo, λo)
σ[i]←j
if RDL-Is-Empty(Lo, λo) then

k←(λo + 1) mod L
λ′

o←DSF-Root(Λo, k)
if λ′

o �= λo then
DSF-Union(Λo, λo, λ

′
o)

return

The first step of the Matching-Greedy procedure finds all interval origin locations and put
each cache location in the set of the nearest origin location. The returned disjoint set of locations Λo

give for any cache location the nearest origin location. This step is done by the Build-Nearest-

Origins-DSF procedure in O(n). The second step builds for each interval origin location the
list of interval starting at this location. This step is done by the Build-Interval-Origins-RDL

procedure in O(n). The main loop of the Matching-Greedy procedure iterates over the set of
intervals. For each interval, given the location in the cache e(Ii), the nearest list of interval origin
is returned by the procedure DSF-Root. From this list, an interval is taken and the matching is
updated. When the list of intervals at this origin is empty, the set of locations is merged with the
nearest set of locations. The number of DSF operations is the number of initial interval origin
locations bounded by min(n, L). Thus the complexity of Matching-Greedy is O(n log∗(L)).

4.2.2 Optimal circuit with Cycle-Merge

In this paragraph, we describe the simple merge and final merge processes that are used to build a
minimum Hamiltonian circuit from an optimal solution to Min-Matching. The notion of merging
uses the notion of gaps:

Definition 19 (gap) Let σ be a matching of I, then the gap [e(Ii), o(σ(Ii))) that follows the
interval Ii is denoted by (�σ.Ii) = [o((�σ.Ii)), e((�σ.Ii))) and by Gi when the notation may be
confusing. If C = �(Ii1 , . . . , Iim) is a cycle of size m, we define the set of gaps of C by the set
of m gaps {Gi1 , . . . , Gim}. Finally, the topological closure of Gi = [o(Gi)), e(Gi)) is denoted by
Gi = [o(Gi)), e(Gi)].

Definition 20 (mergeable) Let σ be a matching of I, and C = �(Ii1 , Ii1 , . . .)), C′ = �(Ij1 , Ij2 , . . .)
be two disjoint cycles of σ. C and C′ are said to be mergeable if there exists two gaps Gi and Gj

respectively from C and C′ such that Gi

⋂
Gj �= ∅.

Definition 21 (simple merge) Let σ be a matching of I, and C, C′ two mergeable cycles with
intersecting gaps Gi and Gj. The corresponding simple merge transposes the successors of Ii and
Ij, σ′ = σ ◦ τIiIj . The simple merge process is illustrated by Figure 5.
Simple-Merge(I, σ)

σ′ = σ
let C the set of cycles of σ
let G the set of gaps of σ
forall (�σ.Ii) �= (�σ.Ij) in G

let C, C′ such that Ii ∈ C, Ii ∈ C′

if C �= C′

σ′(Ii, Ij)← σ′(Ij , Ii)
return σ′

10

This algorithm merges all mergeable cycles. The implementation given in algorithm 3 has a
complexity of O(n log∗(n)).

Implementation and complexity of Simple-Merge

Algorithm 3
procedure Simple-Merge(I, σ)
C←DSF-New(n)
Build-Cycles-DSF(σ, C)
if DSF-Root-Count(C) = 1 then return 1
Λe←DSF-New(L)
Build-Nearest-Ends-DSF(I, Λe)
Le←RDL-New(n, L)
Build-Interval-Ends-RDL(I,Le)
λmax←− 1
foreach i←(0, . . . , n) do

if o(I[σ[i]]) < e(I[i]) then
λ←o(I[σ[i]])
if λ > λmax then

λmax←λ
imax←i
Cmax←DSF-Root(C, imax)

k←0, λe←DSF-Root(Λe, 0)

while k < DSF-Root-Count(Λe) do
if λmax < k then

imax←RDL-Pop(Le, k)
λmax←o(I[σ[imax]])
if λmax < k then λmax←λmax + L
Cmax←DSF-Root(C, imax)

while not RDL-Is-Empty(Le, k) then
i←RDL-Pop(Le, k)
C←DSF-Root(C, i)
if C �= Cmax then

(σ[i], σ[imax])←(σ[imax], σ[i])
Cmax←DSF-Union(C, Cmax, C)
if DSF-Root-Count(C) = 1 then

return 1
λ←o(I[σ[i]])
if λ < k then λ←λ + L
λmax←o(I[σ[imax]])
if λmax < k then λmax←λmax + L
if λ > λmax then

imax←i
k←k + 1, λe←DSF-Root(Λe, (λe + 1) mod L)

return DSF-Root-Count(C)

The first step of the Simple-Merge procedure builds the initial set of cycles from the input
matching in O(n). If there is only one cycle the matching is a minimal circuit and we are done.
The second step builds the list of interval ends in O(n). The third step is a loop that finds in O(n)
the largest gap that contains the location 0. This gap if it exist is the starting point for the next
step. The last step is constituted of two nested loops that perform at most n iterations. This loop
finds all gaps that intersect the current largest gap and merges the corresponding cycles. Merging
cycles is done with a DSF operation which give a complexity for the loop of O(n log∗(n)). Thus
the complexity of Simple-Merge is O(n log∗(n)).

