Alain Darte

Fr Ed Eric Vivien

Alain Darte Fr

Ed Eric Vivien

On the optimality of Allen and Kennedy's algorithm for parallelism extraction in nested loops

Keywords: nested loops, automatic parallelization, dependence analysis, Allen and Kennedy's algorithm nids de boucles, parall elisation automatique, analyse de d ependance, algorithme d

We explore the link between dependence abstractions and maximal parallelism extraction in nested loops. Our goal is to nd, for each dependence abstraction, the minimal transformations needed for maximal parallelism extraction. The result of this paper is that Allen and Kennedy's algorithm is optimal when dependences are approximated by dependence levels. This means that even the most sophisticated algorithm cannot detect more parallelism than found by Allen and Kennedy's algorithm, as long as dependence level is the only information available. In other words, loop distribution is su cient for detecting maximal parallelism in dependence graphs with levels.

Introduction

Many automatic loop parallelization techniques have been introduced over the last 25 years, starting from the early work of Karp, Miller and Winograd KMW67] in 1967 who studied the structure of computations in repetitive codes called systems of uniform recurrence equations. This work de ned the foundation of today's loop compilation techniques. It has been widely exploited and extended in the systolic array community (among others Mol82, Qui84, Rao85, R o y88, DV94] a r e directly related to it), as well as in the compiler-parallelizer community: Lamport Lam74] proposed a parallel scheme -the hyperplane method -in 1974, then several loop transformations were introduced (loop distribution/fusion, loop skewing, loop reversal, loop interchange, : : :) for vectorizing computations, maximizing parallelism, maximizing locality and/or minimizing synchronizations. These techniques have been used as basic tools for optimizing algorithms, the most two famous being certainly Allen and Kennedy's algorithm AK82, AK87], designed at Rice in the Fortran D compiler, and Wolf and Lam's algorithm WL91], designed at Stanford in the SUIF compiler.

At the same time, dependence analysis has been developed so as to provide su cient information for checking the legality of these loop transformations, in the sense that they do not change the nal result of the program. Di erent abstractions of dependences have been de ned (dependence distance Mur71], dependence level AK82, AK87], dependence direction vector Wol82, Wol89], dependence polyhedron/cone IT87], : : :), and more and more accurate tests for dependence analysis have been designed (Banerjee's tests Ban88], I test KKP90, PKK91], test GKT91], test LYZ89, Gru90], PIP test Fea91], PIPS test IJT91], Omega test Pug92], : : :).

In general, dependence abstractions and dependence tests have been introduced with some particular loop transformations in mind. For example, the dependence level was designed for Allen and Kennedy's algorithm, whereas the PIP test is the main tool for Feautrier's method for array expansion Fea91] and parallelism extraction by a ne schedulings Fea92a, F ea92b]. However, very few authors have studied, in a general manner, the links between both theories, dependence analysis and loop restructurations, and have tried to answer the following two dual questions:

What is the minimal dependence abstraction needed for checking the legality of a given transformation? What is the simplest algorithm that exploits all information provided by a given dependence abstraction at best? Answering the rst question permits to adapt the dependence analysis to the parallelization algorithm, and to avoid implementing an expensive dependence test if it is not needed. This question has been deeply studied in Yang's thesis Yan93], and summarized in Yang, Ancourt and Irigoin's paper YAI95].

Conversely, answering the second question permits to adapt the parallelization algorithm to the dependence analysis, and to avoid using an expensive parallelization algorithm if one knows that a simpler one is able to nd the same degree of parallelism, and for a smaller cost. This question has been addressed by Darte and Vivien in DV95] for dependence abstractions based on a polyhedral approximation.

Completing this work, we propose, in this paper, a more precise study of the link between dependence abstractions and parallelism extraction in the particular case of dependence levels. Our main result is that, in this context, Allen and Kennedy's parallelization algorithm is optimal for parallelism extraction, which means that even the most sophisticated algorithm cannot detect more parallel loops than Allen and Kennedy's algorithm does, as long as dependence level is the only information available. In other words, loop distribution is su cient for detecting maximal parallelism in dependence graphs with levels. There is no need to use more complicated transformations such as loop interchange, loop skewing, or any other transformations that could be invented, because there is an intrinsic limitation in the dependence level abstraction that prevents detecting more parallelism.

The rest of the paper is organized as follows. In Section 2, we explain what we call maximal parallelism extraction for a given dependence abstraction and we recall the de nition of dependence levels. Section 3 presents Allen and Kennedy's algorithm in its simplest form -which is su cient for what we w ant t o p r o ve. The proof of our result is then subdivided into two parts. In Section 4, we build a set of loops that are equivalent to the loops to be parallelized, in the sense that they have the same dependence graph. In Appendix A, we prove that these loops contain exactly the degree of parallelism found by Allen and Kennedy's algorithm. Finally, Section 5 summarizes the paper.

Theoretical framework

We rst restrict to the case of perfectly nested loops. We will explain at the end of this paper how our optimality result can be extended to non perfectly nested loops.

Notations

The notations used in the following sections are:

f(N) = O(N) i f 9 k > 0 s u c h that f(N) kN for all su ciently large N. f(N) = (N) i f 9 k > 0 s u c h that f(N) kN for all su ciently large N. f(N) = (N) i f f(N) = O(N) a n d f(N) = (N).
If X is a nite set, jXj denotes the number of elements in X. G = (V E) denotes a directed graph with vertices V and edges E. e = (x y) denotes an edge from vertex x to vertex y. W e use the notation: x = t(e), y = h(e). I, J denote iteration vectors for nested loops. S i , S j denote statements within the loops. S i (I) denotes the instance, at iteration I, of statement S i . n is the number of nested loops. s is the number of statements within the loops.

Dependence graphs

The structure of perfectly nested loops can be captured by an ordered set of statements S 1 : : : S s (S i textually before S j if i < j) and an iteration domain D Z n that describes the values of the loops counters n is the number of nested loops. Given a statement S, t o e a c h n-dimensional vector I 2 D corresponds a particular execution (called instance) of S, denoted by S(I).

EDG, RDG and ADG Dependences (or precedence constraints) between instances of statements de ne the expanded dependence graph (EDG) also called iteration level dependence graph. The vertices of the EDG are all possible instances f(S i I) j 1 i s and I 2 D g . There is an edge from (S i I) t o (S j J) (denoted by S i (I) =) S j (J)) if executing instance S j (J) before instance S i (I) m a y c hange the result of the program. For all 1 i j s, one de nes the distance sets E i j as follows:

De nition 1 (Distance Set) E i j = f(J ; I) j S i (I) =) S j (J)g

(E i j Z n)
In general, the EDG (and the distance sets) cannot be computed at compile-time, either because some information is missing (such a s t h e v alues of size parameters or even worse, exact accesses to memory), or because generating the whole graph is too expensive.

Instead, dependences are captured through a smaller, (in general) cyclic directed graph, with s vertices, called the reduced dependence graph (RDG) (or statement level dependence graph).

Each edge e has a label w(e). This label has a di erent meaning depending upon the dependence abstraction that is used: it represents1 a set D e Z n such that:

8i j 1 i j s E i j 0 @ e=(Si Sj) D e 1 A (1)
In other words, the RDG describes, in a condensed manner, an iteration level dependence graph, called (maximal) apparent dependence graph (ADG), that is a superset of the EDG. The ADG and the EDG have the same vertices, but the ADG has more edges, de ned by: (S i I) =) (S j J) (in the ADG) , 9 e = (S i S j) (in the RDG) such that (J ; I) 2 D e : Equation 1 and De nition 1 ensure that EDG ADG.

Dependence level abstraction In Sections 3 and 4, we will focus mainly on the case of RDG labeled by one of the simplest dependence abstractions, namely the dependence level. The reader can nd a similar study for other dependence abstractions in DV95].

De nition 2

The dependence level associated t o a d e p endence distance J;I where S i (I) =) S j (J) is: 1 if J ; I = 0 . the smallest integer l, 1 l n, such that the l-th component of J ; I is non zero, otherwise.

De nition 3 We call reduced leveled d e p endence g r aph (RLDG) associated t o a l o op nest L, a directed g r aph with one vertex per statement of L, and one edge e per distance set, where e is labeled by the dependence levels associated t o a l l d e p endence distances of the distance s e t .

Actually, with De nition 3, several values may be associated to a given edge of the reduced leveled dependence graph. To simplify the rest of the paper, we transform each edge labeled by l di erent l e v els into l edges with a single level. Therefore, in the following, a reduced leveled dependence graph is a multi-graph, for which e a c h edge e is labeled by a n i n teger l(e) (a n d l(e) 2

Example 1 To better understand the links between the three concepts (EDG, RDG and ADG), let us consider a simple example, the SOR kernel:

DO i = 1 N DO j = 1 N a(i, j) = a (i, j ; 1) + a(i ; 1, j)

CONTINUE

The EDG associated to Example 1 is given in Figure 1. The length of the longest path in the EDG is equal to 2 N ; 2, i.e. (N). As there are N 2 instances in the domain, we will say that the degree of intrinsic parallelism in this EDG is 1.

Figure 1: EDG for Example 1

The RDG has only one vertex. If it is labeled with dependence levels (i.e. if it is a RLDG), it has two edges with levels 1 and 2 (see Figure 2). It corresponds to the ADG given in Figure 3, whose ADG contains a path of length N 2 . W e will say that the degree of intrinsic parallelism in the ADG is 0 as there are N 2 instances in the domain.

