Gil Utard

Validation de la compilation des boucles while Data-Parallel C sur des architectures a m emoire partag ee

Keywords: Concurrent Programming Data-Parallel Languages Compilation Validating Compilation Scheme Axiomatic Semantics, R esum e un seul point d e d ependance : avec deux ou plusieurs points de d ependance : : : 12 3, 2 Interblocage et preuve d e n o n i n terblocage : : : : : : 14 3, 3 Absorption des synchronisations : : : :

This report focuses on the compilation of the while loops in data-parallel languages for MIMD Shared Memory architectures. An e cient compilation must decrease the number of global synchronizations due to dependencies. We v alidate an optimization suggested by Hatcher and Quinn for the DPC language. It consists in splitting the original loop into two loops: one computation loop without any additional control dependencies, and one waiting loop to assure termination. Computation loop's body presents a minimal number of global synchronizations. We study informaly its correction proof, and give the methodology leading of its conception. The formal proof is based on the axiomatic semantics of Owiki and Gries. We give an axiomatization of the global synchronization statement, and specify which are the su cient conditions for a non-deadlocking execution. In Hatcher and Quinn's solution, we observe that the waiting loop is independant o f the computation one. The former loop absorbs residual synchronizations of any parallel program. We conclude by p r e s e n ting a modular method to elaborate parallel programs.

Introduction

On assiste actuellement a un engouement croissant pour les langages a parall elisme de donn ees. Jusqu'alors con n e a la programmation des machines SIMD, ce type de langage se lib ere de son origine architecturale, et peut être consid er e comme un mod ele de programmation a part enti ere 3]. La preuve en est le formidable e ort du \High Performance Fortran Forum" pour d e nir \une sp eci cation d'un langage portable de la station de travail a l a m a c hine massivement parall ele " 5].

Les deux grandes caract eristiques des langages a parall elisme de donn ees sont l e synchronisme, qui permet de d evelopper et de mettre au point les applications de mani ere ais ee, et le parall elisme explicite, qui permet d'appr ehender la complexit e d'un programme par le concepteur et le compilateur. Toute la puissance des langages data-parall eles proviendra de compilateurs capables d'exploiter au mieux les architectures cibles. C'est la voie adopt ee par Hyper C et C qui proposent une compilation sur di erentes architectures. Un e ort important d o i t d o n c être port e sur la g en eration de code exploitant au mieux le mat eriel.

Dans les applications scienti ques, l'e ort de la compilation doit se porter sur les boucles. C'est l a e n g en eral que l'application concentre ses calculs. Dans leur pr esentation du langage Data Parallel C (DPC 7]), Hatcher et Quinn proposent une m ethode de compilation originale des boucles pour les machines MIMD a m emoire partag ee. Elle minimise le nombre de barri eres de synchronisation dans le corps de la boucle de calculs. L'objet de cette note est de d emontrer formellement la correction de cette m ethode de compilation.

Dans un premier temps nous pr esentons DPC ainsi que le processus de compilation sur architecture a m emoire partag ee. Ensuite nous etudions di erentes transformations possibles de la compilation de boucles DPC en SPMD, et nous d ecrivons incr ementalement la solution adopt ee par Hatcher et Quinn. Ensuite nous rappelons la d e nition d'un langage parall ele asynchrone a m emoire partag ee d'Owiki et Gries, et son syst eme de preuve axiomatique associ e. Nous y introduisons une axiomatisation de la barri ere de synchronisation et des conditions su santes de non-blocage. Nous validons formellement l e s c h ema de compilation de Hatcher et Quinn, et nous montrons que leur solution r esoud un probl eme plus g en eral: l'absorbtion des synchronisations r esiduelles d'un programme parall ele. Nous en d eduisons une m ethode de conception modulaire des programmes parall eles.

1 Le langage Data Parallel C et sa compilation Comme son nom l'indique, Data Parallel C est une extension du langage C au parall elisme de donn ees, tout comme mpl sur la maspar 10], ou Hyper C 9]. Ce langage correspond historiquement aux premi eres versions de C (jusqu' a l a v ersion 6.0) sur la Connection Machine 12].

Dans le mod ele de programmation data-parall ele, les objets de base sont les tableaux dont les composantes sont accessibles en parall ele. Deux types d'op erations peuvent être appliqu es a ces objets :

{ les op erations d' el ements a el ements telles que l'addition de matrices { les op erations de r earrangement telles que la transposition d'une matrice.

Un programme est une composition s equentielle de telles op erations. Chaque op eration est associ ee a un ensemble de composantes o u elle sera appliqu ee : ces composantes sont dites actives. L'ensemble des composantes actives est appel e l e contexte d'activit e ou la port ee d u p arall elisme. Le parall elisme est ainsi explicitement sp eci e par les op erations parall eles appliqu ees aux objets.