GjGi

C
C′

Ii Ij

Simple merge

Imax

C C′ C”

Final merge, when all cycles are unmergeable

Figure 5: Simple and final merge phases of the Cycle-Merge algorithm

11

Definition 22 (final merge) Let σ be a matching of I such that there remains no mergeable
cycles. The final merge, as described by Figure 5, consists of replacing the largest interval Imax

by a gap Gmax such that Gmax = [o(Imax), e(Imax)) :
Final-Merge(I, σ)
{σ is s.t. there remains no mergeable cycle}
let Imax such that ĉ(Imax) = maxIi∈I(ĉ(Ii))
o(σ(Imax)) = e(Imax)
e(Imax) = o(Imax)
σ′ = Simple-Merge(I, σ)
return σ′

The Cycle-Merge algorithm is then a simple succession of simple merges until it converges,
followed by a final merge:

Definition 23 (Cycle-Merge)
Cycle-Merge(I, σ)
{σ is an optimal matching}
σ = Simple-Merge(I, σ)
if σ contains several disjoint cycles

σ = Final-Merge(I, σ)
return σ

Whenever there is no final merge, because the obtained circuit is also an optimal matching it
provides an optimal circuit. On the other hand, the final merge adds L to the cost of the optimal
matching: fortunately if the obtained circuit is not an optimal matching it is an optimal circuit.
Hence the Cycle-Merge algorithm provides an optimal solution to the CMetric-MH-Circuit

problem. Its complexity corresponds to the complexity of the Simple-Merge algorithm i.e.
O(n log∗(n)).

4.2.3 Optimal string with String-Merge

In this paragraph, we will show how Cycle-Merge can be used to find an optimal string. Let us
consider the set of intervals I = {I1, . . . , In} and an optimal string Sopt = Ii1Ii2 . . . Iin of length
Ĉ(Sopt) = koptL− l0. Then let us consider the interval Ig = [e(Iin), o(Ii1)) of length l0 that corre-
sponds to the gap between the end and the beginning of Sopt. Let us add this interval to I and con-
sider σ = Cycle-Merge(I

⋃
{Ig}) of corresponding cycle Copt = �(Ig, σ(Ig), σ(2)(Ig), . . . , σ(n)(Ig))

where σ(k) represents σ ◦ σ ◦ · · · ◦ σ composed k times. Because Copt is an optimal cycle for the
set I

⋃
{Ig}, we have Ĉ(Copt) ≤ Ĉ (�(Ig, Ii1 , . . . , Iin)). Hence,

Ĉ(σ(Ig)σ(2)(Ig) . . . σ(n)(Ig)) ≤ Ĉ(�(Ig , σ(Ig), σ(2)(Ig), . . . , σ(n)(Ig))) − l0 = Ĉ(Copt) − l0
≤ Ĉ (�(Ig , Ii1 , . . . , Iin)) − l0 = Ĉ(Ii1Ii2 . . . Iin)

In other words, σ(Ig)σ(2)(Ig) . . . σ(n)(Ig) is an optimal string. Consequently, for all set of cyclic
intervals I, there exists a cyclic interval Ig such that for σ = Cycle-Merge(I

⋃
{Ig}), the string

σ(Ig)σ(2)(Ig) . . . σ(n)(Ig) is optimal.

Definition 24 (String-Merge)
String-Merge(I)

let Λe = {e(Ii)}Ii∈I the set of interval end locations
let Λo = {o(Ii)}Ii∈I the set of interval origin locations
let G = {[λe, λo)}(λe,λo)∈(Λe,Λo) the set of possible gaps
forall Ig ∈ G

σ = Cycle-Merge(I⋃{Ig})
S = σ(Ig)σ

(2)(Ig) . . . σ(n)(Ig)

if Ĉ(S) < Ĉ(Sopt) then
Sopt = S

return Sopt

12

A straightline implementation would test all |G| = |Λe|.|Λo| ≤ L2 possible Ig intervals and
select among all the shortest string. Fortunately, at most Λe + Λo <= 2L intervals have to be
tested, and the algorithm 4 runs in O(L) calls to the Cycle-Merge procedure.