1

Figure 2: RLDG for Example 1 Actually, in this example, it is possible to build a set of loops -that we call the apparent loops L 0 (given below) -that have exactly the same RDG and that are purely sequential: there is indeed a path of length (N 2) in the corresponding EDG (see Figure 4). Apparent loops L 0 :

DO i = 1 N DO j = 1 N a(i, j) = 1 + a (i, j ; 1) + a (i ; 1, N)

CONTINUE

Since L and L 0 cannot be distinguished by a parallelization algorithm (they have the same RLDG) no parallelism can be detected in this example, as long as the dependence level is the only information available. The goal of this paper is to generalize this fact to arbitrary RLDGs. We consider that the only information available for extracting parallelism in a set of loops L is the RDG associated to L. A n y parallelization algorithm that transforms L into an equivalent code L t has to preserve all dependences summarized in the RDG, i.e. all dependences described in the ADG: if (S i I) =) (S j J) in the ADG then (S i I) m ust be computed before (S j J) i n t h e transformed code L t .

De nition 4 (Latency)

We de ne the latency T (L t) o f a t r ansformed c ode L t as the minimal number of clock cycles needed t o e x e cute L t if: an unbounded n u m b er of processors is available.

executing an instance of a statement requires one clock cycle.

any other operation requires zero c l o ck cycle.

Remark For example, if L t is de ned only by a set of parallel and sequential nested loops, the latency can be de ned by induction on the structure of the code as follows (\ " is the sequencing predicate, DOPAR and DOSEQ de ne parallel and sequential loops):

T (S) = 1 i f S is a simple statement. T (S 1 S s) = X 1 i s T (S i). T (DOPAR i 2 D do S(i) ENDDO) = max i2D T (S(i)). T (DOSEQ i 2 D do S(i) ENDDO) = X i2D T (S(i)).
Of course the latency de ned by De nition 4 is not equal to the real execution time. However, it permits to introduce the notion of degree o f p arallelism. The practical interest of this notion is illustrated hereafter.

Since two instances linked by an edge in the ADG cannot be computed at the same clock cycle in the transformed code L t , the latency of L t , whatever the parallelization algorithm, is larger than the length of the longest path in the ADG. Now, assume that D is the n-dimensional cube of size N. Then, we h a ve the following:

If an algorithm is able to transform the initial loops into a transformed code whose latency is O(N d), then the length of the longest dependence path in the ADG is O(N d).

Equivalently, if the ADG contains a path of length that is not O(N d), then no matter the parallelizing algorithm you use, the latency of the transformed code cannot be O(N d).

This short study permits to de ne a theoretical framework in which the optimality of parallelization algorithms, with respect to a given dependence abstraction, can be discussed. In the following de nitions, we assume that all RDG and ADG are de ned using the same dependence abstraction.

De nition 5 (degree of intrinsic parallelism of a RDG) Let G be a RDG and D be t h e n-dimensional cube o f s i z e N. L et d be the smallest non negative integer such that the length of the longest path in the ADG, de ned f r om G and D, i s O(N d). Then, we say that the degree of intrinsic parallelism in G is (n ; d) or that G contains (n ; d) degrees of parallelism.

De nition 6 (Degree of parallelism extraction for an algorithm in a RDG)

Let A be a p arallelization algorithm. Let L be a set of n nested l o ops and let G be its RDG. Apply algorithm A to G and suppose that D is the n-dimensional cube of size N when transforming the loops. Then, the degree o f p arallelism extraction for A in G is (n ; d) if d is the smallest non negative integer such that the latency of the transformed c ode is O(N d).

Note that these de nitions ensure that the degree of parallelism extraction is always smaller than the degree of intrinsic parallelism.

De nition 7 (Optimal algorithm for parallelism extraction)

An algorithm A performs maximal parallelism extraction (or is said optimal for parallelism extraction) if for each RDG G, t h e d e gree o f p arallelism extraction for A in G is equal to the degree of intrinsic parallelism in G.

With this formulation, the optimality of a parallelization algorithm A can be proved as follows. Consider a set of n perfectly nested loops L. D e n o t e b y G the RDG associated to L for the given dependence abstraction and by G a its corresponding ADG. Let (n ; d) be the degree of parallelism extraction for A in G. Then, we h a ve at least two w ays for proving the optimality o f A.

i. Build in G a a dependence path whose length is not O(N d;1). ii. Build a set of loops L 0 whose RDG is also G and whose EDG contains a dependence path whose length is not O(N d;1). Note that (ii) implies (i) since the EDG of L 0 is included in G a (L and L 0 have the same RDG).

Therefore, proving (ii) is -a priori -more powerful. In particular, it permits to understand the intrinsic limitations, for parallelism extraction, due to the dependence abstraction itself: even if the degrees of intrinsic parallelism in L and L 0 may be di erent at run-time (i.e. their EDG may b e di erent), they cannot be distinguished by the parallelization algorithm, since L and L 0 have t h e same RDG. In other words, a parallelization algorithm will parallelize L and L 0 in the same way. Therefore, since L 0 is parallelized optimally, the algorithm is considered optimal with respect to the dependence abstraction that is used. Figure 5 recalls the links between L, L 0 and their EDG, RDG and ADG. The nested loops L 0 are called apparent nested loops.

One can de ne a more precise notion of optimality. Consider one particular statement S of the initial loops L and de ne the S-latency as the minimal number of clock cycles needed to execute the transformed loops L t , w i t h u n bounded number of processors, when any operation needs zero clock cycle except the instances of S that need one clock cycle. Then, the S-latency is related to the S-length of the longest path in the ADG, where the S-length of a path P is the number of vertices in P that are instances of S. Similarly, one can de ne the S-degree of parallelism extraction in L t and the S-degree of intrinsic parallelism in a RDG. These de nitions leads to the following notion An algorithm A performs maximal parallelism extraction (or is said optimal for parallelism extraction) if for each RDG G and for all statements S of G, the S-degree o f p arallelism extraction for A in G is equal to the S-degree of intrinsic parallelism in G. This de nition permits to discuss the quality of parallelizing algorithms even for statements that do not belong to the most sequential part of the code. Note that this de nition of optimality i s m o r e precise than De nition 7 since the degree of intrinsic parallelism (resp. of parallelism extraction) in G is the minimal S-degree of intrinsic parallelism (resp. of parallelism extraction) in G.

One should argue that the latency (and the S-latency) of a transformed code is not easy to compute. Indeed, in the general case, the latency can be computed only by executing the transformed code with a xed value of N. H o wever, for most known parallelizing algorithms, the degree of parallelism extraction (but not necessarily the latency) can be computed simply by examining the structure of the transformed code, as shown by lemma 1.

Lemma 1 In addition to the hypotheses of De nition 6, assume that each statement S of the initial code L appears only once in the transformed c ode L t and is surrounded by exactly n loops. Furthermore, assume that the iteration domain D t described b y t h e s e n loops contains a n-cube D of size (N) and is contained i n a n-cube D of size O(N).

Then, the number of parallel loops that surrounds S is the S-degree o f p arallelism extraction and the minimal S-degree o f p arallelism extraction is the degree o f p arallelism extraction.

Proof Consider a given statement S of the initial code L. T o simplify the arguments of the proof, de ne L r the code obtained by r e m o ving from L t everything that does not involve the instances of S: the latency of L r is the S-latency of L t . F urthermore, L r is a set of n perfectly nested loops that surround statement S. L e t L (resp. L) be the code obtained by c hanging the loop bounds of L r so that they describe D (resp. D) instead of D t .

Since D D t D, the latency of L r is larger than the latency of L and smaller than the latency of L. F urthermore, since D and D are n-cubes, the latency is easy to compute: the latency of L is (N d) and the latency of L is O(N d), where d is the number of sequential loops that surround S. Therefore, the latency of L r is (N d) and the degree of parallelism extraction in L r (and thus the S-degree of parallelism extraction in L) i s (n ; d), i.e. the number of parallel loops that surround statement S.

Let T and T S be respectively the latency and the S-latency of L t . W e h a ve:

max S T S T X S T S
Therefore, since the number of statements S is nite, T = (N d) w h e r e d is the largest d S such that T S = (N dS): the degree of parallelism extraction in L t is the minimum S-degree of parallelism extraction. Equivalently, the degree of parallelism extraction in L t is the minimum number of perfectly nested parallel loops.

We n o w recall some graphs de nitions:

De nition 9 A strongly connected c omponent of a directed g r aph G is a maximal subgraph of G in which for any vertices p and q (p 6 = q) there i s a p ath from p to q.

De nition 10 The acyclic condensation of a graph G is the acyclic graph whose nodes are the strongly connected c omponents V 1 : : : V c of G and there i s a n e dge from V i to V j if there i s a n e dge e = (x i y j) in G such that x i 2 V i and y j 2 V j .

De nition 11 Let G be a r educed leveled d e p endence g r aph. Let H be a subgraph of G. Then l(H) (the level of H) is the minimal level of an edge of H:

l(H) = minfl(e) j e 2 Hg
Remark: not all directed graphs whose edges are labeled by v alues in 1 : : : n] f 1 g are reduced leveled dependence graphs. A necessary and su cient condition for such a graph G to be the RLDG of some nested loops is that G 1 , the subgraph of G whose edges are the edges of level 1, is acyclic. This property i s o b viously necessary and is proved to be su cient b y lemma 4. This property will be assumed in the next sections. One of the consequences is that the level of a strongly connected subgraph of G is at most n.

