N

N

On the optimality of Allen and Kennedy’s algorithm for
parallelism extraction in nested loops

Alain Darte, Frédéric Vivien

» To cite this version:

Alain Darte, Frédéric Vivien. On the optimality of Allen and Kennedy’s algorithm for parallelism
extraction in nested loops. [Research Report] LIP RR-1996-05, Laboratoire de linformatique du
parallélisme. 1996, 2+34p. hal-02101988

HAL Id: hal-02101988
https://hal-lara.archives-ouvertes.fr /hal-02101988
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101988
https://hal.archives-ouvertes.fr

O
i Laboratoire de I’ | nformatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

On the optimality of Allen and
Kennedy’s algorithm
for parallelism extraction in nested
loops

Alain Darte and Frédéric Vivien February 1996

Research Report N© 96-05

Ecole Normale Supérieurede Lyon
IIIl 46 Allée d'ltalie, 69364 Lyon Cedex 07, France

Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.7280.8
Adresse électronique : lip@lip.ens—lyon.fr

On the optimality of Allen and Kennedy’s algorithm
for parallelism extraction in nested loops

Alain Darte and Frédéric Vivien

February 1996

Abstract

We explore the link between dependence abstractions and maximal parallelism extrac-
tion in nested loops. Our goal is to find, for each dependence abstraction, the minimal
transformations needed for maximal parallelism extraction. The result of this paper
is that Allen and Kennedy’s algorithm is optimal when dependences are approximated
by dependence levels. This means that even the most sophisticated algorithm cannot
detect more parallelism than found by Allen and Kennedy’s algorithm, as long as de-
pendence level is the only information available. In other words, loop distribution is
sufficient for detecting maximal parallelism in dependence graphs with levels.

Keywords: nested loops, automatic parallelization, dependence analysis, Allen and Kennedy’s
algorithm

Résumé

Nous étudions les relations entre représentations des dépendances et extraction maxi-
male du parallélisme dans les nids de boucles. Nous recherchons, pour chaque représen-
tation des dépendances, la plus petite transformation capable d’extraire le maximum
de parallélisme. Nous prouvons dans cet article que algorithme d’Allen et Kennedy
est optimal quand les dépendances sont approximées par des niveaux de dépendance:
aucun algorithme, aussi sophistiqué soit-il, ne peut détecter plus de parallélisme que
I’algorithme d’Allen et Kennedy, si la seule information disponible sur les dépendances
est le niveau de la dépendance. Autrement dit, la distribution de boucles suffit a détecter
le maximum de parallélisme dans les graphes de dépendance étiquetés par niveaux.

Mots-clés: nids de boucles, parallélisation automatique, analyse de dépendance, algorithme
d’Allen et Kennedy

On the optimality of Allen and Kennedy’s algorithm
for parallelism extraction in nested loops

Alain Darte Frédéric Vivien

February 1996

Contents

Introduction

Theoretical framework

2.1 Notations o L 0 o e e e e e e e
2.2 Dependence graphs oL oL e e
2.3 Maximal degree of parallelism L L oL

Allen and Kennedy’s algorithm

Loop nest generation algorithm

4.1 Critical edges L e e
4.2 Generation of apparent nested loops oo oL
4.3 Reduced leveled dependence graph associated to L'

Conclusion

Appendix: proof of optimality
A.1 Some more definitions Lo L e
A.2 Induction proof overview e e e e
A3 Initialization of the induction: d(H)=1
A.3.1 Data, hypotheses and notations,
A.3.2 A few bricks for the wall (part I)
A.3.3 Conclusion for the initialization case
A4 General case of the inductiono oo oL
A.4.1 Induction hypothesis
A.4.2 Data, hypotheses and notations
A.4.3 A few bricks for the wall (part II)
A.4.4 Conclusion for the general case
A5 Theinduction L oL e
A.6 The optimality theorem

10

13
13
14
15

18

1 Introduction

Many automatic loop parallelization techniques have been introduced over the last 25 years, start-
ing from the early work of Karp, Miller and Winograd [KMW67] in 1967 who studied the structure
of computations in repetitive codes called systems of uniform recurrence equations. This work
defined the foundation of today’s loop compilation techniques. It has been widely exploited and
extended in the systolic array community (among others [Mol82, Qui84, Rao85, Roy88, DV94] are
directly related toit), as well as in the compiler-parallelizer community: Lamport [Lam74] proposed
a parallel scheme - the hyperplane method - in 1974, then several loop transformations were intro-
duced (loop distribution/fusion, loop skewing, loop reversal, loop interchange, ...) for vectorizing
computations, maximizing parallelism, maximizing locality and/or minimizing synchronizations.
These techniques have been used as basic tools for optimizing algorithms, the most two famous
being certainly Allen and Kennedy’s algorithm [AK82, AKS87], designed at Rice in the Fortran D
compiler, and Wolf and Lam’s algorithm [WL91], designed at Stanford in the SUIF compiler.

At the same time, dependence analysis has been developed so as to provide sufficient informa-
tion for checking the legality of these loop transformations, in the sense that they do not change the
final result of the program. Different abstractions of dependences have been defined (dependence
distance [Mur71], dependence level [AKR82, AKS87], dependence direction vector [Wol82, Wol89],
dependence polyhedron/cone [IT87], ...), and more and more accurate tests for dependence anal-
ysis have been designed (Banerjee’s tests [Ban88], I test [KKP90, PKK91], A test [GKT91], A
test [LYZ89, Gru90], PIP test [Fea91], PIPS test [IJT91], Omega test [Pug92], ...).

In general, dependence abstractions and dependence tests have been introduced with some
particular loop transformations in mind. For example, the dependence level was designed for Allen
and Kennedy’s algorithm, whereas the PIP test is the main tool for Feautrier’s method for array
expansion [Fea91] and parallelism extraction by affine schedulings [Fea92a, Fea92b]. However, very
few authors have studied, in a general manner, the links between both theories, dependence analysis
and loop restructurations, and have tried to answer the following two dual questions:

e What is the minimal dependence abstraction needed for checking the legality of a given
transformation?

e What is the simplest algorithm that exploits all information provided by a given dependence
abstraction at best?

Answering the first question permits to adapt the dependence analysis to the parallelization
algorithm, and to avoid implementing an expensive dependence test if it is not needed. This
question has been deeply studied in Yang’s thesis [Yan93], and summarized in Yang, Ancourt and
Irigoin’s paper [YAI95].

Conversely, answering the second question permits to adapt the parallelization algorithm to the
dependence analysis, and to avoid using an expensive parallelization algorithm if one knows that a
simpler one is able to find the same degree of parallelism, and for a smaller cost. This question has
been addressed by Darte and Vivien in [DV95] for dependence abstractions based on a polyhedral
approximation.

Completing this work, we propose, in this paper, a more precise study of the link between
dependence abstractions and parallelism extraction in the particular case of dependence levels. Our
main result is that, in this context, Allen and Kennedy’s parallelization algorithm is optimal for
parallelism extraction, which means that even the most sophisticated algorithm cannot detect more
parallel loops than Allen and Kennedy’s algorithm does, as long as dependence level is the only in-
formation available. In other words, loop distribution is sufficient for detecting maximal parallelism

in dependence graphs with levels. There is no need to use more complicated transformations such
as loop interchange, loop skewing, or any other transformations that could be invented, because
there is an intrinsic limitation in the dependence level abstraction that prevents detecting more
parallelism.

The rest of the paper is organized as follows. In Section 2, we explain what we call maximal
parallelism extraction for a given dependence abstraction and we recall the definition of dependence
levels. Section 3 presents Allen and Kennedy’s algorithm in its simplest form - which is sufficient
for what we want to prove. The proof of our result is then subdivided into two parts. In Section 4,
we build a set of loops that are equivalent to the loops to be parallelized, in the sense that they
have the same dependence graph. In Appendix A, we prove that these loops contain exactly the
degree of parallelism found by Allen and Kennedy’s algorithm. Finally, Section 5 summarizes the

paper.

2 Theoretical framework

We first restrict to the case of perfectly nested loops. We will explain at the end of this paper how
our optimality result can be extended to non perfectly nested loops.

2.1 Notations

The notations used in the following sections are:
e f(N)=0O(N)if 3k > 0such that f(N) < kN for all sufficiently large N.
e f(N)=Q(N)if 3 k> 0such that f(N) > kN for all sufficiently large N.
e f(N)=0O(N)if f(N)=0O(N) and f(N)=Q(N).

e If X is a finite set, | X| denotes the number of elements in X.

G = (V, F) denotes a directed graph with vertices V and edges F.

e ¢ = (z,y) denotes an edge from vertex z to vertex y. We use the notation: z =t(e), y = h(e).

I, J denote iteration vectors for nested loops.

Si, S; denote statements within the loops.

Si(I) denotes the instance, at iteration I, of statement ;.

n is the number of nested loops.

s is the number of statements within the loops.

2.2 Dependence graphs

The structure of perfectly nested loops can be captured by an ordered set of statements .S¢,..., 5,
(S; textually before S; if ¢ < j) and an iteration domain D C Z" that describes the values of the
loops counters; n is the number of nested loops. Given a statement S, to each n-dimensional vector
I € D corresponds a particular execution (called instance) of S, denoted by S([).

EDG, RDG and ADG Dependences (or precedence constraints) between instances of state-
ments define the expanded dependence graph (EDG) also called iteration level dependence
graph. The vertices of the EDG are all possible instances {(5;,/) | 1 < ¢ < sand [€ D}. There
is an edge from (9;,1) to (S;,J) (denoted by S;(I) = S;(.J)) if executing instance S;(.J) before
instance S;(/) may change the result of the program. For all 1 <4, <'s, one defines the distance
sets I; ; as follows:

Definition 1 (Distance Set)
Eij={(-0 | 5) = 5;(J)} (Bij CZ7)

In general, the EDG (and the distance sets) cannot be computed at compile-time, either because
some information is missing (such as the values of size parameters or even worse, exact accesses to
memory), or because generating the whole graph is too expensive.