Algorithm 4
procedure String-Merge(I)

σ←Cycle-Merge(I)
istart←Max-Gap(I, σ)
Sopt←σ(Istart)σ

2(Istart) . . . σn−1(Istart)Istart

Gopt←[e(I[istart]), o(I[σ(istart)])[

Ĉopt←Ĉ(σ)
Build-Nearest-Origins-DSF(I, Λo)
Build-Nearest-Ends-DSF(I, Λe)
λe←DSF-Root(Λe, 0)
λo←DSF-Root(Λo, λe)
i←0
while i < DSF-Root-Count(Λe) do

inci←0, incj←0
Ig←[λe, λo[
if ĉ(Ig) ≤ ĉ(Gopt) then

incj←1
else
I′←I⋃

Ig

σ′←Cycle-Merge(I′)
if Ĉ(σ′) = Ĉopt then

Sopt←σ′(Ig)σ
′(2)(Ig) . . . σ′(n)(Ig)

Gopt←Ig

incj←1
else

inci←1
if incj = 1 then

λ′
o←DSF-Root(Λo, (λo + 1) mod L)

if ĉ([λe, λ
′
o[) ≤ ĉ([λe, λo[) then

inci←1
else

λo←λ′
o

if inci = 1 then
i←i + 1
λe←DSF-Root(Λe, (λe + 1) mod L)

return Sopt

Complexity of String-Merge

The first step of the String-Merge procedure is to find from a Cycle-Merge run a first Gopt

such that Ĉ(Sopt) = Ĉ(σ)− ĉ(Gopt). The main loop iterates over the gap candidates G = [λe, λo),
for each gap candidates there are three possibilities. If ĉ(Ig) < ĉ(Gopt) then the string will not
be optimal thus we take the next λo for testing a larger gap. Otherwise, we run Cycle-Merge

and if the resulting circuit is still optimal, we’ve found a better string and we take the next λo

for testing a larger gap. Otherwise the resulting circuit is not optimal, thus we take the next
λe. The loop ends when we have exhausted all possible gap start λe. The number of iterations
of the loop is bounded by |Λe| + |Λo| ≤ 2L. Thus the complexity of String-Merge is O(L)
calls to Cycle-Merge which gives a global complexity of O(nLlog∗(n + L)). Note that for our
application, where L the number of cache lines is a constant, the complexity of String-Merge

is O(nlog∗(n)) thus nearly linear in the number of functions to place.

13

5 Experimental results

In this section we compare the Pettis and Hansen procedure placement algorithm with the Gloy
and Smith algorithm and our solution. We give figures for code size expansion and cache miss
rate reduction.

These algorithms have been implemented in the commercial CMG ST200 Compiler based on the
OPEN64 compiler. The ST220, an implementation of LX [1] VLIW processor technology designed
by Hewlett-Packard and STMicroelectronics, is targeted at system on chip (SoC) solutions. These
processors have been developed primarily for compute intensive audio/video applications. Such
applications include embedded systems in consumer, digital TV and telecoms markets where there
is a specific need for high performance low cost audio/video/data processing. The ST220 is fitted
with a 32 Kbyte, direct-mapped, single-level Instruction Cache, that has a large miss penalty. On
some applications where no instruction cache optimization have been performed, more than 50%
of the cycles are spent waiting for instruction cache refills. This means that the performance of an
application can be improved significantly by applying code reordering techniques that minimize
instruction cache conflicts. Instruction cache optimizations are not properly part of the compiler,
but have been integrated in the toolchain and are accessible in a transparent way for the user
via the compiler driver. The algorithms can be directed by profiling information or by a static
estimation of the compiler. In this article, experiments were performed using execution trace. The
set of benchmarks is first run to generate the execution traces. Then the benchmarks are optimized
with the profile informations. The code size figures are computed on the optimized versions. The
miss rate figures are given after execution of the optimized programs on a cycle accurate simulator
for the ST220 processor. We focus mainly here on the behavior of the algorithm with accurate
profile information, thus the second run is done with the same data sets as the run that generated
the profile information.

We provide experimental results for the code size expansion of our procedure placement com-
pared to the Pettis and Hansen (PH) algorithm in Figure 6. The code size for PH is normalized
to 1, the three other sets are size expansion factor over PH with different values for α as defined
in Definition 11. The set labelled α = 1 gives the code size expansion when only cache miss cost
is minimized, which is the result of the original Gloy and Smith (GS) algorithm. The two other
sets are results for two different values of α.

On average the code size expansion of GS is 2.77. With a value of α = 0.999995 the code size
expansion of our algorithm is 1.08. Obviously adding code expansion in the cost estimate greatly
reduce code size. The 1.08 expansion factor compared to PH is mainly due to the fact that we
place all procedures at a line cache boundary. This insert empty space between procedures even
if our algorithm made a memory placement with no gap.

We also provide results for the cache miss rate compared to PH in Figure 7. The cache miss
rate for PH is normalized to 1, the three other sets are the results for our placement, values lower
than 1 are better.

On average the miss rate improvement of GS compared to PH is 37%. With a value of α = 0.999
our algorithm gives an improvement of 30%. With a value of α = 0.999995 our algorithm gives an
improvement of 35%. Thus with a value of α close to 1, we mostly have the performance of GS
with a minimal code size expansion.