Allen and Kennedy's algorithm

Allen and Kennedy's algorithm has rst been designed for vectorizing loops. Then, it has been extended so as to maximize the number of parallel loops and to minimize the number of synchronizations in the transformed code. It has been shown (see details in Cal87, Z C 9 0]) that for each statement of the initial code, as many surrounding loops as possible are detected as parallel loops. Therefore, one could think that what we w ant to prove in this paper has been already proved! However, looking precisely into the details of Allen and Kennedy's proof reveals that what has actually been proved is the following: consider a statement S of the initial code and L i one of the surrounding loops. Then L i will be marked as parallel if and only if there is no dependence at level i between two instances of S. This result proves that the algorithm is optimal among all parallelization algorithms that describe, in the transformed code, the instances of S with exactly the same loops as in the initial code. This does not prove a general optimality property. In particular, this does not prove that it is not possible to detect more parallelism with more sophisticated techniques than loop distribution and loop fusion. This paper gives an answer to this question. First, we recall Allen and Kennedy's algorithm, in a very simple form, since we a r e i n terested only in detecting parallel loops and not in the minimization of synchronization points.

Allen and Kennedy(H l)

H 0 = H n f e j l(e) < l g Build H 00 the acyclic condensation of H 0 , and number its vertices V 1 : : : V c in a topological sort order.

For i = 1 to c do i. If V i is reduced to a single statement S, with no edge, then generate parallel DO loops (DOALL) in all remaining dimensions (i.e. for levels l to n) and generate code for S. ii. Otherwise, let k = l(V i). Generate parallel DO loops (DOALL) for levels from l to k ; 1, and a sequential DO loop (DOSEQ) for level k. Call Allen and Kennedy(V i k + 1). Finally, to apply Allen and Kennedy's algorithm to a reduced leveled dependence graph G, call:

Allen and Kennedy(G,1).

Example 2 For illustrating Allen and Kennedy's algorithm, we consider the following example.

DO i = 1 N DO j = 1 N a(i, j) = i b(i, j) = b (i, j ; 1) + a (i, j) c(i ; 1, j) c(i, j) = 2 b(i, j) + a (i, j) CONTINUE
The RLDG associated to the code of Example 2 is given in Figure 6. There are three statements S 1 , S 2 and S 3 in textual order. The rst call is Allen and Kennedy(G,1) that detects two strongly connected components V 1 = fS 1 g and V 2 = fS 2 S 3 g. The rst component V 1 has no edge (case (i)).

Therefore, the algorithm generates:

DOPAR i = 1 N DOPAR j = 1 N a(i, j) = i ENDDO ENDDO
The second component has level 1 edges, thus the algorithm generates:

DOSEQ i = 1 N ... (code for V 2)
ENDDO and recursively calls Allen and Kennedy(V 2 , 2). Edges of level strictly less than 2 are removed. Two strongly connected components appear V 2 1 = fS 2 g and V 2 2 = fS 3 g in this order. The level of V 2 1 is 2, therefore the algorithm generates:

DOSEQ j = 1 N ... (code for V 2 1)
ENDDO and recursively calls Allen and Kennedy(V 2 1 , 3). The algorithm reaches step (i) and generates: b(i, j) = b (i, j ; 1) + a (i, j) c(i ; 1, j) The second component V 2 2 = fS 3 g has no edge. Therefore, the generated code is:

DOPAR j = 1 N c(i, j) = 2 b(i, j) + a (i, j) ENDDO
Finally, fusing all codes leads to:

DOPAR i = 1 N DOPAR j = 1 N a(i, j) = i ENDDO ENDDO DOSEQ i = 1 N DOSEQ j = 1 N b(i, j) = b (i, j ; 1) + a (i, j) c(i ; 1, j) ENDDO DOPAR j = 1 N c(i, j) = 2 b(i, j) + a (i, j) ENDDO ENDDO
We g a ve only, on purpose, the structure of DOSEQ and DOPAR. For a correct code, synchronization points should be added and minimized.

De nition 12 Let S be a statement of G. We denote by dS the number of recursive calls needed i n Algorithm Allen and Kennedy to generate the code for statement S (case (i) in above algorithm).

In Example 2, three calls were needed for generating code for S 2 , t wo calls for S 3 and one call for S 1 . T h e S 1 -degree of parallelism is 2, the S 2 -degree of parallelism is 0 and the S 3 -degree of parallelism is 1. Although the S 2 -degree of intrinsic parallelism in the initial code of Example 2 is equal to 1, we will see that the S 2 -degree of parallelism in the RLDG of Figure 6 is 0 as found by algorithm Allen and Kennedy.

We h a ve the following lemma:

Lemma 2 Let S be a statement of G. The number of sequential DO loops generated b y A lgorithm Allen and Kennedy, that surround statement S, i s e qual to dS ; 1.

Proof Note that the chain of recursive calls ends as soon as case (i) is reached. The rst call is Allen and Kennedy(G 1). Then, for i 2, the i-th recursive call is Allen and Kennedy(H i k i), for some strongly connected subgraph H i of G, and some integer k i such that k i = l(H i) + 1 , i ; 1 l(H i) n (this can be proved by induction on i). Therefore, the algorithm stops after at most n + 1 recursive calls. Furthermore, each call generates exactly one sequential loop, except the last call that generates the code for S (and possibly some surrounding parallel loops). Therefore, the number of sequential DO loops generated for statement S is exactly dS ; 1.

Loop nest generation algorithm

In this section, we present a systematic procedure called Loop Nest Generation, that builds, from a reduced leveled dependence graph G, a perfect loop nest L 0 whose RLDG is exactly G. In Appendix A, we will prove that the Sd e g r e e o f i n trinsic parallelism in the EDG of L 0 is equal to the S-degree of parallelism extraction in G for Algorithm Allen and Kennedy, for all statements S of G, thereby p r o ving the optimality of Allen and Kennedy's algorithm for dependence level abstraction.

The construction of L 0 is based on the notion of critical edges that are built in Section 4.1. The exact formulation of Procedure Loop Nest Generation is given in Section 4.2. Finally, in Section 4.3, we show that the RLDG associated to L 0 is G, as desired.

Critical edges

In this section, we build the data structure that we need for de ning the apparent loops L 0 . The procedures given below (First Call and Recursive Calls) de ne:

A set of so called critical edges E c .

An integer .

A set of cycles (denoted by C(H) b e l o w). Actually, only E c is needed for building L 0 , and the cycles C(H) will be used only in the main proof of Appendix A.

First Call(G) i. 0.

ii. Build G 00 the acyclic condensation of G, and number its vertices V 1 : : : V c in a topological sort order.

iii. For i = 1 to c do If V i is reduced to a single vertex, with no edge, then do nothing.

Otherwise call Recursive Calls(V i).

Recursive Calls(H) i. l l(H).

ii. Select an edge f of H with level l. C a l l f the critical edge of H. E c E c f fg.

iii. Build a cycle C(H) t h a t c o n tains f, and that visits all vertices of H.

If length(C(H)) > then length(C(H)).

iv. H 0 = H n f e j l(e) lg. v. Build H 00 the acyclic condensation of H 0 , and number its vertices V 1 : : : V c in a topological sort order.

vi. For i = 1 to c do If V i is reduced to a single vertex, with no edge, then do nothing.

Otherwise recursively call Recursive Calls(V i).

As for Algorithm Allen and Kennedy, w e a r e i n terested in the number of recursive calls in Procedure Recursive Calls.

De nition 13 Let S be a statement of G. We denote by d S the number of calls to Procedure Recursive Calls that concern statement S, i.e. the number of calls Recursive Calls(H) such that S is a vertex of H. d S is called t h e depth of S.

Algorithm Allen and Kennedy and the two procedures above h a ve exactly the same structure of recursive calls: the rst call Allen and Kennedy(G,1) is equivalent to the call to First Call while subsequent calls to Algorithm Allen and Kennedy are equivalent to the calls to Recursive Calls. Proof d S = dS ; 1. Furthermore, Lemma 2 proves that dS ; 1 is exactly the number of sequential DO loops, generated by Algorithm Allen and Kennedy, that surround S. N o w, note that Algorithm Allen and Kennedy does not change the loop bound, but simply mark loops as parallel or sequential. Therefore, if D is the n-dimensional cube of size N, the iteration domain of the transformed code L t is also the n-dimensional cube of size N for each statement S. T h us, L t satis es hypotheses of Lemma 1 and n;d S is nothing but the S-degree of parallelism extraction.

Generation of apparent nested loops

Let G = (E V) be a reduced leveled dependence graph. We a s s u m e t h a t G has been built in a consistent w ay from some nested loops, i.e. we assume that G contains no cycle such that all edges have l e v el 1. Therefore, vertices can be numbered according to the topological order de ned on them by the edges whose level is 1: v i 1 ;! v j) i < j . Note that, if L is a set of loops whose RLDG is G, then the edges whose level is 1 correspond to the so called loop independent dependences and the textual order (order in which statements appear in L) c a n b e c hosen for numbering the vertices.

We denote by d the dimension of G: d = m a x fl(e) j e 2 E and l(e) < 1g, i.e. the maximal level of edges of nite level. L 0 (the apparent loops of G) will consist of d perfectly nested loops, with jV j statements, and each statement w i l l b e o f t h e f o r m a i I] = right member(i). a 1 : : : a jV j are jV j arrays of dimension d and right member(i) i s t h e r i g h t-hand side expressions for array a i that will be built to capture the jEj edges of G.

In the following, E c is the set of critical edges of G (de ned in Section 4.1) and \@" denotes the operator of expression concatenation.