Historiquement c e m o d ele de programmation est issu du mod ele d'ex ecution SIMD. C'est celui mis en uvre dans l'architecture de la CM2 ou de la Maspar MP-1 : une unit e d e c o n trôle centralis ee di use de mani ere synchrone les instructions du programme a un ensemble de processeurs, qui les ex ecute ou non selon leur activit e. L'activit e s e d eduit des di erentes alternatives du programme.

Dans DPC, les tableaux parall eles sont a p p e l es domain. A c haque el ement d ' u n domain est associ e u n processeur virtuel. L e s o p erations el ements a el ements sont d enot ees par les op erateurs s equentiels classiques tels que l'addition ou la multiplication.

Dans DPC, les blocs data-parall eles et s equentiels sont explicitement s epar es contrairement a Hyper C ou mpl. L'activation d'un bloc data-parall ele est sp eci ee par une structure de contrôle suppl ementaire : la s election de domain (domain select statement). A l'int erieur d'un bloc dataparall ele, les structures de contrôle C classiques (while, if,) acqui erent une nouvelle s emantique.

Composition s equentielle : S 1 S 2 . Les instructions S 1 et S 2 sont e x ecut ees en s equence, de mani ere synchrone, par l'ensemble des processeurs actifs.

domain matrice f double A row N] Bcol N] Crow N] g Ma t N] main()f domain matrice]:f int i j i = 0 while (i < N) f C row i] = 0 j = 0 while (j < N) f C row i]+ = A row j] Ma t i]:B col j] j++ g i++ g g g
Fig. 1 -Multiplication de matrices en DPC: C = A B Alternative :if (B) S 1 else S 2 . L'ensemble des processeurs actifs evaluent l'expression B. L e s processeurs actifs qui ont evalu e B a faux deviennent inactifs. S 1 est ex ecut e dans le nouveau contexte. L'activit e initiale est restaur ee. Les processeurs actifs qui avaient evalu e B a v r a i deviennent inactifs. S 2 est ex ecut e dans ce nouveau contexte. L'activit e initiale est restaur ee.

It eration : while (B) S. A c haque it eration, les processeurs actifs evaluent la condition B. L e s processeurs qui ont evalu e B a faux deviennent inactifs pour toutes les it erations suivantes. Le corps S est alors ex ecut e par les processeurs restant actifs. L'it eration termine lorsque tous les processeurs sont inactifs. L'activit e initial est alors restaur ee. Il faut noter qu'un processeur inactiv e au cours de l'it eration ne pourra redevenir actif, même si un autre processeur modi e l' etat de la machine tel que B s' evaluerait a vrai. Ce comportement est di erent de l'it eration whilesomewhere de Hyper C, o u le processeur serait r eactiv e. Le code de la gure 1 est un exemple de programme DPC. Ce programme calcule la multiplication de matrices d'ordre N. Ce programme d e nit le domain matrice comme un tableau lin eaire de N el ements. Chaque el ement est trait e par un processeur virtuel. Chaque processeur k poss ede le k e vecteur ligne de la matrice d'entr ee A, l e k e vecteur colonne de la matrice d'entr ee B, e t l e k e vecteur ligne de la matrice r esultat C. L'instruction domain matrice] est la s election de domain qui active les processeurs virtuels. Les lignes r esultats sont calcul ees en parall eles, et chaque processeur k calcule s equentiellement l e k e vecteur ligne de la matrice r esultat C. Virtualisation. Chaque processeur physique va s i m uler plusieurs processeurs virtuels. Ainsi, entre chaque synchronisation, une boucle ex ecute le code data-parall ele sur ses di erentes instances de processeurs virtuels.

Une compilation e cace doit minimiser le nombre de points de synchronisation. Des m ethodes de r eduction du nombre de points de synchronisation pour les programmes sans boucle sont c o n n ues 8]. Nous nous int eressons ici exclusivement a l a r e ecriture des structures de contrôle pour les boucles while DPC. Hatcher et Quinn proposent une m ethode optimis ee. Nous pr esentons une etude et une preuve formelle de celle-ci.

2 Compilation des boucles while data-parall eles 2.1 Description du langage cible L'architecture cible est une machine MIMD a m emoire partag ee (MIMD-SM). Les auteurs pr esentent leur sch ema de traduction dans le langage C de la machine Sequent (Sequent-C). Pour les besoins de la validation, nous pr esentons le sch ema de traduction dans un langage parall ele simpli e. Un programme est une composition parall ele de processus s equentiels. Chaque processus est ex ecut e par un processeur, et est sp eci e par un langage de programmation s equentielle classique enrichi de primitives de synchronisation. Les communications entre processeurs s'e ectuent par l'interm ediaire de la m emoire partag ee.