For most of the benchmarks, PH is worse than GS and our algorithm. Some benchmarks though
have a better behavior with PH compared to GS (mkinraw, mp2audio, pcmencdec, radial33,
testmong, trilinear33). For these benchmarks, the large size expansion of GS compared to PH has
a negative impact on performance. Indeed, while GS reduce conflict-misses, code size expansion
creates more cold misses and capacity misses as the gaps between procedures cause useless code
to be fetched into the cache. Thus it is important to take code size expansion into account.

This also explain why our algorithm is also better than GS on the majority of the benchmarks
(13 over 20). Thus we take advantage of both the locality of the placement and an accurate cache
conflict metric.

For two benchmarks, mkinraw and mp2audio, our solution with α = 0.999995 is worse than
PH. Even if our size expansion is low compared to GS, we pay the same negative effect on these

14

Figure 6: Code size expansion compared to PH with different values of α

Figure 7: Miss rate compared to PH with different values of α

15

cases. For the case of mkinraw the program size is only 1.5 times the cache size and most cache
misses are cold misses. It explains that we do not improve over the PH algorithm and thus we
pay the alignment constraints we have on procedure placement. For the case of mp2audio, we
have more conflict misses than PH, this is due to the fact that the processor as an instruction
buffer which fetches a number of instructions ahead. Thus when a procedure returns, a number of
instructions after the procedure have been fetched into the cache. This behavior is modeled in our
cache-placement implementation, however we have only a static estimate of the effective number
of instruction fetched ahead and thus our conflict miss metric is not fully accurate.

6 Conclusion

The cache-placement problem as it has been described in this article is a difficult one since it is NP-
complete and not even α(n)-approximable whatever α(n) is. But there exists efficient algorithms
which give satisfactory solutions. The work we have done in this article shows how to reduce
code expansion, a major disadvantage of re-allocating the addresses of procedures in the cache-
placement stage with only cache miss metrics. First, our algorithm takes into account code size
expansion when placing the procedures in the cache-placement phase. Second, our algorithm finds
the best allocation for the memory-placement problem: the one which leaves as little empty space
as possible between procedures. The results show a code size expansion of 8% over the original
program with an improvement of miss rate of 35% over the Pettis and Hansen algorithm, very
close to the 37% improvement obtained by the Gloy and Smith algorithm. However, the code size
expansion still has a negative impact on performance on some cases. This could be reduced by
using an hybrid algorithm that first creates aggregates of functions like the Pettis and Hansen
algorithm up to the cache size and then merge the aggregates with our solution.

References

[1] Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, Giuseppe Desoli, and Fred Homewood.
Lx: a technology platform for customizable VLIW embedded processing. In The 27th Annual
International Symposium on Computer architecture 2000, pages 203–213, New York, NY, USA,
2000. ACM Press.

[2] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1991.

[3] Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-ordering informa-
tion. ACM Transactions on Programming Languages and Systems (TOPLAS), 21(5):977–1027,
1999.

[4] Amir H. Hashemi, David R. Kaeli, and Brad Calder. Efficient procedure mapping using
cache line coloring. In Proceedings of the 1997 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 171–182, 1997.

[5] John Kalamatianos and David R. Kaeli. Temporal-based procedure reordering for improved
instruction cache performance. In Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture, pages 244–253, Las Vegas, Nevada, January 31–February
4, 1998. IEEE Computer Society TCCA.

[6] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimisation, Algorithms and Complexity.
Prentice Hall, Englewood Cliffs, 1982.

[7] Karl Pettis and Robert C. Hansen. Profile guided code positioning. ACM SIGPLAN Notices,
25(6):16–27, June 1990.

16

Appendix A: optimality of the String-Merge algorithm

This part is devoted to the proofs of optimality of the String-Merge algorithm. Because our
solution to the Min-String problem uses the solution to a particular Hamiltonian-Circuit

problem that itself uses the solution to a particular Min-Matching problem, the remaining of this
part is decomposed as follow: Section 6.1 exposes our solution to the particular Min-Matching

problem; Section 6.2 exposes our solution to the particular Hamiltonian-Circuit problem based
on fusion of cycles;

6.1 Optimal matching with Matching-Greedy

The goal of this section is to show that Matching-Greedy gives an optimal solution to our
matching problem. The main ideas of the proof are roughly the following: we define a distance
between matchings; we consider a matching, obtained using the Matching-Greedy algorithm,
and consider for our distance the closest optimal matching; we show that we can modify this
optimal matchings without increasing its cost, thus keeping the optimality, such that the resulting
matching becomes strictly closest; because the distance is an interger, this proves the optimality
of our “greedy” matching.

6.1.1 Distance, pre-order and precedence-choice graph

The goal of this paragraph is to introduce preliminary notions and results useful for the proof of
theorems 1 and 2 given further. In particular, Definition 27 sets the definition of a precedence-
choice graph for a matching and Lemma 2 enlarges this definition to a precedence-choice graph
for a permutation.