Instead, dependences are captured through a smaller, (in general) cyclic directed graph, with s
vertices, called the reduced dependence graph (RDG) (or statement level dependence graph).
Each edge e has a label w(e). This label has a different meaning depending upon the dependence
abstraction that is used: it represents ! a set D, C Z" such that:

Vi7j7 1 S 27] S 5, Ei,j C (U De) (1)
)

e=(5;,5;

In other words, the RDG describes, in a condensed manner, an iteration level dependence graph,
called (maximal) apparent dependence graph (ADG), that is a superset of the EDG. The
ADG and the EDG have the same vertices, but the ADG has more edges, defined by:

(S;, 1) = (5;,J) (in the ADG) < 3 e=(5,,5;) (in the RDG) such that (J —I) € D..
Equation 1 and Definition 1 ensure that EDG C ADG.

Dependence level abstraction In Sections 3 and 4, we will focus mainly on the case of RDG
labeled by one of the simplest dependence abstractions, namely the dependence level. The reader
can find a similar study for other dependence abstractions in [DV95].

Definition 2 The dependence level associated to a dependence distance J—1I where S;(I) = S;(J)
is:

e 0o if J—I=0.
o the smallest integer I, 1 <1 < n, such that the l-th component of J — I is non zero, otherwise.

Definition 3 We call reduced leveled dependence graph (RLDG) associated to a loop nest
L, a directed graph with one vertex per statement of L, and one edge e per distance set, where e is
labeled by the dependence levels associated to all dependence distances of the distance set.

Actually, with Definition 3, several values may be associated to a given edge of the reduced
leveled dependence graph. To simplify the rest of the paper, we transform each edge labeled by
[different levels into [edges with a single level. Therefore, in the following, a reduced leveled
dependence graph is a multi-graph, for which each edge e is labeled by an integer [(e) (and I(e) €
[1...n]U{o0}). l(e) is called the level of edge e.

1

except for exact dependence analysis where it defines a subset of Z" x Z"

Example 1 To better understand the links between the three concepts (EDG, RDG and ADG),
let us consider a simple example, the SOR kernel:

DOi=1,N
DO j=1,N
a(ia .7) = a(ia J= 1) + a(i -1, .7)
CONTINUE

The EDG associated to Example 1 is given in Figure 1. The length of the longest path in the
EDG is equal to 2% N — 2, i.e. O(N). As there are N? instances in the domain, we will say that
the degree of intrinsic parallelism in this EDG is 1.

Figure 1: EDG for Example 1

The RDG has only one vertex. If it is labeled with dependence levels (i.e. if it is a RLDG),
it has two edges with levels 1 and 2 (see Figure 2). It corresponds to the ADG given in Figure 3,
whose ADG contains a path of length N?. We will say that the degree of intrinsic parallelism in
the ADG is 0 as there are N? instances in the domain.

OO

Figure 2: RLDG for Example 1

Actually, in this example, it is possible to build a set of loops - that we call the apparent loops
L’ (given below) - that have exactly the same RDG and that are purely sequential: there is indeed

a path of length Q(N?) in the corresponding EDG (see Figure 4).
Apparent loops L'

DOi=1N
DOj=1N
ai,j)=1+a(i, j—1) +a(i—1, N)
CONTINUE

Since L and L’ cannot be distinguished by a parallelization algorithm (they have the same
RLDG) no parallelism can be detected in this example, as long as the dependence level is the only
information available. The goal of this paper is to generalize this fact to arbitrary RLDGs.

Figure 4: EDG for apparent loops L' of Example 1

6

2.3 Maximal degree of parallelism

We now define what we call maximal parallelism extraction in reduced dependence graphs.

We consider that the only information available for extracting parallelism in a set of loops L
is the RDG associated to L. Any parallelization algorithm that transforms L into an equivalent
code L; has to preserve all dependences summarized in the RDG, i.e. all dependences described
in the ADG: if (S;, 1) = (5;,J) in the ADG then (5;, I) must be computed before (S;,.J) in the

transformed code L;.

Definition 4 (Latency)
We define the latency T (L:) of a transformed code L, as the minimal number of clock cycles
needed to evecute L, if:

o an unbounded number of processors is available.
e cxecuting an instance of a statement requires one clock cycle.

e any other operation requires zero clock cycle.

Remark TFor example, if L; is defined only by a set of parallel and sequential nested loops, the latency

@,

can be defined by induction on the structure of the code as follows (“;” is the sequencing predicate, DOPAR
and DOSEQ define parallel and sequential loops):

e T(S)=1if S is a simple statement.

o T(Si;-+8) = > T(S).
1<i<s

e T(DOPAR i € D do S(i) ENDDO) = mz%xT(S(i)).

i€

e T(DOSEQ i € D do S(i) ENDDO) = > T(5(i)).

ieD

Of course the latency defined by Definition 4 is not equal to the real execution time. However,
it permits to introduce the notion of degree of parallelism. The practical interest of this notion is
illustrated hereafter.

Since two instances linked by an edge in the ADG cannot be computed at the same clock cycle
in the transformed code L;, the latency of L;, whatever the parallelization algorithm, is larger than
the length of the longest path in the ADG. Now, assume that D is the n-dimensional cube of size
N. Then, we have the following:

e If an algorithm is able to transform the initial loops into a transformed code whose latency
is O(N?), then the length of the longest dependence path in the ADG is O(N).

e Equivalently, if the ADG contains a path of length that is not O(N?), then no matter the
parallelizing algorithm you use, the latency of the transformed code cannot be O(N%).

This short study permits to define a theoretical framework in which the optimality of paral-
lelization algorithms, with respect to a given dependence abstraction, can be discussed. In the
following definitions, we assume that all RDG and ADG are defined using the same dependence
abstraction.

Definition 5 (degree of intrinsic parallelism of a RDG)

Let G be a RDG and D be the n-dimensional cube of size N. Let d be the smallest non negative
integer such that the length of the longest path in the ADG, defined from G and D, is O(N%). Then,
we say that the degree of intrinsic parallelism in G is (n — d) or that G' contains (n — d) degrees of
parallelism.

Definition 6 (Degree of parallelism extraction for an algorithm in a RDG)

Let A be a parallelization algorithm. Let L be a set of n nested loops and let G be its RDG.
Apply algorithm A to G and suppose that D is the n-dimensional cube of size N when transforming
the loops. Then, the degree of parallelism extraction for A in G is (n — d) if d is the smallest non
negative integer such that the latency of the transformed code is O(NY).

Note that these definitions ensure that the degree of parallelism extraction is always smaller than
the degree of intrinsic parallelism.

Definition 7 (Optimal algorithm for parallelism extraction)

An algorithm A performs mazimal parallelism extraction (or is said optimal for parallelism
extraction) if for each RDG G, the degree of parallelism extraction for A in G is equal to the degree
of intrinsic parallelism in G.

With this formulation, the optimality of a parallelization algorithm A can be proved as follows.
Consider a set of n perfectly nested loops L. Denote by G the RDG associated to L for the given
dependence abstraction and by G, its corresponding ADG. Let (n — d) be the degree of parallelism
extraction for A in G. Then, we have at least two ways for proving the optimality of A.

i. Build in G, a dependence path whose length is not O(N*=1).

ii. Build a set of loops L' whose RDG is also G and whose EDG contains a dependence path
whose length is not O(N971).

Note that (ii) implies (i) since the EDG of L’ is included in G, (L and L’ have the same RDG).
Therefore, proving (ii) is - a priori - more powerful. In particular, it permits to understand the
intrinsic limitations, for parallelism extraction, due to the dependence abstraction itself: even if the
degrees of intrinsic parallelism in L and L’ may be different at run-time (i.e. their EDG may be
different), they cannot be distinguished by the parallelization algorithm, since L and L’ have the
same RDG. In other words, a parallelization algorithm will parallelize I and L’ in the same way.
Therefore, since L' is parallelized optimally, the algorithm is considered optimal with respect to
the dependence abstraction that is used. Figure 5 recalls the links between I, I and their EDG,
RDG and ADG. The nested loops L' are called apparent nested loops.

One can define a more precise notion of optimality. Consider one particular statement .S of the
initial loops L and define the S-latency as the minimal number of clock cycles needed to execute
the transformed loops L;, with unbounded number of processors, when any operation needs zero
clock cycle except the instances of .S that need one clock cycle. Then, the S-latency is related to the
S-length of the longest path in the ADG, where the S-length of a path P is the number of vertices
in P that are instances of S. Similarly, one can define the S-degree of parallelism extraction in L,
and the S-degree of intrinsic parallelism in a RDG. These definitions leads to the following notion
of optimality:

Initial loops L Apparent loops L’

EDG C ADG D EDG
contains a
dependence path
whose length
is not O(ng_l)

RDG

Transformed loops
with (n — d) degrees of parallelism

Figure 5: Links between L, L’ and their EDG, ADG and RDG

Definition 8 (Optimal algorithm for parallelism extraction (definition 2))

An algorithm A performs mazimal parallelism extraction (or is said optimal for parallelism
extraction) if for each RDG G and for all statements S of G, the S-degree of parallelism extraction
Jor A in G is equal to the S-degree of intrinsic parallelism in G

This definition permits to discuss the quality of parallelizing algorithms even for statements that do
not belong to the most sequential part of the code. Note that this definition of optimality is more
precise than Definition 7 since the degree of intrinsic parallelism (resp. of parallelism extraction)
in (7 is the minimal S-degree of intrinsic parallelism (resp. of parallelism extraction) in G.

One should argue that the latency (and the S-latency) of a transformed code is not easy to
compute. Indeed, in the general case, the latency can be computed only by executing the trans-
formed code with a fixed value of N. However, for most known parallelizing algorithms, the degree
of parallelism extraction (but not necessarily the latency) can be computed simply by examining
the structure of the transformed code, as shown by lemma 1.

Lemma 1 In addition to the hypotheses of Definition 6, assume that each statement S of the
initial code L appears only once in the transformed code L, and is surrounded by exactly n loops.
Furthermore, assume that the iteration domain D, described by these n loops contains a n-cube D
of size Q(N) and is contained in a n-cube D of size O(N).

Then, the number of parallel loops that surrounds S is the S-degree of parallelism extraction
and the minimal S-degree of parallelism extraction is the degree of parallelism extraction.

Proof Consider a given statement S of the initial code L. To simplify the arguments of the proof,
define L, the code obtained by removing from L, everything that does not involve the instances of
S: the latency of L, is the S-latency of L,. Furthermore, L, is a set of n perfectly nested loops
that surround statement S. Let L (resp. L) be the code obtained by changing the loop bounds of
L, so that they describe D (resp. D) instead of D,.