Loop Nest Generation(G):

Initialization:

For i = 1 to jV j do right member(i) \1 00 First Call(G)

Computation of the statements of L 0 : For e = (v i v j) 2 E do if l(e) = 1 then right member(j) right member(j) @ \ + a i I 1 : : :

I d]"
if l(e) < 1 and e = 2 E c then right member(j) right member(j) @ \ + a i I 1 : : : I l(e);1 I l(e) ; 1 I l(e)+1 : : :

I d]"
if e 2 E c then right member(j) right member(j) @ \ + a i I 1 : : : I l(e);1 I l(e) ; 1 N : : :

N | {z } d;l(e)
]"

Code generation for L 0 :

For i = 1 to d do generate (\For I i = 1 to N do") For i = 1 to jV j do generate (\a i I 1 : : : I d] :=" @ right member(i))

Reduced leveled dependence graph associated to L 0

In this section, we show that the reduced leveled dependence graph for L 0 is exactly G.

Note that, as Procedure Recursive Calls is always called on strongly connected graphs, the edges f and the cycles C(H) can always be built.

Lemma 4 The reduced leveled d e p endence g r aph of L 0 is G.

Proof We denote by T 1 : : : T jV j the statements in L 0 and by G 0 the reduced leveled dependence graph associated to L 0 .

Note that, in L 0 , there is only one write for each index vector I 1 : : : I d] and each a r r a y a i : this write occurs in statement T i , at iteration I 1 : : : I d]: a I 1 : : : I d] = r i g h t member(i). Therefore, the dependences in L 0 that involves array a i correspond to a dependence between this unique write and some read on this array. Each reads on array a i in the right-hand side of a statement corresponds, by construction of L 0 , to one particular edge e in the graph G. Therefore, G and G 0 have the same vertices and the same edges. One just has to check that the level of all edges is the same in G and G 0 .

Consider an edge e of G, e = (v i v j). Three cases can occur:

Case l(e) = 1: remember that vertices of G have b e e n n umbered so that i < j whenever v i 1 ;! v j . Therefore, since l(e) = 1, statement T i appears textually before statement T j in L 0 . At iteration I 1 : : : I d], statement T i de nes a i I 1 : : : I d]. This value is used, in the same iteration, for de ning a j I 1 : : : I d] in statement T j . Therefore, there is an edge of level 1 from statement T i to statement T j in G 0 .

Case l(e) < 1 and e = 2 E c : at iteration I 1 : : : I d], the de nition, in statement T j , o f a j I 1 : : :]. Thus, the level of e in G 0 is l.

Case e 2 E C : in this case, the right member of statement T j references value a i I 1 : : : I l(e);1 I l(e) ;

1 N : : :

N | {z } d;l(e)
]. This reference creates a dependence from statement T i to statement T j of distance vector 0 : : : 0 | {z } l(e);1 1 I l(e)+1 ; N : : : I d ; N]. Thus there is, in G 0 , an edge of level l from T i to T j . This proves that G and G 0 have same vertices, same edges, and that the labels of all edges are the same in G and in G 0 . In other words, G = G 0 .

Example 1 The reduced leveled dependence graph of Example 1 is drawn in Figure 2. This RLDG contains one edge, e, o f l e v el 1. Thus e is selected as critical by procedure Recursive Calls. This critical edge generates a read a(i ; 1, N). When all the edges of level 1 are deleted from the RLDG, the new graph only contains a self-dependence e 0 of level 2. This self-dependence is also selected as critical and generates a read a(i, j ; 1). Thus the apparent loops generated for Example 1 are, as promised in Section 2.2, the following:

DO i = 1 N DO j = 1 N a(i, j) = a (i, j ; 1) + a(i ; 1, N) + 1 CONTINUE Example 2
The reduced leveled dependence graph of Example 2 is drawn in Figure 6. This RLDG contains one edge, e, o f l e v el 1, from S 3 to S 2 . T h us e is selected as critical by procedure Recursive Calls. This critical edge generates a read c(i ; 1, N) in the right hand side of statement S 2 . When all the edges of level 1 are deleted from the RLDG, the new graph still contains a self-dependence e 0 for S 2 of level 2. This self-dependence is also selected as critical and generates a read b(i, j ; 1). The graph obtained from the RLDG of Example 2 by deleting the edges of level 1 and 2 is acyclic. Thus all the edges which w ere not selected as critical generates simple accesses, i.e. accesses of the form a(i, j).

Thus the apparent loops generated for Example 2 are:

DO i = 1 N DO j = 1 N a(i, j) = 1
b(i, j) = 1 + b (i, j ; 1) + a (i, j) + c (i ; 1, N) c(i, j) = 1 + b (i, j) + a (i, j) CONTINUE for which the S 1 -degree, S 2 -degree, S 3 -degree of intrinsic degree of parallelism are respectively 2, 0 and 0, as promised.

The goal of Appendix A is to prove the following result:

Theorem 1 Let L be a set of loops whose RLDG is G. Use Algorithm Loop Nest Generation to generate the apparent loops L 0 . Let d S be d e n e d as in De nition 13. Then, for each strongly connected c omponent G i of G, there i s a p ath in the EDG of the apparent loops L 0 which visits, (N ds) times, each statement S in G i .

The proof is long, technical and painful. It can be omitted at rst reading. The important corollary is the following:

Corollary 1 Allen and Kennedy's algorithm is optimal for parallelism extraction in reduced leveled dependence g r aphs (optimal in the sense of De nition 8).

Proof Let G be a RLDG de ned from n perfectly nested loops L. Lemma 3 proves that n ; d S is the S-degree of parallelism extraction in G. Furthermore, Algorithm Loop Nest Generation generates a set of d perfectly nested loops L 0 , whose RLDG is exactly G (Lemma 4) and such t h a t , for each strongly connected component G i of G, there is a path in the EDG associated to L 0 , which visits, (N dS) times, each statement S in G i (Theorem 1). If d = n, the corollary is proved: the S-degree of intrinsic parallelism in the EDG of L 0 is n ; d S .

It may be possible however that d < n . In this case, in order to de ne n apparent loops L 00 instead of d apparent l o o p s L 0 , simply add (n ; d) innermost loops in L 0 and complete all array references with I d+1 : : : I n]. This does not change the RLDG since, in L 00 , there is no dependence in the innermost loops, except loop independent dependences. Actually, the (n ; d) innermost loops are parallel loops and the path de ned by Theorem 1 in the EDG of L 0 can be immediately translated into a path of same structure in the EDG of L 00 , simply by considering the n ; d last values of the iteration vectors as xed (the EDG of L 0 is the projection of the EDG of L 00 along the last (n ; d) dimensions). The result follows.

This proves that as long as the only information available is the RDG, it is not possible to detect more parallelism that found by Allen and Kennedy's algorithm. Is it possible to detect more parallelism if the structure of the code, i.e. the way loops are nested (but not the loop bounds), are given? The answer is no: it is possible to enforce L 0 to have the same nesting structure as L.

The procedure is similar to Procedure Loop Nest Generation, but with the following modi cation:

The left-hand side of statement S i is a i (I) where I is the iteration vector corresponding to the loops that surround S i in the initial code L. T h us, the dimension of the array associated to a statement is equal to the number of surrounding loops.

The right-hand side of statement S i is de ned as in Procedure Loop Nest Generation, except that iteration vectors are completed by v alues equal to N if needed.

A theorem that generalizes Theorem 1 to the non perfectly nested case can be given, with a similar proof. We d o n o t w ant t o g o i n to the details, the perfect case is painful enough. We just illustrate the non perfect case by the following example:

Example 3 Consider the following non perfectly nested loops (this code is the code called \petersen.t" given with the software Petit, see KMP + 95], obtained after scalar expansion).

DO i = 2 N s(i) = 0 DO l = 1 i ; 1 s(i) = s (i) + a (l, i) b(l) ENDDO b(i) = b (i) -s (i) ENDDO
This code has exactly the same RDG as Example 2. Furthermore, it is well known that its S 1degree, S 2 -degree, S 3 -degree of intrinsic degree of parallelism are respectively 1, 1 and 0. However, with Allen and Kennedy's algorithm, the S 1 -degree, S 2 -degree, S 3 -degree of parallelism extraction are respectively 1, 0 and 0. This is because it is not possible, with only the RDG and the structure of the code, to distinguish between the above code and the following apparent one, for which the S 1 -degree, S 2 -degree, S 3 -degree of intrinsic degree of parallelism are respectively 1, 0 and 0:

DO i = 1 N a(i) = 1 DO j = 1 N b(i, j) = 1 + b (i, j ; 1) + a (i) + c (i ; 1) ENDDO c(i) = 1 + a (i) + b (i, N) ENDDO

Conclusion

We h a ve i n troduced a theoretical framework in which the optimality of algorithms that detect parallelism in nested loops can be discussed. We h a ve formalized the notions of degree of parallelism extraction (with respect to a given dependence abstraction) and of degree of intrinsic parallelism (contained in a reduced dependence graph). This study permits to better understand the impact of a given dependence abstraction on the maximal parallelism that can be detected: it permits to determine whether the limitations of a parallelization algorithm are due to the algorithm itself or are due to the weaknesses of the dependence abstraction.

In this framework, we h a ve studied more precisely the link between dependence abstractions and parallelism extraction in the particular case of dependence l e v e l . Our main result is the optimality of Allen and Kennedy's algorithm for parallelism extraction in reduced leveled dependence graphs. This means that even the most sophisticated algorithm cannot detect more parallelism, as long as dependence level is the only information available. In other words, loop distribution is su cient for detecting maximal parallelism in dependence graphs with levels.