Definition 25 (pre-order) A pre-order p is a non complete order. If a has a successor b, it is
written a �p b. If P = (V, E) is an oriented acyclic graph, there is a unique pre-order associated
to P : a �P b ⇐⇒ (a, b) ∈ E. To simplify, we mingle a pre-order with its given corresponding
acyclic graph.

Definition 26 (linear extension) A linear extension p of a pre-order p is an order which veri-
fies a �p b =⇒ a <p b.

Definition 27 (distance) Let π and π′ be two orderings. If π = π′ then the distance from π to
π′ is null, d(π, π) = 0. Otherwise, if π �= π′ let us decompose π and order′ into π = (UaV) and
π′ = (UWbaZ) such that a and b are intervals and U ,V ,W , and Z are strings of intervals possibly
empty. Denote by |S| = n the length of the string S = s1s2 . . . sn. Then the distance from π to π′

is |V |n + |Wb|.

Definition 28 (Precedence-choice graph) Let σ be a matching. The precedence-choice graph
Pσ = (V, E) is the following oriented graph:

• V is the set of intervals

• (a, b) ∈ E ⇐⇒ ĉε(b, σ(a)) < ĉε(b, σ(b)). In other words, if π = Pσ, considering a greedy
matching Matching-Greedy(π), (a, b) ∈ E relates the fact that a <π b is a necessarily
condition to get the couples (b, σ(b)) and (a, σ(a)) (see Figure 8).

The two following lemmas state that the precedence-choice graph of an optimal matching and
the precedence-choice graph obtained from Matching-Greedy are both acyclic.

Lemma 1 Let σ be an optimal matching, then the corresponding precedence-choice graph Pσ is
acyclic.

Lemma 2 Let π be an order and σπ = Matching-Greedy(π). Then the precedence-choice graph
Pσπ is acyclic. For simplicity we mingle the notion of precedence-choice graph of a permutation π
with the precedence-choice graph of its corresponding matching σπ

17

a b

σ(a)

σ(b)

Figure 8: The matching of a and b depends on the ordering of a and b. Here a <π b.

Proof of Lemma 1 Let us prove the lemma by contradiction: let us consider a cycle (a1, a2, . . . ak =
a1) of Pσ, then the matching σ′ where every couple (ai, σ(ai)) is replaced by (ai, σ

′(ai) = σ(ai−1))
has a strictly smaller cost than σ. This contradicts the hypothesis that σ is optimal. �

Proof of Lemma 2 To prove the lemma, we simply prove that

(a, b) ∈ E =⇒ a <π b

Indeed, by contradiction b <π a and ĉε(b, σπ(a)) < ĉε(b, σπ(b)) is absurd because Matching-

Greedy cannot allocate b to σπ(b) if σπ(a) is not yet allocated to a i.e. available. �

The following lemma provides a transformation on permutations that can be performed without
modifying its cost.

Lemma 3 Let π be a permutation and Pπ the precedence-choice graph of π. Let a and b such
that a �Pπ b. Consider the modified permutation π′ = τab ◦ π where a and b have been simply
transposed3. Then,

σπ′ = σπ ◦ τab (1)

Ĉ(π′) = Ĉ(π) (2)

Proof of Lemma 3 Let us denote U , V and W the strings of intervals (possibly empty) respec-
tively before, between and after (a, b) in π. Hence, π = (UaV bW) and π′ = (UbV aW). Let us
also denote the string σ(a1)σ(a2) . . . σ(am) by σ(a1a2 . . . am).

By applying Matching-Greedy on both permutations, we trivially obtain σπ(U) = σπ′(U),
then σπ(Ua) = σπ′(Ub), then σπ(UaV) = σπ′(UbV), σπ(UaV b) = σπ′(UbV a) and eventually
σπ(π) = σπ′(π′). Point (1) follows.

Now, let us figure out the equality (2) Ĉ(π)− Ĉ(π′) = 0. First, from ĉε(a, σπ(a)) < ĉε(a, σπ(b))
we get o(σπ(a)) ∈ [e(a), o(σπ(b))] = Gab and from ĉε(b, σπ(a)) < ĉε(b, σπ(b)) we get o(σπ(a)) ∈
[e(b), o(σπ(b))] = Gbb. Now denote by ⊥ the bottom of Gab ∪ Gbb = G⊥b i.e. e(a) if Gbb ⊂ Gab

and e(b) otherwise. Then, ∀x ∈ {e(a), e(b), o(σπ(a)), o(σπ(b)))}, x ∈ G⊥b.
Hence, for all s ∈ {a, b} and t ∈ {σπ(a), σπ(b)},

ĉ(s, t) = (o(t) −⊥) mod L
− (e(s) −⊥) mod L

(3)

Finally, from (1), we get Ĉ(π) − Ĉ(π′) = ĉ(a, σπ(a)) + ĉ(b, σπ(b)) − ĉ(a, σπ(b)) − ĉ(b, σπ(a))
which simplifies to 0 thanks to equation (3). �

3τab is the permutation that transposes a and b. ◦ is the composition operator, g ◦ f(x) = g(f(x)).