Since D C D, C D, the latency of L, is larger than the latency of L and smaller than the latency
of L. Furthermore, since D and D are n-cubes, the latency is easy to compute: the latency of L is
Q(N9) and the latency of L is O(N?), where d is the number of sequential loops that surround S.
Therefore, the latency of L, is ©(N?) and the degree of parallelism extraction in L, (and thus the
S-degree of parallelism extraction in L) is (n — d), i.e. the number of parallel loops that surround
statement S.

Let 7 and Ts be respectively the latency and the S-latency of L,. We have:

mgx%gfrgzsj%

Therefore, since the number of statements S is finite, 7 = O(N*) where d is the largest ds such
that 75 = ©(N%): the degree of parallelism extraction in L, is the minimum S-degree of paral-
lelism extraction. Equivalently, the degree of parallelism extraction in L, is the minimum number
of perfectly nested parallel loops. [|

We now recall some graphs definitions:

Definition 9 A strongly connected component of a directed graph G is a maximal subgraph of
G in which for any vertices p and q (p # q) there is a path from p to q.

Definition 10 The acyclic condensation of a graph G is the acyclic graph whose nodes are the
strongly connected components V., ..., V. of G and there is an edge from V; to V; if there is an edge
e = (z;,y;) in G such that x; € V; and y; € V;.

Definition 11 Let G be a reduced leveled dependence graph. Let H be a subgraph of G. Then [(H)
(the level of H) is the minimal level of an edge of H:

I(H)=min{l(e) | e € H}

Remark: not all directed graphs whose edges are labeled by values in [1...n] U {oco} are reduced
leveled dependence graphs. A necessary and sufficient condition for such a graph G to be the RLDG
of some nested loops is that G, the subgraph of G whose edges are the edges of level oo, is acyclic.
This property is obviously necessary and is proved to be sufficient by lemma 4. This property will
be assumed in the next sections. One of the consequences is that the level of a strongly connected
subgraph of G is at most n.

3 Allen and Kennedy’s algorithm

Allen and Kennedy’s algorithm has first been designed for vectorizing loops. Then, it has been
extended so as to maximize the number of parallel loops and to minimize the number of synchro-
nizations in the transformed code. It has been shown (see details in [Cal87, ZC90]) that for each
statement of the initial code, as many surrounding loops as possible are detected as parallel loops.
Therefore, one could think that what we want to prove in this paper has been already proved!
However, looking precisely into the details of Allen and Kennedy’s proof reveals that what has
actually been proved is the following: consider a statement S of the initial code and L; one of
the surrounding loops. Then L; will be marked as parallel if and only if there is no dependence
at level ¢ between two instances of S. This result proves that the algorithm is optimal among all
parallelization algorithms that describe, in the transformed code, the instances of S with exactly the

10

same loops as in the initial code. This does not prove a general optimality property. In particular,
this does not prove that it is not possible to detect more parallelism with more sophisticated
techniques than loop distribution and loop fusion. This paper gives an answer to this question.

First, we recall Allen and Kennedy’s algorithm, in a very simple form, since we are interested
only in detecting parallel loops and not in the minimization of synchronization points.

Allen_and _Kennedy(H,!)
o H'=H\{e|l(e) <D}

e Build H” the acyclic condensation of H’, and number its vertices V;,..., V. in a topological
sort order.

e For:=1to cdo

i. If V; is reduced to a single statement .S, with no edge, then generate parallel DO loops
(DOALL) in all remaining dimensions (i.e. for levels [to n) and generate code for S.

ii. Otherwise, let £ = {(V;). Generate parallel DO loops (DOALL) for levels from [to k—1,
and a sequential DO loop (DOSEQ) for level k. Call Allen_and_Kennedy(V;, k + 1).

Finally, to apply Allen and Kennedy’s algorithm to a reduced leveled dependence graph G, call:
Allen_and_Kennedy(G,1).

Example 2 For illustrating Allen and Kennedy’s algorithm, we consider the following example.
DOi=1,N
DOj=1,N
a(d, j) =1
b(i, j) = b(i, j — 1) + a(i,) * c(i — 1, §)
c(i, j) = 2 x b(4, j) + a(i, j)
CONTINUE

The RLDG associated to the code of Example 2 is given in Figure 6. There are three statements

S1

So 1 Ss

Figure 6: RLDG for Example 2

Si, 95 and S3 in textual order. The first call is Allen_and_Kennedy(G,1) that detects two strongly
connected components V; = {S;} and V5 = {53, 55}. The first component V; has no edge (case (i)).
Therefore, the algorithm generates:

DOPAR:¢=1,N
DOPAR j=1,N
a(d, j) =1
ENDDO
ENDDO

11

The second component has level 1 edges, thus the algorithm generates:

DOSEQi=1N
.. (code for V3)
ENDDO

and recursively calls Allen_and_Kennedy(Vs,, 2). Edges of level strictly less than 2 are removed.
Two strongly connected components appear Vs, = {S2} and Vs, = {95} in this order. The level
of V54 is 2, therefore the algorithm generates:

DOSEQ j =1, N
.. (code for Vs 1)
ENDDO

and recursively calls Allen_and_Kennedy(V,;, 3). The algorithm reaches step (i) and generates:
b(¢, j) =b(i, j—1) + a(é, j) x c(i—1, J)
The second component V55 = {S3} has no edge. Therefore, the generated code is:

DOPAR j = 1, N
c(i, j) = 2 b(i, j) + a(i, j)
ENDDO

Finally, fusing all codes leads to:

DOPARi=1,N
DOPAR j = 1, N
a(d, j) =1
ENDDO
ENDDO
DOSEQ i =1, N
DOSEQ j = 1, N
b(ia .7) = b(la J= 1) + a(ia .7) * C(i -1, .7)
ENDDO
DOPAR j = 1, N
(i, j) = 2 # bli, J) + ali, j)
ENDDO
ENDDO

We gave only, on purpose, the structure of DOSEQ and DOPAR. For a correct code, synchro-
nization points should be added and minimized.

Definition 12 Let S be a statement of G. We denote by ds the number of recursive calls needed in
Algorithm Allen_and_Kennedy to generate the code for statement S (case (i) in above algorithm).

In Example 2, three calls were needed for generating code for S5, two calls for Sz and one call
for S;. The S;-degree of parallelism is 2, the S3-degree of parallelism is 0 and the Ss;-degree of
parallelism is 1. Although the S,-degree of intrinsic parallelism in the initial code of Example 2 is
equal to 1, we will see that the Sy-degree of parallelism in the RLDG of Figure 6 is 0 as found by
algorithm Allen_and_Kennedy.

We have the following lemma:

Lemma 2 Let S be a statement of G. The number of sequential DO loops generated by Algorithm
Allen_and_Kennedy, that surround statement S, is equal to dg — 1.

12

Proof Note that the chain of recursive calls ends as soon as case (i) is reached. The first call
is Allen_and_Kennedy (G, 1). Then, for ¢ > 2, the i-th recursive call is Allen_and_Kennedy(H;, k;),
for some strongly connected subgraph H; of (G, and some integer k; such that k; = [(H;) + 1,
i — 1 < I(H;) < n (this can be proved by induction on 7). Therefore, the algorithm stops after at
most n+ 1 recursive calls. Furthermore, each call generates exactly one sequential loop, except the
last call that generates the code for S (and possibly some surrounding parallel loops). Therefore,
the number of sequential DO loops generated for statement S is exactly ds — 1. [

4 Loop nest generation algorithm

In this section, we present a systematic procedure called Loop_Nest_Generation, that builds, from
a reduced leveled dependence graph G, a perfect loop nest L' whose RLDG is exactly G. In
Appendix A, we will prove that the S-degree of intrinsic parallelism in the EDG of L’ is equal to
the S-degree of parallelism extraction in G for Algorithm Allen_and _Kennedy, for all statements
S of GG, thereby proving the optimality of Allen and Kennedy’s algorithm for dependence level
abstraction.

The construction of L’ is based on the notion of critical edges that are built in Section 4.1. The
exact formulation of Procedure Loop_Nest_Generation is given in Section 4.2. Finally, in Section 4.3,
we show that the RLDG associated to L' is G, as desired.

4.1 Critical edges

In this section, we build the data structure that we need for defining the apparent loops L’. The
procedures given below (First_Call and Recursive_Calls) define:

o A set of so called eritical edges F..
e An integer €.
o A set of cycles (denoted by C'(H) below).

Actually, only FE. is needed for building L', £ and the cycles C'(H) will be used only in the main
proof of Appendix A.

First_Call(G)
i. £+ 0.

ii. Build G” the acyclic condensation of G, and number its vertices V;,...,V, in a topological
sort order.

iii. Fori=1to ¢ do

e IfV; is reduced to a single vertex, with no edge, then do nothing.

e Otherwise call Recursive_Calls(V;).

13

Recursive_Calls(H)
il I(H).
ii. Select an edge f of H with level [. Call f the critical edge of H. E, + E.U{f}.

iii. Build a cycle C'(H) that contains f, and that visits all vertices of H.
If length(C'(H)) > € then & < length(C'(H)).

iv. H'=H\{e|l(e) <I}.

v. Build H” the acyclic condensation of H’, and number its vertices Vi, ..., V. in a topological
sort order.

vi. For:=1 to c do

e IfV; is reduced to a single vertex, with no edge, then do nothing.

e Otherwise recursively call Recursive_Calls(V;).

As for Algorithm Allen_and _Kennedy, we are interested in the number of recursive calls in
Procedure Recursive_Calls.

Definition 13 Let S be a statement of G. We denote by dg the number of calls to Procedure
Recursive_Calls that concern statement S, i.e. the number of calls Recursive_Calls(H) such that S
is a vertex of H. dg is called the depth of §.

Algorithm Allen_and Kennedy and the two procedures above have exactly the same structure
of recursive calls: the first call Allen_and_Kennedy((,1) is equivalent to the call to First_Call while
subsequent calls to Algorithm Allen_and Kennedy are equivalent to the calls to Recursive_Calls.
Therefore dg = dNS — 1 by definition of dg and dNS.

Lemma 3 The S-degree of parallelism extraction for Allen and Kennedy’s algorithm is n — dg if
n is the number of nested loops in the initial code.