The proof is based on the following fact: given a set of loops L whose dependences are speci ed by l e v el, we are able to systematically build a set of loops L 0 that cannot be distinguished from L (i.e. they have the same reduced dependence graph) and that have exactly the degree of parallelism found by Allen and Kennedy's algorithm. We call these loops the apparent loops. We believe this construction of interest since it permits to better understand why some loops appear sequential when considering the reduced dependence graph while they actually may c o n tain some parallelism.

We w ant t o p r o ve b y induction that if S is a statement o f H, there is in the expanded dependence graph of L 0 a dependence path whose S-length is (N dS(H);1). From this result, we will be able to build the desired path.

First of all, we p r o ve in Theorem 3 (Section A.3) that if d(H) = 1, there exists in the expanded dependence graph of L 0 a path that visits all statements of H, whose tail and head correspond to the same statement, for two di erent iterations, and the starting iteration vector can be xed to any v alue in a certain sub-space of the iteration space. We s a y this path is a cycle, as it corresponds to a cycle in the reduced dependence graph.

Then, we p r o ve that whatever the depth of H, this property still holds: there exists in the expanded dependence graph of L 0 a path which visits all statements of H, whose tail and head correspond to the same statement, and the starting iteration vector can be xed to any v alue in a certain sub-space of the iteration space. Furthermore, we can connect on this path the di erent paths built for the subgraphs H 1 : : : H c of H which appear at the rst step of the decomposition of H by Procedure Recursive Calls. E a c h of these cycles can be connected a number of times linear in N, the domain size parameter. This leads to the desired property, which is proved in Theorem 3 (Section A.4).

Remark that the subgraphs H 1 : : : H c have depths strictly smaller than the depth of H, this is why the induction is made on the depths of the graphs. Furthermore, all subgraphs H i are strongly connected by construction. As a consequence, their level is an integer, i.e l(H i) 6 = 1.

A.3 Initialization of the induction: d(H) = 1

The initial case of the induction is divided in three parts: in the rst one, Section A.3.1, we recall what we built in Section 4 in the second one, Section A.3.2, we prove s o m e i n termediate results in the third one, Section A.3.3, we build the desired path from the results that we previously established.

A.3.1 Data, hypotheses and notations

In this subsection, we recall or de ne the data, hypotheses and notations which will be valid throughout Section A.3. In particular, Property 1, Lemma 5 and Theorem 2 are proved under the hypotheses listed below.

H is a subgraph of G which appears in the decomposition of G obtained by Procedure First Call. W e suppose that H is of depth one, d(H) = 1 . l is the level of H: l = l(H). f is the critical edge of H. C(H) is the cycle containing f which visits all statements in H. C(H) is de ned by Procedure Recursive Calls during the processing of H. The cycle C(H) c a n b e s p l i t u p i n to C(H) = f P 1 f P 2 f : : : f P k;1 f P k , where, for all i, 1 i k, the path P i does not contain the edge f. Remark that, for all i, 1 i k, the rst statement o f P i (i.e. t(P i)) is the head of edge f (i.e. h(f)), and the last statement o f P i (i.e. h(P i)) is the tail of edge f (i.e. t(f)), as C(H) is a cycle. This decomposition is shown of gure 7. is the integer of the same name computed by Procedure First Call. is equal to the maximal length of all cycles C(H) built during the process of G. All iteration vectors are of size d. We will use the following notation: if I i s a v ector of size l 0 ; 1, for 1 l 0 d, a n d i f j is an integer, (I j N : : : N) denotes the iteration vector (I j N ::: N | {z } d;l 0).

A.3.2 A few bricks for the wall (part I)

We rst prove in Property 1 that there is no critical edge in a path P i . T h e n w e use this property to build in Lemma 5 a path in the expanded dependence graph of L 0 which corresponds to f + P i .

This last result will be used in Section A.3.3 in order to prove Theorem 3.

Property 1 Let i be an integer such that 1 i k. Then, P i contains no critical edge.

Proof: See Procedure Recursive Calls: an edge can be selected as a critical edge only at the level it is removed from the graph being processed. As H is supposed to be of depth 1, all edges are removed from H at the same level, and H contains only one critical edge, f, its critical edge. Thus, as f is not part of P i by construction, P i contains no critical edge.

The previous property established, we are able to build in the expanded dependence graph of L 0 a path whose tail and head correspond in G to the same statement, and whose projection in the reduced level dependence graph is exactly the path f + P i . The existence of such a path is conditioned by the value of the iteration vector associated to the starting statement.

Lemma 5 Let i be such that 1 i k. L et I be a v e ctor in 1 : : : N] l;1 , l e t j be a n i n t e ger such that 1 j N ; (1 + w l (P i)), and let K be a v e ctor in : : : N] d;l . Then, there exists, in the expanded dependence g r aph of L 0 , a dependence p ath that corresponds in H to the use of f followed b y a l l e dges of P i , f r om iteration (I j N ::: N) of statement t(f) to iteration (I j+ 1 + w l (P i) K) of the same statement.

Proof: Let K 0 be the (d;l)-dimensional vector de ned by K 0 r = K r ;w l+r (P i) for 1 r d;l. Remember that P i is a sub-path of C(H) not equal to C(H) (at least f is not in P i), and the length (in terms of number of edges) of C(H) is less than or equal to . T h us, for all r, 1 r d ; l, w l+r (P i) ; 1. Since K 2 : : : N] d;l , K 0 2 1 : : : N] d;l and (I j+ 1 K 0) belongs to the iteration domain 1 : : : N] d .

According to Algorithm Loop Nest Generation and according to the de nition of edge f, instance (I j+ 1 K 0) of statement h(f) depends on instance (I j N : : : N) of statement t(f).

From Property 1 , w e know that none of the edges of P i are critical edges. Thus, according to Algorithm Loop Nest Generation, for each edge e : S 1 e ;! S 2 of P i , and for every vector I in 1 : : : N] d , w e h a ve:

If l(e) = 1, then instance (I 1 : : : I d) of statement S 2 depends on instance (I 1 : : : I d) o f statement S 1 .

If l(e) < 1, then instance (I 1 : : : I l(e);1 I l(e) + 1 I l(e)+1 : : : I d) of statement S 2 depends on instance (I 1 : : : I l(e);1 I l(e) I l(e)+1 : : : I d) of statement S 1 , i f , a n d o n l y i f , I l(e) + 1 N, i.e. if I + w(e) N. Furthermore, by de nition of l, all edges of P i have a level greater than or equal to l: the l ; 1 rst components of w(P i) are null. Thus, we can build a dependence path in the expanded dependence graph of L 0 , that corresponds to all edges of P i , from instance (I j+ 1 K 0) of statement h(f), to instance (I j+ 1 + w l (P i) K 0 1 + w l+1 (P i) : : : K 0 d;l + w d (P i)) of statement t(f), i.e. instance (I j+ 1 + w l (P i) K).

Finally, since instance (I j+ 1 K 0) of statement h(f) depends on instance (I j N : : : N) o f statement t(f), we get the desired path from iteration (I j N ::: N) of statement t(f) to iteration (I j+ 1 + w l (P i) K) of the same statement.

A.3.3 Conclusion for the initialization case

In the next corollary (Corollary 2), we simply concatenate the paths built in Lemma 5 for the di erent paths P i . This permits to build a path in the expanded dependence graph of L 0 whose projection in the reduced leveled dependence graph is C(H). This form the path announced in the proof overview (Section A.2).

Corollary 2 Let I be a v e ctor in 1 : : : N] l;1 , l e t j be an integer such that 1 j N ; w l (C(H)), and let K be a v e ctor in : : : N] d;l .

Then, there exists, in the expanded d e p endence g r aph of L 0 , a d e p endence p ath from instance (I j N : : : N) of statement t(f), to instance (I j+ w l (C(H)) K) of the same statement, and which visits all nodes of H.

Proof: Let j 1 = j and j i = j + P i;1 m=1 (1 + w l (P m)) for 2 i k. Then, for each v alue i from 1 to k ; 1, apply Lemma 5 for P i , with K = (N : : : N) and with the value of j i de ned above. This de nes k ; 1 paths that can be concatenated to form a dependence path from instance (I j N : : : N) of statement t(f) to instance (I j+ P k;1 m=1 (1 + w l (P m)) N : : : N) of the same statement.

Then, applying once again Lemma 5 for P k in its general setting, we get a dependence path from instance (I j N ::: N) of statement t(f) to instance (I j+ P k m=1 (1 + w l (P m)) N : : : N) o f the same statement, i.e. instance (I j+ w l (C(H)) K).

The projection in the reduced leveled dependence graph of L 0 of the path we just built is the concatenation of the paths f + P i , i.e. C(H). As C(H) visits all statements in H, this path visits all statements in H.

Actually, the theorem that we need for the induction proof is a corollary of Corollary 2 which we prove here (Corollary 3). We could use Corollary 2 rather than Corollary 3, but we prefer this last formulation for the sake of regularity a s i t g i v es for the subgraphs H of depth 1 exactly the result that will be proved on subgraphs of greater depths (Theorem 3).

Corollary 3 Let I be a v e ctor in 1 : : : N] l;1 , let j be an integer such that 1 j N;jV jw l (C(H)), and let K be a v e ctor in : : : N] d;l .

Then, there exists in the expanded d e p endence g r aph of L 0 a d e p endence p ath which visits all nodes of H, which starts at instance (I j N : : : N) of statement t(f), and which ends at instance (I j+ jV jw l (C(H)) K) of the same statement.

Proof: This path is build by the concatenation of jV j paths built by Corollary 2, exactly as the path built for Corollary 2 has been built by the concatenation of k paths built by Lemma 5. Now that the desired result for the initialization case of the induction is established, we study the general case.