La partie s equentielle du langage de programmation se d e nit classiquement.

A ectation : x := E. Composition parall ele : S 1 j j : : : j jS p . Les programmes s equentiels S 1 : : : S p s'ex ecutent concurremment.

Barri ere de synchronisation : sync. Un processeur qui commence l'ex ecution de cette instruction ne peut la terminer que quand tous les autres auront aussi commenc e l ' e x ecution d'un sync. D'autre part, chaque processeur i poss ede une variable particuli ere nsync i qui repr esente le nombre de synchronisations e ectu ees. calcul : tous les processus dans cet etat coop erent e t s e s y n c hronisent p a r sync attente : les processus qui ont termin e leur calcul, continuent a participer aux synchronisations. Le programme termine lorsque tous les processus sont d a n s l ' etat attente.

Un absorbeur de synchronisations correspond a la partie attente des processus et assure l'absence de blocage du programme parall ele. La partie attente de la traduction optimis ee pour une 3.1 V eri cation de programmes parall eles par une approche axiomatique Nous rappelons bri evement les principes de la v eri cation de programmes parall eles bas es sur la s emantique axiomatique du langage de programmation. Cette s emantique se pr esente sous la forme de triplets fPg S fQg, o u P et Q sont d e s p r edicats d ecrivant les etats possibles de l'ex ecution du programme S. Plus pr ecis ement, une assertion fPg S fQg signi e que si l' etat du programme satisfait P avant l ' e x ecution de S, alors il satisfait Q apr es celle ci. Un ensemble d'axiomes et de r egles d'inf erences sur la syntaxe des programmes fournit une m ethode de d erivation de telles preuves.

Les La preuve d'un programme parall ele doit tenir compte des interactions possibles entre les processeurs. Owiki et Gries ont propos e une m ethode de preuve en deux phases 11]. La phase initiale consiste a v eri er que l'ex ecution concurrente d'un programme s equentiel n'interf ere pas sur l'ex ecution des autres. En s emantique axiomatique, cela signi e que toute instruction d'un programme s equentiel, s'ex ecutant dans un etat satisfaisant s a p r e-condition, n'a ecte aucune condition des autres programmes. Plus formellement, cela peut s' ecrire : D e nition 2 Soit une instruction C d'un programme s equentiel S, e t pre(C) sa pr e-condition dans fPg S fQg, soit un programme S 0 , on dit que C n'interf ere p as avec fP 0 g S 0 fQ 0 g si :

1. fQ 0 ^pre(C)g C fQ 0 g 2. quelle que soit l'instruction C 0 de S 0 et sa pr e-condition pre(C 0) dans fP 0 g S 0 fQ 0 g, o n a fpre(C 0) ^pre(C)g C fpre(C 0)g.

Ceci concerne une une instruction isol ee, pour le cas g en eral on a : D e nition 3 On dit que les programmes s equentiels annot es fP 1 g S 1 fQ 1 g fP 2 g S 2 fQ 2 g : : : fP p g S p fQ p g sont libres d'interf erences si quelque soit l'instruction d'a ection C d'un programme S i , alors pour tout j 6 = i, C n'interf ere p as avec fP j g S j fQ j g.

On en d eduit la r egle suivante :

Composition parall ele fP 1 g S 1 fQ 1 g fP 2 g S 2 fQ 2 g ::: fP p g S p fQ p g sont libres d'interf erences fP 1 ^P2 ^::: ^Pp g S 1 j jS 2 j j::: j jS p fQ 1 ^Q2 ^::: ^Qp g

Il est a noter que la notion de non-interf erence est associ ee aux programmes annot es par leur preuve, c.-a-d. qu'un même programme sera libre ou non d'interf erences selon ce que l'on veut prouver. Par exemple :

fx 6 = 0 g x := 1=x ftrueg j j f trueg x := x ; 1 ftrueg n'est pas libre d'interf erences. Par contre : fx 6 = 0 g x := 1=x ftrueg j j f x 6 = 1 g x := x ; 1 ftrueg est libre d'interf erences. Il reste a d e nir une axiomatisation de la primitive de synchronisation sync. On note par ;! nsync le vecteur d'ordre p (nsync 1 : : : nsync p), k un vecteur d'ordre p et 1 l e v ecteur unit e d'ordre p.