Proof ds = ds — 1. Furthermore, Lemma 2 proves that ds — 1 is exactly the number of se-
quential DO loops, generated by Algorithm Allen_and _Kennedy, that surround S. Now, note that
Algorithm Allen_and Kennedy does not change the loop bound, but simply mark loops as par-
allel or sequential. Therefore, if D is the n-dimensional cube of size N, the iteration domain of
the transformed code L, is also the n-dimensional cube of size N for each statement S. Thus, L,
satisfies hypotheses of Lemma 1 and n —ds is nothing but the S-degree of parallelism extraction. Il

4.2 Generation of apparent nested loops

Let G = (E,V) be a reduced leveled dependence graph. We assume that G has been built in a
consistent way from some nested loops, i.e. we assume that GG contains no cycle such that all edges
have level co. Therefore, vertices can be numbered according to the topological order defined on
them by the edges whose level is co: v; — v; = @ < j. Note that, if L is a set of loops whose RLDG
is G, then the edges whose level is oo correspond to the so called loop independent dependences
and the textual order (order in which statements appear in L) can be chosen for numbering the
vertices.

14

We denote by d the dimension of (: d = max{l(e) | e € IV and [(e) < oo}, i.e. the maximal
level of edges of finite level. L’ (the apparent loops of () will consist of d perfectly nested loops,
with |V| statements, and each statement will be of the form «;[/] = right_-member (). ay,..., v
are |V| arrays of dimension d and right_-member(¢) is the right-hand side expressions for array «a;
that will be built to capture the |E| edges of G.

In the following, E, is the set of critical edges of G (defined in Section 4.1) and “@” denotes
the operator of expression concatenation.

Loop_Nest_Generation(G):
Initialization:
For i =1 to |V| do right_member(¢) « “1”
First_Call(G)

Computation of the statements of L':
For e = (v;,v;) € IV do
if [(e) = oo then
right_member(5)
+ right_member(j) @ “+a;[I,..., 14]”
if [(e) < oo and e ¢ F. then
right_member(5)
« right_member(j) @ “+a;[1y, ..., Liey-1, Liey = 1, Ligey 415 - - -5 Ld)”
if e € I/, then
right_member(5)
« right_member(j) @ “4a;[1y,..., Lie)=1, Liey — L, N, ..., N]”
N———
d—1(e)
Code generation for L'
For:=1to d do
generate (“For I; =1 to N do”)
For :=1to |V| do
generate (“a;[I1,...,I;] :=" @ right_member(7))

4.3 Reduced leveled dependence graph associated to L’

In this section, we show that the reduced leveled dependence graph for I’ is exactly G.
Note that, as Procedure Recursive_Calls is always called on strongly connected graphs, the
edges f and the cycles C'(H) can always be built.

Lemma 4 The reduced leveled dependence graph of L' is G.

Proof We denote by T7,...,Tjy| the statements in L’ and by G’ the reduced leveled dependence
graph associated to L’.

Note that, in L', there is only one write for each index vector [[4, ..., I;] and each array a;: this
write occurs in statement 7}, at iteration [[y,...,1,]: a[ly,..., 14 = right_member(7). Therefore,
the dependences in L’ that involves array a; correspond to a dependence between this unique
write and some read on this array. Each reads on array «; in the right-hand side of a statement
corresponds, by construction of L', to one particular edge e in the graph G. Therefore, G and G’

15

have the same vertices and the same edges. One just has to check that the level of all edges is the
same in G and G'.
Consider an edge e of G, e = (v;,v;). Three cases can occur:

Case [(e) = co: remember that vertices of ¢ have been numbered so that i < j whenever v; —
v;. Therefore, since [(e) = oo, statement T; appears textually before statement 7; in L.
At iteration [[y,..., I;], statement T; defines a;[[,...,1;]. This value is used, in the same
iteration, for defining a;[/y,..., 1] in statement 7;. Therefore, there is an edge of level oo
from statement 7; to statement 7} in G’.

Case [(e) < 0o and e ¢ I.: atiteration [[y, ..., 1], the definition, in statement 7}, of a;[11, ..., I4]

needs the value of a;[I,.. s Diey=15 Diey — 1, Digeygs - - .y 14]. This creates a dependence from
statement 7; to statement 7; with distance vector [0,...,0,1,0,...,0]. Thus, the level of e
N — N——
I(e)—1 d—I(e)
in G'is .
Case e € F¢: in this case, the right member of statement 7 references value ¢;[11, .. ., Liey=1, Liey—
1,N,...,N]. This reference creates a dependence from statement 7; to statement 7} of
N——
d—I(e)

distance vector [0,...,0,1, lye)41 — N, ..., I; — N]. Thus there is, in G, an edge of level [
N’

I(e)—1
from 7; to T;.

This proves that G and G' have same vertices, same edges, and that the labels of all edges are
the same in G and in G'. In other words, G = G". [

Example 1 The reduced leveled dependence graph of Example 1 is drawn in Figure 2. This
RLDG contains one edge, e, of level 1. Thus e is selected as critical by procedure Recursive_Calls.
This critical edge generates a read a(i — 1, N). When all the edges of level 1 are deleted from the
RLDG, the new graph only contains a self-dependence ¢’ of level 2. This self-dependence is also

selected as critical and generates a read a(?, j — 1).
Thus the apparent loops generated for Example 1 are, as promised in Section 2.2, the following:

DOi=1N
DOj=1N
a(i,j) =a(i,j—1) +a(i—1,N)+ 1
CONTINUE

Example 2 The reduced leveled dependence graph of Example 2 is drawn in Figure 6. This
RLDG contains one edge, ¢, of level 1, from S3 to S3;. Thus e is selected as eritical by procedure
Recursive_Calls. This critical edge generates a read ¢(i — 1, N) in the right hand side of statement
S5, When all the edges of level 1 are deleted from the RLDG, the new graph still contains a
self-dependence e’ for S5 of level 2. This self-dependence is also selected as critical and generates a
read b(i, j — 1). The graph obtained from the RLDG of Example 2 by deleting the edges of level
1 and 2 is acyclic. Thus all the edges which were not selected as critical generates simple accesses,

i.e. accesses of the form a(7, 7).
Thus the apparent loops generated for Example 2 are:

16

DOi=1N
DOj=1N
a(i, j) =1
b(i, j) = 1 4 b(i, j— 1) + a(i, j) + c(i — 1, N)
c(i, j) = 1+ b(i, §) + ali, j)
CONTINUE

for which the S;-degree, S3-degree, Ss-degree of intrinsic degree of parallelism are respectively 2, 0
and 0, as promised.
The goal of Appendix A is to prove the following result:

Theorem 1 Let L be a set of loops whose RLDG is G. Use Algorithm Loop_Nest_Generation to
generate the apparent loops L'. Let dg be defined as in Definition 13. Then, for each strongly
connected component G; of G, there is a path in the FDG of the apparent loops L' which visits,
Q(N9) times, each statement S in Gj.

The proof is long, technical and painful. It can be omitted at first reading. The important
corollary is the following:

Corollary 1 Allen and Kennedy’s algorithm is optimal for parallelism extraction in reduced leveled
dependence graphs (optimal in the sense of Definition 8).

Proof Let G be a RLDG defined from n perfectly nested loops L. Lemma 3 proves that n — dg
is the S-degree of parallelism extraction in . Furthermore, Algorithm Loop_Nest_Generation
generates a set of d perfectly nested loops L', whose RLDG is exactly G (Lemma 4) and such that,
for each strongly connected component G; of G, there is a path in the EDG associated to L', which
visits, Q(N?) times, each statement S in G; (Theorem 1). If d = n, the corollary is proved: the
S-degree of intrinsic parallelism in the EDG of L' is n — ds.

It may be possible however that d < n. In this case, in order to define n apparent loops L”
instead of d apparent loops L', simply add (n — d) innermost loops in L’ and complete all array
references with [I4,1, ..., I,]. This does not change the RLDG since, in L”, there is no dependence
in the innermost loops, except loop independent dependences. Actually, the (n — d) innermost
loops are parallel loops and the path defined by Theorem 1 in the EDG of L’ can be immediately
translated into a path of same structure in the EDG of L, simply by considering the n — d last
values of the iteration vectors as fixed (the EDG of L’ is the projection of the EDG of L” along the
last (n — d) dimensions). The result follows. |

This proves that as long as the only information available is the RDG, it is not possible to
detect more parallelism that found by Allen and Kennedy’s algorithm. Is it possible to detect more
parallelism if the structure of the code, i.e. the way loops are nested (but not the loop bounds),
are given? The answer is no: it is possible to enforce I/ to have the same nesting structure as L.
The procedure is similar to Procedure Loop_Nest_Generation, but with the following modification:

e The left-hand side of statement S; is a;(/) where I is the iteration vector corresponding to
the loops that surround S; in the initial code L. Thus, the dimension of the array associated
to a statement is equal to the number of surrounding loops.

e The right-hand side of statement .9; is defined as in Procedure Loop_Nest_Generation, except
that iteration vectors are completed by values equal to IV if needed.

17

A theorem that generalizes Theorem 1 to the non perfectly nested case can be given, with a similar
proof. We do not want to go into the details, the perfect case is painful enough. We just illustrate
the non perfect case by the following example:

Example 3 Consider the following non perfectly nested loops (this code is the code called “pe-
tersen.t” given with the software Petit, see [KMP*95], obtained after scalar expansion).

DOi=2 N
s(i) =0
DOl=1,i—1
s(?) = s(d) + a(l, ©) * b(])
ENDDO
b(i) = b(i) - s(i)
ENDDO

This code has exactly the same RDG as Example 2. Furthermore, it is well known that its 5;-
degree, So-degree, Ss-degree of intrinsic degree of parallelism are respectively 1, 1 and 0. However,
with Allen and Kennedy’s algorithm, the S;-degree, So-degree, Ss3-degree of parallelism extraction
are respectively 1, 0 and 0. This is because it is not possible, with only the RDG and the structure
of the code, to distinguish between the above code and the following apparent one, for which the
Si-degree, So-degree, Ss-degree of intrinsic degree of parallelism are respectively 1, 0 and 0:

DOi=1N
a(i) =1
DOj=1,N
b(#,7) =14+ b, j—1) 4+ a(i) + c(i —1)
ENDDO
c(i) =14 a(d) + b(d, N)
ENDDO

5 Conclusion

We have introduced a theoretical framework in which the optimality of algorithms that detect
parallelism in nested loops can be discussed. We have formalized the notions of degree of parallelism
extraction (with respect to a given dependence abstraction) and of degree of intrinsic parallelism
(contained in a reduced dependence graph). This study permits to better understand the impact
of a given dependence abstraction on the maximal parallelism that can be detected: it permits to
determine whether the limitations of a parallelization algorithm are due to the algorithm itself or
are due to the weaknesses of the dependence abstraction.