A.4 General case of the induction

We rst formulate formally the induction hypothesis in Section A.4.1. In Section A.4.2, we de ne what we are going to work on. In Section A.4.3, we prove s o m e i n termediate results. Finally, i n Section A.4.4, we build the desired path from the previously established results.

A.4.1 Induction hypothesis

We present in this section the induction hypothesis from which the induction proof will be established in Section A.5. The fact that the induction hypothesis requires quite complicated conditions is mainly technical and will become clear all along Section A.4.

The induction hypothesis IH(k) is parameterized by the depth k of the subgraph H. S c hematically, IH(k) is true if, for all subgraphs H that appear during the processing of G, there exists a dependence path in the expanded dependence graph of L 0 which visits each statement S of H (N dS(H);1) times.

De nition 16 (Induction hypothesis at depth k: IH(k))

We suppose that N is greater than (d + 1)jV j . T h e induction hypothesis IH(k) is true, if and only if, for all subgraphs H of G such that: H is strongly connected with at least one edge (H is a subgraph of G that appears during the processing of G), d(H) k, there exists a path , i n t h e e x p anded d e p endence g r aph of L 0 , f r om instance (I j N ::: N) of statement t(C(H)) to instance (I j+ jV jw l(H) (C(H)) K) of the same statement, 8 I 2 1 : : : N] l(H);1 , 8 j, 1 j N ; j V jw l(H) (C(H)), 8 K 2 N ; (d + 1 ; d(H))jV j : : : N] d;l(H) and such that for each statement S in H the S-length of is (N dS(H);1) times.

C 0 is the concatenation of jV j times the cycle C(H). C 0 is naturally decomposed into: C 0 = f P 1 f P 2 f : : : f P jV jk;1 f P jV jk , where P i = P 0 (imodk) . I n troducing C 0 permits to simplify the proof that is more technical than di cult.

If P is a path, and p and q are two v ertices of P, then p P ;! q denotes the sub-path of P which starts at vertex p and which ends at vertex q. If p is a vertex of a path P of H, w e d e n o t e b y (P p l 0) the rst vertex of p P ;! h(P) followed by a critical edge whose level is strictly less than l 0 . As the number of strongly connected components (which is at least c) i n H (subgraph of G) is smaller than the number of vertices (jV j) i n G, w e h a ve c j V j. As C 0 contains jV j occurrences of each path P 0 i , f o r 1 i k, w e can de ne s 1 : : : s c as occurrences of t(C(H 1)), : : : , t(C(H c)) in C 0 such that each path P i (for 1 i j V jk) c o n tains at most one of the s m (1 m j V j).

A.4.3 A few bricks for the wall (part II)

We prove i n P r o p e r t y 2 that a path P of H which does not contain the critical edge of H, usually denoted f, cannot contain any critical edge of level less than or equal to l.

Property 2 Let P be a p ath of H which does not contain the edge f. The critical edges contained in P are of levels greater than or equal to l + 1 .

Proof: An edge can only be selected as critical at the level where it is removed from the calling graphs. Only one edge, f, is selected as critical at level l for H. But f is not part of P by h ypothesis. All other edges of H of level l are deleted from H and H contains no edge at level less than l by de nition of l (l = l(H)). Thus, the critical edges contained in P are of levels greater than or equal to l + 1. By construction of the paths P i , 1 i kjV j, P i does not contain the edge f. W e can thus apply Property 2 to these paths:

Corollary 4 Let i be such that 1 i kjV j. The critical edges contained i n P i are of levels greater than or equal to l + 1 .

In the following lemma, Lemma 6, we prove that for any p a t h P of H which does not contain the edge f and whose length is smaller than , w e can build in the expanded dependence graph of L 0 a path whose projection on H is P. Moreover, we express exactly the instances of the statements visited by P. This lemma will be applied to sub-paths of the paths P i in Lemma 7.

Lemma 6 Let P be a p ath of H which does not contain the edge f. L et us suppose that the length of P is strictly less than . L et I be a v e ctor in 1 : : : N] l;1 , let j be such that 1 j N, and let K be a v e ctor in : : : N] d;l . Then, there e x i s t s a d e p endence p ath P in the expanded dependence g r aph of L 0 whose projection onto H is equal to P, and which ends at instance (I j+ w l (P) K) if 1 j + w l (P) N. Furthermore, the path P visits the statement that corresponds to a vertex p of P at iteration I j+ w l (P) ; w l p P ;! h(P) K 0 where, for l + 1 l 0 d, K 0 l 0 ;l = N ; w l 0 p P ;! (P p l 0) if (P p l 0) exists and K 0 l 0 ;l = K l 0 ;l ; w l 0 p P ;! h(P) otherwise. ii. P i is strictly shorter than C(H) whose length is smaller than . T h us the length of P i is strictly less than .

s m P i h(f) s m P i s m t(f) f t(f) t(f) h(f) C m
iii. By hypothesis, N (d + 1)jV j (d + 2 ; d(H))jV j (since d(H) 1). Therefore, the (d ; l)-dimensional set N ; (d + 1 ; d(H))jV j : : : N] d;l is a subset of jV j : : : N] d;l , a n d thus of : : : N] d;l . These two properties permit to apply Lemma 6 to sub-paths of P i in the two following cases:

We suppose that no vertex s m belongs to P i . Because of the preceding remarks, we can apply Lemma 6 to P i . This gives a path from instance (I j+1 K 0) of statement t(P i) = h(f) to instance (I j+1+w l (P i) K) of statement h(P i) = t(f), where K 0 is de ned by Lemma 6. Then we concatenate, in front of this path, the edge corresponding to f from instance (I j N : : : N) o f t(f) to instance (I j+ 1 K 0) o f statement h(f). This leads to the desired result. We n o w suppose that s m is a vertex of P i for some m, 1 m c. By construction, if m 0 6 = m, s m 0 is not a vertex of P i (see Section A.4.2). We build the path backwards, starting from the ending vertex of P i . The previous remarks allow us to apply Lemma 6 to the sub-path of P i : s m Pi ;! h(P i). This gives a path from instance (I j+ 1 + w l (P i) ; w l s m Pi ;! h(P i) K 0) of statement s m to instance (I j+ 1 + w l (P i) K) of statement h(P i) = t(f), where K 0 is de ned by Lemma 6. Remark that w l (P i) ; w l s m Pi ;! h(P i) = w l t(P i) Pi ;! s m . W e call this rst path P 1 . We w ant, starting from this instance of s m , to turn (backwards) (N) times round the cycle m . T o d o s o , w e use the induction hypothesis IH(d(H m)) for H m . W e h a ve r s t t o check that the path described in IH(d(H m)) can be inserted in front of instance (I j+ 1 + w l t(P i) Pi ;! s m K 0) o f s m . In other words, we h a ve t o c heck that the d ; l(H m) + 1 last components of (I j+ 1 + w l t(P i) Pi ;! s m K 0) satisfy the hypothesis stated in IH(d(H m)). Since, l(H m) > l , the components that have to be considered are the components of K 0 . W e thus have t o c heck t h a t : { K 0 l 0 ;l > N ; (d + 1 ; d(H m))jV j for l 0 > l (H m).

{ 1 + jV jw l(Hm) (C(H m)) K 0 l(Hm);l N. For that, consider the l 0 ; l-th component o f K 0 : once again, we h a ve t wo cases to consider: { (P i s m l 0) exists. Then, K 0 l 0 ;l = N ; w l 0 s m Pi ;! (P i s m l 0) . s m Pi ;! (P i s m l 0) i s a sub-path of P i whose length is strictly less than . T h us, w l 0 s m Pi ;! (P i s m l 0) < , and K 0 l 0 ;l > N ; . N o w, since d + 1 ; d(H m) 1, N ; N ; (d + 1 ; d(H m))jV j . This proves K 0 l 0 ;l > N ; (d + 1 ; d(H m))jV j .

{ (P i s m l 0) does not exist. Then, K 0 l 0 ;l = K l 0 ;l ; w l 0 s m Pi ;! h(P i) . s m Pi ;! h(P i) is a sub-path of P i whose length is strictly less than . T h us, w l 0 s m Pi ;! h(P i) < , and K 0 l 0 ;l > K l 0 ;l ; > K l 0 ;l ; j V j . N o w, since K l 0 ;l N ; (d + 1 ; d(H))jV j by hypothesis, we g e t K 0 l 0 ;l > N ; (d + 2 ; d(H))jV j = N ; (d + 1 ; d(H m))jV j . This proves the rst inequality. The second is implied by the rst one since N (d + 1)jV j .

We can thus apply the induction hypothesis and we get a dependence path from instance (I j+ 1 + w l t(P i) Pi ;! s m K 0 1 : : : K 0 l(Hm);l;1 K 0 l(Hm);l ; j V jw l(Hm) (C(H m)) N : : : N) of statement s m to instance (I j+ 1 + w l t(P i) Pi ;! s m K 0) of the same statement. We c a l l this second path P 2 .

We n o w apply the induction hypothesis, in the particular case where all components of K (with the notations of IH(d(H m))) are equal to N and we get a dependence path from instance (J k 00 ; j V jw l(Hm) (C(H m)) N : : : N) of statement s m , to instance (J k 00 N : : : N) of the same statement, if J is a vector of 1 : : : N] l(Hm);1 , and if k 00 is an integer such that 1 + jV jw l(Hm) (C(H m)) k 00 N. F urthermore, this path visits, (N dS(Hm);1) times, each statement S in H m .