18

6.1.2 Optimality of Matching-Greedy

Theorems given in this section show a bijection between the set of precedence-choice graph for
all permutations and the set of all optimal matching. In particular it states the optimality of the
Matching-Greedy algorithm.

Theorem 1 For each ordering π, then σ = Matching-Greedy(π) is an optimal matching.

The following lemma is necessary for the proof of Theorem 1. It states that each matching
obtained from the Matching-Greedy algorithm is characterized by its precedence-choice graph
.

Theorem 2 Let σ be an optimal matching, pσ its corresponding precedence-choice graph pre-order.
Then, for each linear extension pσ of pσ, Matching-Greedy(pσ) = σ.

Lemma 4 Let π be a permutation, and σπ = Matching-Greedy(π). Let p be the pre-order
corresponding to the precedence-choice graph Pσπ .

Then for each linear extension p of p, Matching-Greedy(p) = σπ.

Proof of Theorem 2 Let σ be an optimal matching, pσ = (V, E) the corresponding precedence-
choice graph pre-order, π = pσ a linear extension of pσ and σ′ = Matching-Greedy(π).

By construction, there exists no interval I such that I �pσ Iπ(1). Hence, Ik = σ(Iπ(1)) min-
imizes the value ĉε(Iπ(1), Ik) and σ(Iπ(1)) = σ′(Iπ(1)). Then, by recurrence on π, suppose that
∀i ∈ {1, 2, . . . , m − 1}, σ(Iπ(i)) = σ′(Iπ(i)). Consider, Ik = σ(Iπ(j)) such that ĉε(Iπ(m), Ik) <
ĉε(Iπ(m), σ(Iπ(m))), then by definition of pσ, Iπ(j) �pσ Iπ(m) and j < m. Hence σ(Iπ(m)) minimizes
ĉε(Iπ(m), Ik) over all the remaining intervals. In other words, σ(Iπ(m)) = σ′(Iπ(m)).

Eventually, σ = σ′. �

Proof of Lemma 4 By contradiction: so let σ′ = Matching-Greedy(p) with p a linear
extension of p and let us suppose that ∃a | σ(a) �= σ′(a). We take a as small as possible for p.
Then, from the definition of ĉε, ĉε(a, σ(a)) �= ĉε(a, σ′(a)).

If ĉε(a, σ′(a)) > ĉε(a, σ(a)) then it means that there exists b such that σ′(b) = σ(a), and b <p a.
As σ(b) �= σ(a), σ(b) �= σ′(b), which is contradictory to the fact that a was the smallest.

If ĉε(a, σ′(a)) < ĉε(a, σ(a)). As a didn’t choose σ′(a) with π, it means that there exists b such
that b <π a and σ(b) = σ′(a). Hence ĉε(a, σ(b)) < ĉε(a, σ(a)) so b �p a. But a <p b and p is not a
linear extension of p. �

Proof of Theorem 1 Let π be a permutation, σπ = Matching-Greedy(π). Consider also an
optimal coupling σopt and πopt its corresponding ordering πopt such that Matching-Greedy(πopt) =
σopt (Theorem 2). Among all possible optimal matchings, let us consider one that minimizes
d(π, πopt). Let us show by contradiction that d(π, πopt) = 0. So, suppose that π �= πopt. We can
write π = (UaV) and πopt = (UWbaZ). Consider π′

opt = (UWabZ) = τab ◦ π where a and b have
been swapped. From Lemma 3, Ĉ(πopt) = Ĉ(π′

opt), so Matching-Greedy(π′
opt) = σ′

opt is still
optimal. But, d(π, π′

opt) = d(π, πopt) − 1 which contradicts the minimality of the distance to π.
Hence, πopt = π and σ = σopt is an optimal matching. �

6.2 Optimal circuit with Cycle-Merge

The goal of this section is to prove the optimality of the algorithm Cycle-Merge. Theorem 3
states that the simple merge process does not degrade the matching. Theorem 4 states that when
no more simple merge can be performed, remaining cycles can be merged using a final merge
process that degrades the solution by an additional constant L. Theorem 5 states that whatever
ordering has been used by the Matching-Greedy algorithm it leads to the same connected
components thus to a non (simple) mergeable solution. This proves the optimality of the obtained
circuit.

19

Theorem 3 (simple merge) Let σ be a matching of I, σ′ be the matching after a simple merge.
Then Ĉ(σ′) ≤ Ĉ(σ). In particular if σ is an optimal matching then σ′ is also optimal.