In this framework, we have studied more precisely the link between dependence abstractions and
parallelism extraction in the particular case of dependence level. Our main result is the optimality
of Allen and Kennedy’s algorithm for parallelism extraction in reduced leveled dependence graphs.
This means that even the most sophisticated algorithm cannot detect more parallelism, as long as
dependence level is the only information available. In other words, loop distribution is sufficient
for detecting maximal parallelism in dependence graphs with levels.

The proof is based on the following fact: given a set of loops I whose dependences are specified
by level, we are able to systematically build a set of loops L’ that cannot be distinguished from L
(i.e. they have the same reduced dependence graph) and that have exactly the degree of parallelism
found by Allen and Kennedy’s algorithm. We call these loops the apparent loops. We believe this

18

construction of interest since it permits to better understand why some loops appear sequential
when considering the reduced dependence graph while they actually may contain some parallelism.

References

[AKS2]

[AKS7]

[Ban88]

[Cal87]

[DV94]

[DV95]

[Feadl]

[Fea92a)]

[Fea92b]

[GKT91]

[Gru90]

[1JT91]

[IT87]

J.R. Allen and K. Kennedy. PFC: a program to convert programs to parallel form.
Technical report, Dept. of Mathematical Sciences, Rice University, Houston, TX, March
1982.

J.R. Allen and K. Kennedy. Automatic translations of Fortran programs to vector form.
ACM Toplas, 9:491-542, 1987.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell, MA, 1988.

D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Dept. of
Computer Science, Rice University, Houston, TX, 1987.

Alain Darte and Frédéric Vivien. Automatic parallelization based on multi-dimensional
scheduling. Technical Report 94-24, Laboratoire de I'Informatique du Parallélisme,
Ecole Normale Supérieure de Lyon, France, September 1994.

Alain Darte and Frédéric Vivien. A classification of nested loops parallelization algo-
rithms. In INRIA-IEEE Symposium on Fmerging Technologies and Factory Automa-
tion, pages 217-224. IEEE Computer Society Press, 1995.

Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel Pro-
gramming, 20(1):23-51, 1991.

Paul Feautrier. Some efficient solutions to the affine scheduling problem, part I, one-
dimensional time. Int. J. Parallel Programming, 21(5):313-348, October 1992.

Paul Feautrier. Some efficient solutions to the affine scheduling problem, part II, multi-
dimensional time. Int. J. Parallel Programming, 21(6):389-420, December 1992.

G. Goff, K. Kennedy, and C.W. Tseng. Practical dependence testing. In Proceedings of
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

D. Grunwald. Data dependence analysis: the A test revisited. In Proceedings of the
1990 International Conference on Parallel Processing, 1990.

F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: an
overview of the PIPS project. In Proceedings of the 1991 ACM International Conference
on Supercomputing, Cologne, Germany, June 1991.

F. Irigoin and R. Triolet. Computing dependence direction vectors and dependence
cones with linear systems. Technical Report ENSMP-CAI-87-E94, Ecole des Mines de
Paris, Fontainebleau (France), 1987.

19

[KKP90]

[KMP+95]

[KMW67]

[Lam74]

[LYZ89]

[Mol82]

[Mur71]

[PKK91]

[Pug92]

[Quis4]

[Rao85]

[Roy88]

[WLO1]

[Wol&2]

[Wol89]

[YAI95]

X.Y. Kong, D. Klappholz, and K. Psarris. The I test: a new test for subscript data
dependence. In Padua, editor, Proceedings of 1990 International Conference of Parallel
Processing, August 1990.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. New user
interface for Petit and other interfaces: user guide. University of Maryland, June 1995.

R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. Journal of the ACM, 14(3):563-590, July 1967.

Leslie Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83-93, February 1974.

7.Y. Li, P.-C. Yew, and C.Q. Zhu. Data dependence analysis on multi-dimensional
array references. In Proceedings of the 1989 ACM International Conference on Super-
computing, pages 215-224, Crete, Greece, June 1989.

D.I. Moldovan. On the analysis and synthesis of vlsi systolic arrays. IEFFE Transactions
on Computers, 31:1121-1126, 1982.

Y. Muraoka. Parallelism exposure and exploitation in programs. PhD thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, February 1971.

K. Psarris, X.Y. Kong, and D. Klappholz. Extending the I test to direction vectors. In
Proceedings of the 1991 ACM International Conference on Supercomputing, Cologne,
Germany, June 1991.

William Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8:102-114, August 1992.

Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equa-
tions. In The 11th Annual International Symposium on Computer Architecture, Ann
Arbor, Michigan, June 1984. IEEE Computer Society Press.

Sailesh K. Rao. Regular Iterative Algorithms and their Implementations on Processor
Arrays. PhD thesis, Stanford University, October 1985.

Vwani P. Roychowdhury. Derivation, Fxtensions and Parallel Implementation of Reg-
ular Iterative Algorithms. PhD thesis, Stanford University, December 1988.

Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE Trans. Parallel Distributed Systems, 2(4):452-471, October
1991.

M. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, Dept. of Com-
puter Science, University of Illinois at Urbana-Champaign, October 1982.

M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge MA,
1989.

Y.-Q. Yang, C. Ancourt, and F. Irigoin. Minimal data dependence abstractions for loop
transformations (extended version). International Journal of Parallel Programming,
23(4):359-388, August 1995.

20

[Yan93] Yi-Qing Yang. Tests des dépendances et transformations de programme. PhD thesis,
Ecole Nationale Supérieure des Mines de Paris, Fontainebleau, France, 1993.

[ZC90] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press, 1990.

21

A Appendix: proof of optimality

In this section, we denote by L the initial loops and by GG the reduced leveled dependence graph as-
sociated to L. We denote by I’ the “apparent loops” generated by Procedure Loop_Nest_Generation
applied to GG and we denote by dg (see Definition 13) the number of sequential loops detected by
Allen and Kennedy’s algorithm, that surround statement S, when processing G.

We show that for each statement S in I/, there is a dependence path in the expanded depen-
dence graph of L’ that contains Q(N%) instances of the statement S. More precisely, we build a
dependence path that satisfies this property simultaneously for all statements of a strongly con-
nected component of (. This path is built by induction on the depth (to be defined) of a strongly
connected component of G. In Section A.3, we study the initialization of the induction, whose
general case is studied in Section A.4. The proof by induction itself is presented in Section A.5.
Finally, in Section A.6, we establish the optimality theorem.

To make the proof clearer, we give in Section A.2 a schematic description of the induction.
Before that, we need to introduce some new definitions, which is done in Section A.1.

A.1 Some more definitions

We extend the notion of depth to graphs. Remember that we defined the depth dg of a statement
S in Definition 13 as the number of calls to Procedure Recursive_Calls that concern statement .S
when processing the graph G

Let H be a subgraph of G that contains S: we define similarly dgs(H) as the number of calls
to Procedure Recursive_Calls that concern statement S when processing the graph H (instead of
(7). Note that dg = ds(G). Finally, we define d(H), the depth of H, as the maximal depth of the
vertices (i.e. statements) of H:

Definition 14 (Graph depth) The depth of a reduced dependence graph H is:
d(H) = max{d,(H) | ve V(H)}
where V (H) denotes the vertices of H.

The proof of the theorem is based on an induction on the depths of the strongly connected compo-
nents of G' that are built in Procedure First_call and Procedure Recursive_Calls.

Given a path P in a graph, P = 21 =% 2, =5 ... 24 xy, we define the tail of P as the first
statement visited by P, denoted by ¢(P) = z,, and we define the head of P as the last statement
visited by P, denoted by h(P) = z5. We define the weight of a path as follows:

Definition 15 (Path weight)

Let P be a path of a reduced leveled dependence graph G, for which l(e) denotes the level of an
edge e. We define the weight of P at level |, denoted w;(P), as the number of edges in P whose
level is equal to [:

wi(P)={ee P [l(e)=1}|

A.2 Induction proof overview

In the following, H denotes a subgraph of G which appears in the decomposition of G' by Procedure
First_Call. The induction is an induction on the depth of H.

22

We want to prove by induction that if S is a statement of H, there is in the expanded dependence
graph of L' a dependence path whose S-length is Q(N)=} From this result, we will be able to
build the desired path.

First of all, we prove in Theorem 3 (Section A.3) that if d(H) = 1, there exists in the expanded
dependence graph of L' a path that visits all statements of H, whose tail and head correspond to
the same statement, for two different iterations, and the starting iteration vector can be fixed to
any value in a certain sub-space of the iteration space. We say this path is a cycle, as it corresponds
to a cycle in the reduced dependence graph.

Then, we prove that whatever the depth of H, this property still holds: there exists in the
expanded dependence graph of I’ a path which visits all statements of H, whose tail and head
correspond to the same statement, and the starting iteration vector can be fixed to any value in
a certain sub-space of the iteration space. Furthermore, we can connect on this path the different
paths built for the subgraphs Hy,..., H. of H which appear at the first step of the decomposition
of H by Procedure Recursive_Calls. Fach of these cycles can be connected a number of times linear
in NV, the domain size parameter. This leads to the desired property, which is proved in Theorem 3
(Section A.4).

Remark that the subgraphs Hy, ..., H. have depths strictly smaller than the depth of H, this is
why the induction is made on the depths of the graphs. Furthermore, all subgraphs H; are strongly
connected by construction. As a consequence, their level is an integer, i.e {(H;) # oc.

A.3 [Initialization of the induction: d(H) =1

The initial case of the induction is divided in three parts: in the first one, Section A.3.1, we recall
what we built in Section 4; in the second one, Section A.3.2, we prove some intermediate results;
in the third one, Section A.3.3, we build the desired path from the results that we previously
established.

A.3.1 Data, hypotheses and notations

In this subsection, we recall or define the data, hypotheses and notations which will be valid
throughout Section A.3. In particular, Property 1, Lemma 5 and Theorem 2 are proved under the
hypotheses listed below.

e H is a subgraph of G which appears in the decomposition of G obtained by Procedure
First_Call. We suppose that H is of depth one, d(H) = 1.

lis the level of H: [=1(H).

[is the critical edge of H.