We let m = j K 0 l(Hm);l ; jV jw l(Hm) (C(Hm)) ; 1 k . m is chosen so that we can use m times the induction hypothesis in the form stated above. As K 0 l(Hm);l has been proved to be (N), and as all other quantities are constant that depend only on G and not on N, m is (N) too. Therefore, we get a dependence path, from instance (I j+1+w l t(P i) Pi ;! s m K 0 1 : : : K 0 l(Hm);1;l K 0 l(Hm);l ;(m +1)jV jw l(Hm) (C(H m)) N : : : N) to instance (I j+ 1 + w l t(P i) Pi ;! s m K 0 1 : : : K 0 l(Hm);1;l K 0 l(Hm);l ; j V jw l(Hm) (C(H m)) N : : : N) of the same statement s m . W e call this path P 3 . By construction, P 3 visits each statement S in H m m (N dS(Hm);1) times, i.e. (N dS(Hm)) = (N dS(H);1) times. Note that by c hoice of m , K 0 l(Hm);l ; (m + 1)jV jw l(Hm) (C(H m)) and this also holds for all other components of K 0 . We can thus apply once again Lemma 6, and we get a path, that we call P 4 , from instance (I j+ 1 K 00) of statement h(f) to instance (I j+ 1 + w l t(P i) Pi ;! s m K 0 1 : : : K 0 l(Hm);1;l K 0 l(Hm);l ; (m + 1)jV jw l(Hm) (C(H m)) N : : : N) o f statement s m , where K 00 is de ned by Lemma 6. Then, we concatenate in front of this path the dependence corresponding to the edge f from instance (I j N ::: N) of statement t(f) to instance (I j+ 1 K 00) of statement h(f). Finally, concatenating paths f + P 4 , P 3 , P 2 and P 1 leads to the desired path.

Figure 3 :Figure 4 :

 34 Figure 3: ADG for the RLDG of Example 1

Figure 5 :

 5 Figure 5: Links between L, L 0 and their EDG, ADG and RDG

Figure 6 :

 6 Figure 6: RLDG for Example 2

 Therefore d S = dS ; 1 b y de nition of d S and dS . Lemma 3 The S-degree o f p arallelism extraction for Allen and Kennedy's algorithm is n ; d S if n is the number of nested l o ops in the initial code.

 I d]needs the value of a i I 1 : : : I l(e);1 I l(e) ; 1 I l(e)+1 : : : I d]. This creates a dependence from statement T i to statement T j with distance vector 0 :

Figure 7 :

 7 Figure 7: The decomposition of C(H)

Figure 8 :

 8 Figure 8: As P i contains the vertex s m , w e turn round m (denoted here C m)

: : : n] f 1 g). l(e) is called the level of edge e.1 except for exact dependence analysis where it de nes a subset of Z n Z n

A Appendix: proof of optimality In this section, we denote by L the initial loops and by G the reduced leveled dependence graph associated to L. W e denote by L 0 the \apparent loops" generated by Procedure Loop Nest Generation applied to G and we denote by d S (see De nition 13) the number of sequential loops detected by Allen and Kennedy's algorithm, that surround statement S, when processing G.

We show that for each statement S in L 0 , there is a dependence path in the expanded dependence graph of L 0 that contains (N dS) instances of the statement S. More precisely, w e build a dependence path that satis es this property s i m ultaneously for all statements of a strongly connected component o f G. This path is built by induction on the depth (to be de ned) of a strongly connected component o f G. In Section A.3, we study the initialization of the induction, whose general case is studied in Section A.4. The proof by induction itself is presented in Section A.5. Finally, in Section A.6, we establish the optimality theorem.

To m a k e the proof clearer, we g i v e in Section A.2 a schematic description of the induction. Before that, we need to introduce some new de nitions, which is done in Section A.1.

A.1 Some more de nitions

We extend the notion of depth to graphs. Remember that we de ned the depth d S of a statement S in De nition 13 as the number of calls to Procedure Recursive Calls that concern statement S when processing the graph G.

Let H be a subgraph of G that contains S: w e de ne similarly d S (H) as the number of calls to Procedure Recursive Calls that concern statement S when processing the graph H (instead of G). Note that d S = d S (G). Finally, w e de ne d(H), the depth of H, as the maximal depth of the vertices (i.e. statements) of H: De nition 14 (Graph depth) The depth of a reduced d e p endence g r aph H is:

where V (H) denotes the vertices of H.

The proof of the theorem is based on an induction on the depths of the strongly connected components of G that are built in Procedure First call and Procedure Recursive Calls.

Given a path P in a graph, P = x 1 e1 ;! x 2 e2 ;! : : : ek;1 ;! x k , w e de ne the tail of P as the rst statement visited by P, denoted by t(P) = x 1 , and we de ne the head of P as the last statement visited by P, denoted by h(P) = x k . W e de ne the weight of a path as follows: De nition 15 (Path weight) Let P be a p ath of a reduced leveled d e p endence g r aph G, for which l(e) denotes the level of an edge e. We de ne the weight of P at level l, denoted w l (P), as the number of edges in P whose level is equal to l: w l (P) = jfe 2 P j l(e) = lgj

A.2 Induction proof overview

In the following, H denotes a subgraph of G which appears in the decomposition of G by Procedure First Call. The induction is an induction on the depth of H.

Before going further, we g i v e here some remarks on the importance of the di erent h ypotheses, conditions and values on the components of the index vector of the starting and ending statements of the built paths:

The l(H) ; 1 rst components of the index vectors are constant along this dependence path. This simplify our work when we connect this cycle with a cycle built for the subgraph of smaller depth: we will just have t o l o o k a t t h e d ; l(H) + 1 last components. The l(H)-th component is increased by a constant factor, namely jV jw l(H) (C(H)). In particular this factor is independent o f N. Joined to the freedom we h a ve f o r t h e v alue of the d ; l last components of the ending statement index vector (variable K), this will allow u s t o connect consecutively (N) times the cycles built for smaller depths. The subgraphs of depth 1 do satisfy this induction hypothesis:

Theorem 2 IH(1) is true.

Proof: This theorem is a simple corollary of Corollary 3 since in this case N dv(H);1 = 1 , a n d N ; (d + 1 ; d(H))jV j d(H)jV j .

A.4.2 Data, hypotheses and notations

We recall or de ne in this subsection the data, hypotheses and notations which will be valid all along Section A.4. In particular, Property 2, Corollary 4, Lemmas 6 and 7, and Theorem 3 are proved under the hypotheses listed here.

H is a subgraph of G, strongly connected, with at least one edge, that appears during the processing of G. l is the level of H: l = l(H). We assume that IH(k) is true for k < l : the goal of this section is to show that IH(l) is true. H 1 : : : H c are the c subgraphs of H on which Procedure Recursive Calls is recursively called.

In particular, H i satis es IH(d(H i)) since each H i is strongly connected, with at least one edge and has a depth strictly smaller than the depth of H. For i, 1 i c, w e denote by i the dependence path de ned for H i by the induction

is the integer of the same name computed on G by Procedure First Call.

f is the critical edge of H.

C(H) is the cycle which contains f and visits all statements in H and which is de ned by Procedure Recursive Calls during the processing of H. The cycle C(H) can be decomposed into: C(H) = f P 0 1 f P 0 2 f : : : f P 0 k;1 f P 0 k , where, for i, 1 i k, the path P 0 i does not contain the edge f. Remark that, since C(H) i s a cycle, the rst statement in the path P 0 i (i.e. t(P 0 i)) is the head of the edge f (i.e. h(f)), and that the last statement i n P 0 i (i.e. h(P 0 i)) is the tail of edge f (i.e. t(f)).

Proof: The result is complicated, but the proof is not: it is done by induction and backwards: from the last vertex of P down to the rst one.

The formula is obviously true if P is reduced to a null-length path (i.e. with no edge). Let us suppose that the property has been proved until a vertex q. Then, there is a path P(q) from an instance of q to instance (I j+ w(P) K) o f h(P), which visits, for all vertex r between q and h(P), the statement r at instance (I j+w l (P);w l r P ;! h(P) K 0) where, for l+1 l 0 d, K 0 l 0 ;l = N;w l 0 r P ;! (P r l 0) if (P r l 0) exists and K 0 l 0 ;l = K l 0 ;l ;w l 0 r P ;! h(P) otherwise. Let us consider the edge e of P whose head is q (p e ;! q). We h a ve three cases to consider: l(e) = 1. Thus, e is not critical, and, for any l 0 , l + 1 l 0 d, (P p l 0) exists if, and only if, (P q l 0) exists, and then (P p l 0) = (P q l 0). Furthermore, the edge e has a null weight, which means that the instance where statement p is visited, (I j 0 K 00), is equal to the instance where statement q is visited. Thus, j 0 = j +w l (P);w l q P ;! h(P) = j +w l (P);w l p P ;! h(P) , and for any l 0 , l +1 l 0 d, K 00 l 0 ;l = N ; w l 0 q P ;! (P q l 0) = N ; w l 0 p P ;! (P p l 0) if (P q l 0) = (P p l 0) exists and K 00 l 0 ;l = K l 0 ;l ; w l 0 q P ;! h(P) = K l 0 ;l ; w l 0 p P ;! h(P) otherwise. l(e) < 1 and e = 2 E c . e is not critical. Thus, for any l 0 , l + 1 l 0 d, (P p l 0) exists if, and only if, (P q l 0) exists, and then (P p l 0) = (P q l 0). w(e) i s n ull except for the l(e)-th component which is equal to 1. For all null components of w(e), we use the same arguments as for the case l(e) = 1 to conclude. Thus, we just have to look at the l(e)-th component. l(e) is greater than or equal to l. W e denote by (I j 0 K 00) the instance where the statement p is visited.