Proof of Theorem 3 Because Gi

⋂
Gj �= ∅ either e(Ii) ⊂ Gj or e(Ij) ⊂ Gi. Suppose for

convenience that e(Ij) ∈ Gi. Then, there are three possibilities as described in Figure 9. Let us
denote by G′

i = (�σ′ .Ii) = [e(Ii), o(σ(Ij))) and G′
j = (�σ′ .Ij) = [e(Ij), o(σ(Ii))). The reader can

easily check that for each cases, ĉ(G′
i) + ĉ(G′

j) ≤ ĉ(Gi) + ĉ(Gj) which proves the theorem. �

G′
i

G′
j

(a) (b) (c)

e(Ii)

e(Ij)
Gi

Gj Gj

Gi

Gi

GjSimple merge Simple merge Simple merge

G′
i

G′
j

G′
i

G′
j

Figure 9: Three different schemes when Gi = [[e(Ii), o(σ(Ii))] and Gj = [[e(Ij), o(σ(Ij))] intersect.
In cases (a) and (b), ĉ(G′

i)+ ĉ(G′
j) = ĉ(Gi)+ ĉ(Gj); in case (c), ĉ(G′

i)+ ĉ(G′
j) = ĉ(Gi)+ ĉ(Gj)−L.

Theorem 4 (final merge) Let σ be a matching of I such that there remains no mergeable cycles.
Let Imax be the largest interval of I: ĉ(Imax) = maxIi∈I(ĉ(Ii)).
Let C = �(Imax, σ(Imax), . . . , σ(m−1)(Imax)) with σ(m)(Imax) = Imax. Suppose m �= n i.e. there
remains other disjoint cycles. Then, all other cycle C′ of σ contains a gap included in Imax and
the final merge merges all cycles into a unique cycle of cost Ĉ(σ) + L.

Proof of Theorem 4 Let C′ = �(Ii1 , Ii2 , . . .) be a cycle of σ disjoint to C. Because C and C′

are unmergeable, all gaps from C′ are either contained in Imax or in [0, L)\Imax
. Suppose all gaps

of C′ are outside of Imax, then C′ would contain an interval that includes Imax which contradicts
its maximality. Hence, C′ contains a gap included in Imax.

The fact that, once Imax has been replaced by Gmax, the simple merge process converges to a
unique cycle is due to the two following facts:

• C now contains a large gap Gmax that intersect at least one gap from each other cycle.

• Whenever σ is an optimal coupling, the union of the union of gaps of two cycles is equal to
the union of the gaps of the simple merged cycle of those two cycles. Hence, at each step,
all remaining disjoint cycle can be simple merged to C because the union of the gaps from
C still contains the interval Imax.

�

20

Theorem 5 Let σ be an optimal matching of I, then σ′ = Cycle-Merge(I, σ) is an optimal
Hamiltonian circuit.

Proof of Theorem 5 The case where no final merge has been performed is straightforward:
every circuit is a particular matching so our obtained circuit which is an optimal matching is
also an optimal circuit. The hard point is when a final merge has been performed. The idea is
to prove that in that case all optimal matching necessarily contains several disjoint cycles. The
consequence is that there exists no Hamiltonian circuit of cost Ĉ(σ). Then because the cost of a
matching is a multiple of L, Ĉ(σ′) = Ĉ(σ) + L is minimal which will proves the theorem.

Hence, let us consider that σ contains at least two disjoint cycles say C and C′ and prove
that for all optimal matching σopt we have [∀I ∈ C, σopt(I) �∈ C′]. A nice consequence is that all
optimal matching have the same connected components. To prove this, let us consider I ∈ C and
σopt. Because C and C′ are not mergeable, there exists I ′ ∈ C′ such that e(I) ∈ I ′. Now consider
the set of intervals from I\C′ that ends (respectively begins) in I ′: Ie = {J ∈ I\C′ , e(J) ∈ I ′}
(resp. Io = {J ∈ I\C′ , o(J) ∈ I ′}). Because C′ is not mergeable with I\C′ , all gaps that begin
in I ′ end in I ′ and σ(Ie) = Io. So, cardIe = cardIo. Now to conclude, remind Theorem 2
that states that all optimal matching is a “greedy” matching, and clearly in a greedy process
σopt(Ie) = Io. In particular σopt(I) ∈ I\C′ . �

21

Appendix B: NP-completeness of the cache-placement prob-

lem

The goal of this appendix is to prove Theorem 6.

Theorem 6 Min-Cache-Miss is NP-complete.

Proof of Theorem 6

1. The problem is in NP : given a solution, the number of cache misses is calculated in O(T)
with T the size of the trace.