C'(H) is the cycle containing f which visits all statementsin H. C'(H) is defined by Procedure
Recursive_Calls during the processing of .

The cycle C'(H) can be split up into C(H) = f, P, f, Po, f, ..., f, Ps_1, f, Py, where, for all 1,
1 < ¢ <k, the path P, does not contain the edge f. Remark that, for all ¢, 1 < ¢ < k, the
first statement of P, (i.e. t(F;)) is the head of edge f (i.e. h(f)), and the last statement of P
(i.e. h(F)) is the tail of edge f (i.e. ¢(f)), as C'(H) is a cycle. This decomposition is shown
of figure 7.

23

Figure 7: The decomposition of C'(H)

e ¢is the integer of the same name computed by Procedure First_Call. £ is equal to the maximal
length of all cycles C'(H) built during the process of G.

e All iteration vectors are of size d. We will use the following notation: if I is a vector of
size ' — 1, for 1 <1’ < d, and if j is an integer, (1,7, N,..., N) denotes the iteration vector
(I,5,N,...,N).

d-1'

A.3.2 A few bricks for the wall (part I)

We first prove in Property 1 that there is no critical edge in a path F;. Then we use this property
to build in Lemma 5 a path in the expanded dependence graph of L’ which corresponds to f 4+ F;.
This last result will be used in Section A.3.3 in order to prove Theorem 3.

Property 1 Let ¢ be an integer such that 1 <1 < k. Then, P; contains no critical edge.

Proof: See Procedure Recursive_Calls: an edge can be selected as a critical edge only at the
level it is removed from the graph being processed. As H is supposed to be of depth 1, all edges
are removed from H at the same level, and H contains only one critical edge, f, its critical edge.
Thus, as f is not part of P; by construction, F; contains no critical edge. [|

The previous property established, we are able to build in the expanded dependence graph of
L’ a path whose tail and head correspond in GG to the same statement, and whose projection in
the reduced level dependence graph is exactly the path f+ F,. The existence of such a path is
conditioned by the value of the iteration vector associated to the starting statement.

Lemma 5 Let i be such that 1 <i < k. Let I be a vector in [L...N)'=L, let j be an integer such
that 1 < j < N — (1+w(F)), and let K be a vector in [¢...N]*.

Then, there exists, in the expanded dependence graph of L', a dependence path that corresponds
in H to the use of f followed by all edges of P;, from iteration (I,j, N,...,N) of statement t(f) to
iteration (1,7 + 14 w,(F;), K) of the same statement.

24

Proof: Let K’ be the (d—{)-dimensional vector defined by K/ = K, —w;y, (F;) for 1 <r <d—I.
Remember that P is a sub-path of C'(H) not equal to C'(H) (at least f is not in F;), and the length
(in terms of number of edges) of C'(H) is less than or equal to £&. Thus, for all r, 1 < r < d -1,
wyy, (P) <&—1. Since K € [€...N]*", K" € [1...N]*"and (I,j+ 1, K') belongs to the iteration
domain [1...N]%

According to Algorithm Loop_Nest_Generation and according to the definition of edge f, in-
stance (I,j+ 1, K’) of statement h(f) depends on instance (1,7, N,..., N) of statement ¢(f).

From Property 1, we know that none of the edges of P; are critical edges. Thus, according
to Algorithm Loop_Nest_Generation, for each edge e : S — S, of P;, and for every vector I in
[1...N]4, we have:

o If [(e) = oo, then instance ([y,...,1;) of statement Sy depends on instance (Iy,...,1;) of
statement 5.

o If [(e) < oo, then instance (Iy,..., liey—1, Lyey + 1, Liey41, - - -, 1q) of statement S, depends on
instance (Iy,..., Liey—1, L), Lie)415 - - -5 La) of statement S, if, and only if, [y +1 < N, i.e.
if I +w(e) <N.

Furthermore, by definition of [, all edges of P, have a level greater than or equal to [: the [— 1 first
components of w(F;) are null. Thus, we can build a dependence path in the expanded dependence
graph of L', that corresponds to all edges of P, from instance (I, + 1, K') of statement h(f),
to instance (1,7 4+ 1 4+ wi(P), K] + w1 (F;), ..., K\, + wqa(F;)) of statement ¢(f), i.e. instance
(I,j+14+w(F), K).

Finally, since instance (I,j+ 1, K') of statement h(f) depends on instance (1,5, N,..., N) of
statement ¢(f), we get the desired path from iteration (1,7, N,..., N) of statement ¢(f) to iteration
(1,74 14 w(F;), K) of the same statement. |

A.3.3 Conclusion for the initialization case

In the next corollary (Corollary 2), we simply concatenate the paths built in Lemma 5 for the
different paths P;. This permits to build a path in the expanded dependence graph of L’ whose
projection in the reduced leveled dependence graph is C'(H). This form the path announced in the
proof overview (Section A.2).

Corollary 2 Let I be a vector in [1...N]'7', let j be an integer such that 1 < j < N —w,(C(H)),
and let K be a vector in [, ..., N]9=".

Then, there exists, in the expanded dependence graph of L', a dependence path ® from instance
(I,3,N,...,N) of statement t(f), to instance (I,j+ w,(C(H)),K) of the same statement, and
which visits all nodes of H.

Proof: Let j; = j and 7, = j + Z:n_:l1(1 + w;(Py)) for 2 < i < k. Then, for each value ¢
from 1 to k — 1, apply Lemma 5 for P, with K = (N,...,N) and with the value of j; defined
above. This defines k — 1 paths that can be concatenated to form a dependence path from instance
(I,j,N,...,N) of statement t(f) to instance (I,j + S5 (1 + w,(Py)), N,...,N) of the same
statement.

Then, applying once again Lemma 5 for P, in its general setting, we get a dependence path
from instance (1,7, N,..., N) of statement ¢(f) to instance (1,54 2221(1 +w;(Py)),N,...,N) of
the same statement, i.e. instance (/,j+ w,(C(H)), K).

25

The projection in the reduced leveled dependence graph of L’ of the path we just built is the
concatenation of the paths f+4 P, i.e. C(H). As C'(H) visits all statements in H, this path visits
all statements in H. [

Actually, the theorem that we need for the induction proof is a corollary of Corollary 2 which
we prove here (Corollary 3). We could use Corollary 2 rather than Corollary 3, but we prefer this
last formulation for the sake of regularity as it gives for the subgraphs H of depth 1 exactly the
result that will be proved on subgraphs of greater depths (Theorem 3).

Corollary 3 Let I be a vector in[1...N]'71, let j be an integer such that 1 < j < N—|V|w,(C(H)),
and let K be a vector in [, ..., N]9=".

Then, there exists in the expanded dependence graph of L' a dependence path ® which visits all
nodes of H, which starts at instance (I,j,N,...,N) of statement t(f), and which ends at instance
(L,j+ |V|w(C(H)), K) of the same statement.

Proof: This path is build by the concatenation of |V| paths built by Corollary 2, exactly as
the path built for Corollary 2 has been built by the concatenation of k paths built by Lemma 5. Il

Now that the desired result for the initialization case of the induction is established, we study
the general case.

A.4 General case of the induction

We first formulate formally the induction hypothesis in Section A.4.1. In Section A.4.2, we define
what we are going to work on. In Section A.4.3, we prove some intermediate results. Finally, in
Section A.4.4, we build the desired path from the previously established results.

A.4.1 Induction hypothesis

We present in this section the induction hypothesis from which the induction proof will be estab-
lished in Section A.5. The fact that the induction hypothesis requires quite complicated conditions
is mainly technical and will become clear all along Section A.4.

The induction hypothesis Z#H (k) is parameterized by the depth k of the subgraph H. Schemat-
ically, ZH (k) is true if, for all subgraphs H that appear during the processing of G, there exists
a dependence path in the expanded dependence graph of I/ which visits each statement S of H
Q(N4=H)=1) times.

Definition 16 (Induction hypothesis at depth k: Z#H(k))
We suppose that N is greater than (d + 1)|V|€. The induction hypothesis TH(k) is true, if
and only if, for all subgraphs H of G such that:

o H is strongly connected with at least one edge (H is a subgraph of G' that appears during the
processing of G),

o d(H) <k,

there exists a path ®, in the expanded dependence graph of L', from instance (I, j, N, ..., N) of state-
ment t(C(H)) to instance (I,j+ |V|wym (C(H)), K) of the same statement, ¥ I € [1... N]H)-1,
Vi, 1<j<N—|Viwm(C(H)),VKEe[N-—(d+1—dH))|VI|... N and such that for
each statement S in H the S-length of ® is Q(N4H)=1) times.

26

Before going further, we give here some remarks on the importance of the different hypotheses,
conditions and values on the components of the index vector of the starting and ending statements
of the built paths:

The I(H) — 1 first components of the index vectors are constant along this dependence path.
This simplify our work when we connect this cycle with a cycle built for the subgraph of
smaller depth: we will just have to look at the d — [(H) + 1 last components.

The [(H)-th component is increased by a constant factor, namely |V|w;) (C(H)). In par-
ticular this factor is independent of N. Joined to the freedom we have for the value of the
d — [last components of the ending statement index vector (variable K'), this will allow us to
connect consecutively Q(N) times the cycles built for smaller depths.

The subgraphs of depth 1 do satisfy this induction hypothesis:

Theorem 2 ZH(1) is true.

Proof: This theorem is a simple corollary of Corollary 3 since in this case N®(H)=1 = 1, and

N —(d+1-d(H))|VI§ z d(H)|VIE = €. o

A.4.2 Data, hypotheses and notations

We recall or define in this subsection the data, hypotheses and notations which will be valid all
along Section A.4. In particular, Property 2, Corollary 4, Lemmas 6 and 7, and Theorem 3 are
proved under the hypotheses listed here.

H is a subgraph of GG, strongly connected, with at least one edge, that appears during the
processing of G.

lis the level of H: [=1(H).
We assume that ZH (k) is true for k < [: the goal of this section is to show that Z#(I) is true.

H,, ..., H.are the ¢ subgraphs of H on which Procedure Recursive_Calls is recursively called.
In particular, H; satisfies ZH(d(H;)) since each H; is strongly connected, with at least one
edge and has a depth strictly smaller than the depth of H.

For i, 1 < i < ¢, we denote by ®; the dependence path defined for H; by the induction
hypothesis ZH(d(H;)).