{ If l(e) = l, then j 0 = j + w(P) ; w l q P ;! h(P) ; w l (e) = j + w(P) ; w l e + q P ;! h(P) = j + w(P) ; w l p P ;! h(P)

{ If l(e) 6 = l (i.e. l(e) > l) and if (P q l(e)) exists, then:

K 00 l(e);l = N ; w l(e) q P ;! (P q l(e)) ; w l(e) (e) = N ; w l(e) e + q P ;! (P p l(e)) = N ; w l(e) p P ;! (P p l(e))

{ If l(e) 6 = l (i.e. l(e) > l) and if (P q l(e)) does not exist, then:

K 00 l(e);l = K l(e);l ; w l(e) q P ;! h(P) ; w l(e) (e) = K l(e);l ; w l(e) e + q P ;! h(P) = K l(e);l ; w l(e) p P ;! h(P) e 2 E c . Then l(e) > l because of Property 2 .

In this case, instance (J 1 : : : J l(e);1 J l(e) J l(e)+1 : : : J d) of statement q depends on instance (J 1 : : : J l(e);1 J l(e) ; 1 N : : : N) of statement p, f o r a n y v ector J in 1 : : : N] d such that J l(e) ; 1 1. Furthermore, for any l 0 , l + 1 l 0 l(e), (P p l 0) exists if and only if, (P q l 0) exists, and then (P p l 0) = (P q l 0), and for any l 0 , l(e) + 1 l 0 d, (P p l 0) = p. We just have to look to the components between l(e) and d, as for the other components, the weight o f e is null, is constant, and thus the same arguments as for the case l(e) = 1 can be used to conclude. We denote by (I j 0 K 00) the instance where statement p is visited.

{ l(e)-th component (i.e. j'). Since w l(e) (e) = 1, we conclude for this component with the same arguments as for the previous case (l(e) < 1 and e = 2 E c).

{ l 0 -th component, with l 0 > l (e). Then, (P p l 0) = p and K 00 l 0 = N. The desired formula remains true since K 00 l 0 = N = N ; w l 0 p P ;! p = N ; w l 0 p P ;! (P p l 0) .

We still have t o c heck that the instance where p is visited belongs to 1 : : : N] d . This is obvious when looking at the instance formula we just proved: j + w l (P) ; w l p P ;! h(P) 1 since p P ;! h(P) is a sub-path of P and j 1. The components of K 00 are the components of K minus the weight of a sub-path of P, which is strictly less than . Since all components of K are larger than , all components of K 00 are larger than 1.

We n o w apply Lemma 6 to the paths P i , so as to build a path corresponding to f + P i in the expanded dependence graph of L 0 . This is done in Lemma 7. There are two main di erences between Lemmas 5 and 7. The rst one is the existence in the paths P i of critical edges which obliged us to previously establish Lemma 6. The second one corresponds to the cycles m : because of the desired property on the number of occurrences of each statement in the built path, if P i contains the vertex s m , w e h a ve t o t u r n (N) times round m while building the path corresponding to P i . This construction is illustrated on Figure 8. Formally: Lemma 7 Let i be such that 1 i j V jk. L et I be a v e ctor in 1 : : : N] l;1 , l e t j be such that 1 j N ; (1 + w l (P i)), and let K be a v e ctor in N ; (d + 1 ; d(H))jV j : : : N] d;l .

Then, there exists in the expanded d e p endence g r aph of L 0 a d e p endence p ath P i which goes along f and all edges of P i , which starts at the instance (I j N : : : N) of statement t(f) and which ends at instance (I j+ 1 + w l (P i) K) of the same statement. Furthermore, if s m is a vertex of P i , for some m, 1 m c, then this dependence p ath visits, (N dS(H);1) times, each statement S of H m .

Proof: Consider a vector I, a n i n teger j and a vector K according to the theorem hypotheses.

Two cases can occur, depending if one of the vertices of P i is s m for some m, 1 m c. First of all, note that: i. By de nition, P i does not contain the edge f.

A.4.4 Conclusion for the general case

The previous lemma leads to the desired theorem (i.e. IH(l) where l = l(H)) simply by concatenating the di erent paths given by Lemma 7 for each P i .

Theorem 3 If IH(k) is true, for k < l , t h e n IH(l) is true. In other words, we have the following:

Let I be a v e ctor in 1 : : : N] l;1 , let j be a n i n t e ger such that 1 j N ; j V jw l (C(H)), and let K be a v e ctor in N ; (d + 1 ; d(H)) : : : N] d;l .

Then, there exists a dependence p ath in the expanded d e p endence g r aph of L 0 , f r om instance (I j N : : : N) of statement t(C(H)) to instance (I j+ jV jw l (C(H)) K) of the same statement. Furthermore, visits each statement v in H (N dv(H);1) times.

Proof:

For each i, 1 i kjV j, Lemma 7 permits to de ne a dependence path P i , in the expanded dependence graph of L 0 , from instance (I 1 : : : I l;1 j + P i;1 r=1 (1 + w l (P r)) N : : : N) of statement t(f) to instance (I 1 : : : I l;1 j + P i r=1 (1 + w l (P r)) K) of the same statement, for any v ector I in 1 : : : N] l;1 , a n y v ector K in N ; (d+ 1 ; d(H)) : : : N] d;l and any i n teger j such t h a t 1 j N ; P kjV j r=1 (1 + w l (P r)) (remember that since the weights w l (P r) are non-negative, all intermediate sums j+ P i r=1 (1+w l (P r)) belong to 1 : : : N] as soon as the two extremal sums j and j+ P kjV j r=1 (1+w l (P r)) do). This path uses the edge f and all edges of P i , and if there exists an integer m, 1 m c, such that s m is a point o f P i , then this dependence path visits each statement S v in H m (N dv(H);1) times.

For each i, 1 i kjV j ; 1, we c hoose K to be equal to (N ::: N). Thus, P i is a path from instance (I 1 : : : I l;1 j+ P i;1 r=1 (1 + w l (P r)) N : : : N) of statement t(f) to instance (I 1 : : : I l;1 j + P i r=1 (1 + w l (P r)) N : : : N) of the same statement. These paths can be concate- nated together and concatenated to the path P kjV j de ned above. Finally, w e get a path from instance (I 1 : : : I l;1 j N : : : N) of statement t(f) to instance (I 1 : : : I l;1 j + P kjV j r=1 (1+w l (P r)) K) of the same statement. uses f and all edges of paths P i , 1 i kjV j, t h us it uses all edges of C(H), and, as C(H) visits all statements in H, all statements in H are visited at least once. Furthermore, as for each value of m, 1 m c, there exists a path P i , 1 i j V jk, which contains s m , visits each statement S in H m (N dS(H);1) times, for each v alue of m, 1 m c. T o conclude, remark that P kjV j n=1 (1 + w l (P n)) is equal to jV jw l (C(H)).

A.5 The induction

We h a ve almost established the proof by induction. We just write it below in a formal form: Theorem 4 IH(k) is true, for all k 1. In other words, we have the following:

Let H be a subgraph of G which appears in the decomposition of G by Procedure First Call. Assume that N is larger than (d + 1)jV j .

Then for all I in 1 : : : N] l(H);1 , for all j such that 1 j N ; j V jw l(H) (C(H)), for all K in N ;(d+1;d(H)) : : : N] d;l(H) , there exists a dependence p ath in the expanded dependence g r aph of L 0 , f r om instance (I j N ::: N) of statement t(C(H)), to instance (I j+ jV jw l(H) (C(H)) K) of the same statement. Furthermore, visits each statement S in H (N dS(H);1) times.

Proof:

As previously announced the proof is a proof by induction on the depth d(H) o f H. Theorem 2 proves that Theorem 4 is true for all subgraphs of depth 1. Furthermore, if the property is true for all subgraphs of depth k < l , the property is true for subgraphs of depth l (Theorem 3). Therefore, the theorem is true by induction. This theorem is not the nal result, as we w ant in fact a path that visits each statement S in H (N dS(H)) times to prove the optimality: however, this is a simple extension of the previous result, as shown in the next section.

A.6 The optimality theorem

Theorem 5 Let H be a subgraph of G which appears in the decomposition of G by Procedure First Call. Assume that N is larger than (d + 1)jV j . Then there e x i s t s a d e p endence p ath in the expanded dependence g r aph of L 0 , which visits each statement S in H (N dS(H)) times.

Proof:

Theorem 4 gives, for any v ector I in 1 : : : N] l(H);1 , for any i n teger j, 1 j N;jV jw l(H) (C(H)), and for any v ector K in N ; (d + 1 ; d(H)) : : : N] d;l(H) , a dependence path, in the expanded dependence graph of L 0 , from instance (I j N : : : N) of statement t(C(H)), to instance (I j+ jV jw l(H) (C(H)) K) of the same statement. Furthermore, this path visits each statement S in H (N dS(H);1) times.

Among others, we can consider the paths from instance (I (;1)jV jw l(H) (C(H))+1 N : : : N) of statement t(C(H)) to instance (I jV jw l(H) (C(H)) + 1 N : : : N) of the same statement, for any v alue of between 1 and j N;1 jV jwl(C(H)) k . This permits to de ne (N) paths that can be con- catenated together into a longer path . Finally, since each of these paths visits each statement S of H, (N dS(H);1) times, visits each statement S of H (N dS(H)) times.