2. The reduction is from Graph K-Colorability [2].

Hence, let us consider a graph G = (V, E) with V = {x1, x2, . . . xn}.
Also, let G′ = (V

⋃
{p}, E

⋃
(
⋃n

i=1{v, xi})).

x2

x1

x5
x4

x3
x6

p

Figure 10: A example of graph G and the corresponding graph G′

Now, let P be the following program :
Program P

do i = 1, n− 1
do j = i + 1, n

if (xi, xj) ∈ E then
do tmp = 1, cardE + 2
call Xi

call Xj

Where X1, · · · , Xn are n functions of size l(P). Let us take l(P) = 1 for convenience.
The trace of P (unique in this case) is

T = P
∏

(xi,xj)∈E

(XiPXjP)cardE+2

Also, G′ is k-colorable if and only if G is (k − 1)-colorable.
Finally, because the Min-Cache-Missinstance for P is linear with cardE (no exponential

growth...), Lemma 5 proves the theorem. �

Lemma 5 G′ is k-colorable if and only if the minimum number of cache misses for P with a
cache of size k is less than 2cardE.

22

Proof of Lemma 5
First, we prove that if G′ is k-colorable then we can build an allocation o of cost ĉ(o) less than

2cardE.
Let c : V → {0, . . . , k − 1} be a coloration of G′. Our allocation is a direct mapping of the

coloration: o(P) = c(p) and for each i, o(Xi) = c(xi).
Now,

• because p is connected to every vertex, no other procedure than P has the 0 offset, so there
is no cache miss with P ,

• because two neighbor vertices have a different color, there is also no cache misses in the do
loop indexed by tmp.

Hence, the only possible cache misses are when there is a transition of edge in the program. For
each transition point, the maximum number of cache misses is two: when the two newer procedures
are not loaded.

Consequently, there is less than 2cardE cache misses.

Secondly, we prove by contradiction that if the minimum allocation cost is less than 2cardE
then G′ is k-colorable. So suppose that G′ is not k-colorable. Let o be an optimal allocation
of cost M̂issT (o) ≤ 2cardE. Let c : v → o(P); xi → o(Xi). Then there exists (xi, xj) ∈ E so
that c(xi) = c(xj). Then o(Xi) = o(Xj): it means that the trace (XiPXjP)cardE+2 will create
2(cardE + 2) − 2 conflict-cache misses , which is greater than 2cardE. �

23

Appendix C: Algorithmic support

Algorithm 5
procedure Build-Interval-Origins-RDL(I,L)

foreach i←(1, . . . , n) do
λo←o(I[i])
RDL-Insert(L, λo, i)

return

Algorithm 6
procedure Build-Interval-Ends-RDL(I,L)

foreach i←(1, . . . , n) do
λe←e(I[i])
RDL-Insert(L, λe, i)

return

Algorithm 7
procedure Build-Nearest-Origins-DSF(I, Λ)

foreach i←(1, . . . , n) do
λ←o(I[i])
DSF-Insert(Λ, λ)

λn←λ
k←(λn − 1) mod L
while k �= λn do

if not DSF-Contains(Λ, k) then
DSF-Insert(Λ, k)
λ←DSF-Union(Λ, λ, k)

else
λ←k

k←(k − 1) mod L
return

Algorithm 8
procedure Build-Cycles-DSF(σ, C)

foreach i←(1, . . . , n) do
if not DSF-Contains(C, i) then

DSF-Insert(C, i)
C←i
j←σ[i]
while not DSF-Contains(C, j) then

DSF-Insert(C, j)
C←DSF-Union(C, C, j)
j←σ[j]

return

Algorithm 9
procedure Final-Merge(I, σ)

ĉmax←− 1
for i←(0, . . . , n) then

if ĉ(I[i]) > ĉmax then
ĉmax←ĉ(I[i])
imax←i

I′←I
I′[imax]←[o(I[imax]), o(I[imax])[
Simple-Merge(I′, σ)

24

Algorithm 10
procedure Cycle-Merge(I)

σ←Array-New(n)
Matching-Greedy(I, σ)
Ncycles←Simple-Merge(I, σ)
if Ncycles > 1 then

Final-Merge(I, σ)
return σ

25

	1 Introduction
	2 Statement of the problems
	2.1 The Min-Cache-Miss problem
	2.2 The Min-String problem

	3 Cache-placement phase sensitive to code size expansion
	3.1 Cost of a merge, running time and code size expansion costs
	3.2 Estimating the memory-placement cost

	4 Optimal solution to the memory-placement problem
	4.1 Cyclic intervals, string, cycle and matching
	4.1.1 String, path and cycle
	4.1.2 Matching
	4.1.3 From Min-Matching to Min-String

	4.2 The String-Merge algorithm
	4.2.1 Optimal matching with Matching-Greedy
	4.2.2 Optimal circuit with Cycle-Merge
	4.2.3 Optimal string with String-Merge

	5 Experimental results
	6 Conclusion
	6.1 Optimal matching with Matching-Greedy
	6.1.1 Distance, pre-order and precedence-choice graph
	6.1.2 Optimality of Matching-Greedy

	6.2 Optimal circuit with Cycle-Merge