£ is the integer of the same name computed on G' by Procedure First_Call.
f is the critical edge of H.

C'(H) is the cycle which contains f and visits all statements in H and which is defined by
Procedure Recursive_Calls during the processing of H.

The cycle C'(H) can be decomposed into: C(H) = f, P'y, f, P's, f,..., [, P'r_1, [, P, where,
for 7, 1 <7 < k, the path P’; does not contain the edge f. Remark that, since C'(H) is a
cycle, the first statement in the path P’; (i.e. t(F’;)) is the head of the edge f (i.e. h(f)),
and that the last statement in P’; (i.e. h(F';)) is the tail of edge f (i.e. (f)).

27

e (' is the concatenation of |V| times the cycle C'(H). C” is naturally decomposed into: C’ =
LHPL [Py foeoy [y Bvie—1s fy Pvie, where By = P’ (imoar). Introducing C” permits to simplify
the proof that is more technical than difficult.

e If P is a path, and p and ¢ are two vertices of P, then p £, q denotes the sub-path of P
which starts at vertex p and which ends at vertex q.

e If pis a vertex of a path P of H, we denote by §(P, p,l’) the first vertex of p il h(P) followed
by a critical edge whose level is strictly less than ['.

e As the number of strongly connected components (which is at least ¢) in H (subgraph of
(7) is smaller than the number of vertices (|V]) in G, we have ¢ < |V|. As C’ contains
|V| occurrences of each path P’;, for 1 < i < k, we can define s,...,s. as occurrences of
HC(Hy)), ..., t(C(H,)) in C" such that each path P; (for 1 <i < |V]|k) contains at most one
of the s, (1 <m < |V]).

A.4.3 A few bricks for the wall (part II)

We prove in Property 2 that a path P of H which does not contain the critical edge of H, usually
denoted f, cannot contain any critical edge of level less than or equal to [.

Property 2 Let P be a path of H which does not contain the edge f. The critical edges contained
in P are of levels greater than or equal to [+ 1.

Proof: An edge can only be selected as critical at the level where it is removed from the calling
graphs. Only one edge, f, is selected as critical at level [for H. But f is not part of P by hypoth-
esis. All other edges of H of level [are deleted from H and H contains no edge at level less than
[by definition of [({ = {(H)). Thus, the critical edges contained in P are of levels greater than or
equal to [4 1. [|

By construction of the paths P, 1 < i < k|V|, P; does not contain the edge f. We can thus
apply Property 2 to these paths:

Corollary 4 Leti be such that 1 < i < k|V|. The critical edges contained in P; are of levels greater
than or equal to [+ 1.

In the following lemma, Lemma 6, we prove that for any path P of H which does not contain
the edge f and whose length is smaller than &, we can build in the expanded dependence graph of
L’ a path whose projection on H is P. Moreover, we express exactly the instances of the statements
visited by P.

This lemma will be applied to sub-paths of the paths F; in Lemma 7.

Lemma 6 Let P be a path of H which does not contain the edge f. Let us suppose that the length
of P is strictly less than &. Let I be a vector in [1...N]'7!, let j be such that 1 < j < N, and let
K be a vector in [£... N4\

Then, there exists a dependence path P in the expanded dependence graph of L' whose projec-
tion onto H is equal to P, and which ends at instance (1,7 4+ w,(P),K) if 1 < j 4w (P) < N.
Furthermore, the path P wvisits the statement that corresponds to a vertex p of P at iteration

(I,j + wi (P) — w, (p £, h(P)) ,K’) where, for [+1 <U' <d, K'i_; = N — wy (p £, S(P, p, l’))
if 0(P,p,l') exists and K'y_ = Kp_y — wy (p £, h(P)) otherwise.

28

Proof: The result is complicated, but the proof is not: it is done by induction and backwards:
from the last vertex of P down to the first one.

The formula is obviously true if P is reduced to a null-length path (i.e. with no edge).

Let us suppose that the property has been proved until a vertex g. Then, there is a path P(q)
from an instance of ¢ to instance (I, j+ w(P), K) of h(P), which visits, for all vertex r between ¢

and h(P), the statement r at instance (1, j+w;(P) —w, (r L h(P)) , K') where, for [+1 < I' < d,
Ky =N—-wy (r N (P, l’)) if §(P,r,l') exists and K'_y = Ky —wyp (r N h(P)) otherwise.
Let us consider the edge e of P whose head is ¢ (p — ¢). We have three cases to consider:

e [(¢) = co. Thus, e is not critical, and, for any I, [+1 < ' < d, §(P,p,l') exists if, and
only if, 8(P, q,l') exists, and then 6(P, p,l") = §(P,q,l'). Furthermore, the edge e has a null

weight, which means that the instance where statement p is visited, (/,j’, K”), is equal to
the instance where statement ¢ is visited.

Thus, j' = j+w (P) —w, (q il h(P)) = j4w (P)—w, (p £, h(P))7 and for any I', [4+1 <
I'<d, K]l_,=N—wp (q £, 5(P,q,l’)) =N —wy (p £, S(P, p, l’)) if 6(P,q,l') =6(P,p,l')
exists and K|/_, = Ky_; — wp (q N h(P)) =Ky_; —wy (p N h(P)) otherwise.

o [(e)<ooandedkFE..

e is not critical. Thus, for any I/, [+1 <" < d, §(P,p,l') exists if, and only if, §(P, q,l’)
exists, and then §(P,p,l') = 6(P, q,l').

w(e) is null except for the [(e)-th component which is equal to 1. For all null components of
w(e), we use the same arguments as for the case [(e) = oo to conclude. Thus, we just have
to look at the [(e)-th component.

l(e) is greater than or equal to . We denote by (I, j’, K”) the instance where the statement
p is visited.
—Ifl(e):l,thenj’:(j—l—w()—wl(qiﬂz))—wl (e)
=j+w(P)—w (e—l—q—>h(P))
= j+w(P)—w (p - h(P))
— If l(e) # 1 (ie. l(e) > 1) and if 6(P, q,l(e)) exists, then:
Kifyor = (N = wie (¢ 5 (P lle D)) = wie(e)
=N — wye (e—l— q S(P, p, (e)))
=N — wye (p—>5Pp7)

— If l(e) # 1 (i.e. l(e) > 1) and if 6(P, q,l(e)) does not exist, then:
Kiloy1 = Kiey—1i — wige) (q =5 (P)) — Wie)(€)
= Kj(ey—1 — wie (e—l—q—>h())
= Kiey—1 — Wie) (P — h(P))

e ¢ ¢ I.. Then I(e) > [because of Property 2.

29

In this case, instance (Jy, .. o Jiey=1y Jieys Jiger 41y - - .,J4) of statement ¢ depends on instance
(Jis oo Jiey—1, Jiey — 1, N, ..., N) of statement p, for any vector J in [1...N]* such that
Jyey — 1> 1.

Furthermore, for any I, [+1 < I’ <l(e), 6(P, p,l') exists if and only if, §(P, ¢,!’) exists, and
then §(P, p,l') = 6(P,q,l'), and for any ', l(e) + 1 < I < d, §(P,p,l') = p.

We just have to look to the components between [(e) and d, as for the other components, the
weight of e is null, ¢ is constant, and thus the same arguments as for the case [(e) = co can
be used to conclude.

We denote by (1,7, K"') the instance where statement p is visited.

— I{e)-th component (i.e. j’). Since wy((e) = 1, we conclude for this component with the
same arguments as for the previous case (/(e) < co and e ¢ F.).

— !-th component, with I’ > [(e). Then, §(P, p,l') = p and K[/ = N. The desired formula
remains true since K/ = N =N — wy (p £, p) =N —wyp (p £, S(P, p, l’)).

We still have to check that the instance where p is visited belongs to [1...N]¢. This is obvious
when looking at the instance formula we just proved:

o j+w(P)—w (p L h(P)) > 1 since p - h(P) is a sub-path of P and j > 1.

e The components of K" are the components of K minus the weight of a sub-path of P, which
is strictly less than &. Since all components of K are larger than £, all components of K’ are
larger than 1.

We now apply Lemma 6 to the paths P;, so as to build a path corresponding to f 4+ F; in
the expanded dependence graph of L’. This is done in Lemma 7. There are two main differences
between Lemmas 5 and 7. The first one is the existence in the paths F; of critical edges which obliged
us to previously establish Lemma 6. The second one corresponds to the cycles ®,,: because of the
desired property on the number of occurrences of each statement in the built path, if F; contains
the vertex s,,, we have to turn Q(N) times round ®,, while building the path corresponding to P;.
This construction is illustrated on Figure 8. Formally:

Lemma 7 Let ¢ be such that 1 < i < |V|k. Let I be a vector in [1...N]'~', let j be such that
1<j<N-—(1+w(P)), and let K be a vector in [N — (d+ 1 —d(H))|V|¢... N4

Then, there exists in the expanded dependence graph of L' a dependence path P; which goes along
f and all edges of P;, which starts at the instance (I,j, N, ..., N) of statement t(f) and which ends
at instance (I,j+ 1+ w,(F;), K) of the same statement.

Furthermore, if s, is a vertex of P;, for some m, 1 < m < ¢, then this dependence path visits,
Q(N4UH=1) times, each statement S of H,,.

Proof: Consider a vector I, an integer j and a vector K according to the theorem hypotheses.
Two cases can occur, depending if one of the vertices of F; is s, for some m, 1 < m < ¢. First
of all, note that:

i. By definition, P; does not contain the edge f.

30

Sm
R
s, —= t(f)
Cm

@ ()

t(f)

Figure 8: As P; contains the vertex s,,, we turn round ®,, (denoted here C.,)

ii. B; is strictly shorter than C'(H) whose length is smaller than . Thus the length of P, is
strictly less than &.

iii. By hypothesis, N > (d+ 1)|V|¢ > (d+ 2 — d(H))|V|{ (since d(H) > 1). Therefore, the
(d — {)-dimensional set [N — (d + 1 — d(H))|V|¢...N]*"" is a subset of [|[V]¢...N]*7 and
thus of [¢...N]4=L

These two properties permit to apply Lemma 6 to sub-paths of F; in the two following cases:

e We suppose that no vertex s, belongs to P;.
Because of the preceding remarks, we can apply Lemma 6 to F;. This gives a path from
instance (I, j+ 1, K’) of statement t(P;) = h(f) to instance (I, 7+ 14w, (F;), K) of statement
h(P;) = t(f), where K’ is defined by Lemma 6. Then we concatenate, in front of this path,
the edge corresponding to f from instance (I, 7, N,...,N) of t(f) to instance (I,j+ 1, K’) of
statement h(f). This leads to the desired result.

e We now suppose that s, is a vertex of P; for some m, 1 < m < ¢. By construction, if m’ # m,
Sy 1s not a vertex of P (see Section A.4.2). We build the path backwards, starting from the
ending vertex of F;.

The previous remarks allow us to apply Lemma 6 to the sub-path of P;: s, RN h(F;). This
gives a path from instance (/,5 4+ 1+ w(F;) — w, (sm AT h(B)) , K') of statement s, to
instance (I,j+ 1+ w(F), K) of statement h(F;) = t(f), where K’ is defined by Lemma 6.
Remark that w;(P;) — w, (sm R h(B)) = wy, (t(B) RN sm). We call this first path P;.

We want, starting from this instance of s,,, to turn (backwards) Q(NN) times round the

cycle @,,. To do so, we use the induction hypothesis ZH(d(H,,)) for H,,. We have first to
check that the path described in ZH(d(H,,)) can be inserted in front of instance (/,j5+ 1 +

wy (t(B) Ly sm) , K') of s,,. In other words, we have to check that the d — [(H,,) + 1 last
components of (1, j+ 14w, (t(B) il sm) , K') satisfy the hypothesis stated in ZH(d(H,,)).

Since, [(H,,) > [, the components that have to be considered are the components of K’. We
thus have to check that:

31

C Kl > N = (d+ 1 — d(H V¢ for I > 1(H,,).
— 1+ V]w,) (C(Hn)) < Ky, < N.

For that, consider the I’ — [-th component of K’: once again, we have two cases to consider:
— 0(P;, sm, ') exists. Then, K’y = N —wy (sm LT 5(B,sm,l’)). Sim LT (P, sm, ') is a

sub-path of P; whose length is strictly less than &. Thus, wy (sm R (P Sms l’)) < &,
and K'yy_; > N =& Now, sinced+1—d(H,) > 1, N-&(>N—(d+1—-d(Hy,))|VIE.
This proves K|,_; > N — (d+ 1 —d(H,,))|VI|¢.

— 0(P;, sm, ") does not exist. Then, K'y_;, = Ky, — wy (sm R h(B)). Sim LT h(F;)
is a sub-path of P, whose length is strictly less than £&. Thus, wy (sm RN h(B)) < &,
and K'y_y > Ky — &> Ky — |V|€. Now, since K-y, > N — (d+ 1 —d(H))|VI|¢ by

hypothesis, we get K/ > N — (d+2—d(H))|V|E=N - (d+1—d(H,))|V|¢.

This proves the first inequality. The second is implied by the first one since N > (d+ 1)|V|£.

We can thus apply the induction hypothesis and we get a dependence path from instance
(Ivj + 1+ w (t(B) i> Sm) JK' I(/l(Hm)—l—lv I(/l(Hm)—l - |V|wl(Hm)(C(Hm))7 N,y N)

of statement s, to instance (I, j+ 14w, (t(B) il sm) , ') of the same statement. We call
this second path Ps.

We now apply the induction hypothesis, in the particular case where all components of K
(with the notations of ZH(d(H,,))) are equal to N and we get a dependence path from
instance (J, k" — |V|wig, (C(Hy)), N, ..., N) of statement s,,, to instance (J, k", N,..., N)
of the same statement, if .J is a vector of [1,..., NJ"=)=1 and if " is an integer such that
1+ |V|wyar, (C(H,y)) < k” < N. Furthermore, this path visits, Q(N*®=)=1) times, each
statement S in H,,.

We let A, = {ﬁf—")‘% — 1J. A, is chosen so that we can use A, times the induction
hypothesis in the form stated above. As K'(,,)—1 has been proved to be Q(NV), and as all

other quantities are constant that depend only on G and not on N, A, is Q(N) too. Therefore,
we get a dependence path, from instance

(14w (HP) 5 0) K oy K a0 -1mt K g, —1= O P DIV w12, (C(Hyn)), N, -, N)
to instance

(L + 14w (HP) 25 0) K K 1ot K- = |V |00, (C(H)), N, N)

of the same statement s,,. We call this path P;. By construction, Ps visits each statement S

in H,, \,Q(N4Hm)=1) times, i.e. Q(NasHn)) = Q(N4sH)=1) times.

Note that by choice of A, K'yq,.)—1 — (Ap + 1)|V]wia,,(C(H,,)) > & and this also holds
for all other components of K’. We can thus apply once again Lemma 6, and we get a
path, that we call Py, from instance (1,7 + 1, K”) of statement h(f) to instance (/,j+ 1+

w (HP) 25 50) K K -1mt K -1 = Qo+ DIV Wi, (C(Hin)), N, ., N) of
statement s,,, where K" is defined by Lemma 6.

Then, we concatenate in front of this path the dependence corresponding to the edge f from
instance (I, 7, N,..., N) of statement ¢(f) to instance (I, j+ 1, K”) of statement h(f).

Finally, concatenating paths f + P4, Ps, P2 and P; leads to the desired path.

32

A.4.4 Conclusion for the general case

The previous lemma leads to the desired theorem (i.e. ZH(l) where [= [(H)) simply by concate-
nating the different paths given by Lemma 7 for each F,.

Theorem 3 IfTH(k) is true, for k <, then TH(l) is true. In other words, we have the following:
Let I be a vector in [1... N7t let j be an integer such that 1 < j < N — |V|w,(C(H)), and let
K be a vector in [N — (d+ 1 —d(H))¢...N]“="
Then, there exists a dependence path ® in the expanded dependence graph of L', from instance
(I,7,N,...,N) of statement t(C(H)) to instance (1,5 + |V|w,/(C(H)), K) of the same statement.
Furthermore, ® visits each statement v in H Q(N*H=1) times.

Proof:

For each i, 1 < ¢ < k|V|, Lemma 7 permits to define a dependence path P;, in the expanded
dependence graph of L', from instance (Iy,...,[,_1,j + E;;ll(l + w(P.)),N,...,N) of statement
t(f) to instance (Iy,...,L_1,j+ S (1 + w(F,)), K) of the same statement, for any vector I in
[1...N]7!, any vector K in [N — (d+1—d(H))¢...N]*" and any integer j such that 1 < 7 < N —
SV (1w (P,)) (remember that since the weights w;(P,) are non-negative, all intermediate sums
4+ (14w (P,)) belong to [1...N] as soon as the two extremal sums j and j+ > V(1 4w, (P,))
do). This path uses the edge f and all edges of P;, and if there exists an integer m, 1 < m < ¢, such
that s, is a point of P, then this dependence path visits each statement S, in H,, Q(N®FH)~1)
times.

For each ¢, 1 < ¢ < Ek|V| — 1, we choose K to be equal to (N,...,N). Thus, P; is a
path from instance ([y,...,0_1,j + 21;11(1 + w(P)),N,...,N) of statement ¢t(f) to instance
(I,.... D1, j+ Y (1+w(P)),N,...,N) of the same statement. These paths can be concate-
nated together and concatenated to the path Py defined above. Finally, we get a path ® from in-
stance (Iy,...,[,_1,7,N,..., N) of statement ¢(f) to instance ([, .. .,Il_l,j+zf|:‘/1l(1+wl(Pr)), K)
of the same statement.

¢ uses f and all edges of paths P;, 1 < i < k|V|, thus it uses all edges of C'(H), and, as C'(H)
visits all statements in H, all statements in H are visited at least once. Furthermore, as for each
value of m, 1 < m < ¢, there exists a path P;, 1 < i < |V|k, which contains s,,, ® visits each
statement S in H,, Q(N¥H)~1) times, for each value of m, 1 < m < ¢. To conclude, remark that

SV w (B,)) is equal to |V]w, (C(H)). |

A.5 The induction

We have almost established the proof by induction. We just write it below in a formal form:

Theorem 4 ZH(k) is true, for all k > 1. In other words, we have the following:

Let H be a subgraph of G which appears in the decomposition of G by Procedure First_Call.
Assume that N is larger than (d 4+ 1)|VI€.

Then for all T in [1...NJ'5=1 for all j such that 1 < j < N — \V|wimy(C(H)), for all K in
[N—(d+1—d(H))¢. . N there exists a dependence path @ in the expanded dependence graph
of L', from instance (1,7, N,...,N) of statement t(C(H)), to instance (I, j+ |V|wym (C(H)), K)
of the same statement. Furthermore, ® visits each statement S in H Q(N4H=1) times.

33

Proof:

As previously announced the proof is a proof by induction on the depth d(H) of H. Theorem 2
proves that Theorem 4 is true for all subgraphs of depth 1. Furthermore, if the property is true for
all subgraphs of depth k < [, the property is true for subgraphs of depth { (Theorem 3). Therefore,
the theorem is true by induction. [|

This theorem is not the final result, as we want in fact a path that visits each statement S in H
Q(N4=(H)) times to prove the optimality: however, this is a simple extension of the previous result,
as shown in the next section.

A.6 The optimality theorem

Theorem 5 Let H be a subgraph of G which appears in the decomposition of G by Procedure
First_Call. Assume that N is larger than (d 4+ 1)|V|§. Then there exists a dependence path ® in
the expanded dependence graph of L', which visits each statement S in H Q(N4H)) times.

Proof:

Theorem 4 gives, for any vector [in [1...NJ")=1 for any integer j, 1 < j < N—|V]wygm)(C(H)),
and for any vector K in [N — (d+ 1 — d(H))¢. .. N4 a dependence path, in the expanded
dependence graph of L', from instance (/,j, N,..., N) of statement ¢(C(H)), to instance ([, j+
|V|wimy(C'(H)), K) of the same statement. Furthermore, this path visits each statement S in H
Q(NUH)=1) times.

Among others, we can consider the paths from instance (I, (u—1)|V]wym (C(H))+1,N,...,N)

of statement ¢(C(H)) to instance (I, pu|V|wy g (C(H)) + 1, N,...,N) of the same statement, for
any value of p between 1 and {M%J This permits to define Q(N) paths that can be con-
catenated together into a longer path ®. Finally, since each of these paths visits each statement S

of H, Q(N4sH)=1) times, ® visits each statement S of H Q(N*H)) times. |

34