Synchronisation

f ;! nsync= kg sync f ;! nsync= k + 1g tous les processeurs passent ensemble la barri ere de synchronisation et le compteur local est incr ement e. On en d eduit les deux propri et es suivantes :

Propri et e 3.1 (Locale) le passage d'une barri ere de synchronisation incr emente le compteur local, i.e. pour tout processeur i on a :

fnsync i = kg sync fnsync i = k + 1 g
Propri et e 3.2 (Invariant de synchronisation) les processeurs ne peuvent passer une barri ere de synchronisation qu'ensemble, i.e. l'instruction sync v eri e l'invariant suivant : f9m : 8k : nsync k = mg sync f9m : 8k : nsync k = mg

Interblocage et preuve de non interblocage

Le syst eme de preuve d ecrit pr ec edemment permet de v eri er la correction partielle : la preuve ne s'int eresse pas aux propri et es de terminaison des programmes parall eles. La correction est dite totale quand le syst eme de preuve permet de plus de v eri er la terminaison des programmes. Une ex ecution de programme parall ele peut ne pas terminer pour deux raisons principales : { par divergence, une des composantes s equentielles est dans une boucle in nie { par blocage, une des composantes reste bloqu ee sur une primitive d e s y n c hronisation.

Nous ne nous int eressons ici qu' a la preuve de non blocage d'un programme parall ele. D e nition 4 (Blocage) Soit S S 1 j j::: j jS p un programme parall ele sur p processeurs et un etat. On dit que S bloque a p artir de , s'il existe une ex ecution de S partant de l' etat , telle qu'il existe deux processeurs i et j (i 6 = j) avec :

{ l e p r ocesseur i ex ecute une instruction sync de S i { l e p r ocesseur j a termin e l'ex ecution de S j .

Th eor eme 1 Soit S S 1 j j::: j jS p un programme parall ele sur p processeurs. On note par S k j les instructions sync de S j . Pour tout j, o n n o t e pre(S k j) et post(S j) les assertions d eriv ees d'une annotation valide fPg S fQg. S i p our tout i et j, i 6 = j on a :

(_ k pre(S k j) ^post(S i))) fa ls e alors le programme S ne bloque pas a p artir de tout etat initial satisfaisant P.

Preuve soit un etat tel que satisfait P et S bloque sur . P ar d e nition, cela signi e qu'il existe une ex ecution de S partant d e telle qu'un processeur i ait termin e l'ex ecution de S i , e t qu'il existe un k tel qu'un processeur j 6 = i ex ecute l'instruction S k j sync. S o i t 0 l' etat courant a ce point d e l ' e x ecution. De par la d e nition de la validit e 1, cela signi e que 0 j = post(S i) e t 0 j = pre(S k j). D'o u contradiction.

Absorption des synchronisations

D e nition 5 (Absorption) Soit un programme parall ele sur p processeurs C = C 1 j j::: j jC p . Soit E un ensemble d' etats. Un ensemble de p programmes s equentiels A = (A i) 16i6p est un absorbeur de synchronisations pour C selon E si le programme parall ele (C 1 A 1) j j: : : j j(C p A p) ne bloque pas a p artir de tout etat 2 E . La traduction d'un while DPC a une d ependance est une illustration de l'absorption des synchronisations. La traduction annot ee est repr esent ee sur la gure 8. Pour un processeur i la partie calcul est repr esent ee par le bloc de code C i et la partie absorption par le bloc de code A i . Soit E l'ensemble des etats tel que quelque soit 2 E , j = 9m : 8k : nsync k = m. L'ensemble des programmes s equentiels A = (A i) 16i6p est un absorbeur de synchronisations pour le programme parall ele C = C 1 j j::: j jC p et E. En e et, pour tout i et j, i 6 = j, o n a : { Post(A i) ^Pr e (C 1 j)) fa ls ecar Po s t (A i)) Actif j = fa ls eet Pr e (C 1 j)) Actif j = true { Post(A i) ^Pr e (A 1 j)) fa ls ecar Post(A i)) Actif j = fa ls eet Pr e (A 1 j)) Actif j = true { Post(A i) ^Pr e (A 2 j)) fa ls ecar l'invariant sur le nombre de synchronisations 9m : 8k : nsync k = m est conserv e, et Po s t (A i)) Even(nsync j) e t Pr e (A 2 j)) Odd(nsync j) { Post(A i) ^Pr e (A 3 j)) fa ls ecar Po s t (A i)) 8 k : Actif k = fa ls eet Pr e (A 3 j)) 9 k :

Actif k = true { Post(A i) ^Pr e (A 4 j)) fa ls ecar l'invariant sur le nombre de synchronisations 9m : 8k : nsync k = m est conserv e, et Po s t (A i)) Even(nsync j) e t Pr e (A 4 j)) Odd(nsync j) D'apr es le th eor eme 1, le programme parall ele (C 1 A 1) j j::: j j(C p A p) est exempt de blocage. La seule hypoth ese qui est faite sur la partie calcul, est que l'assertion fActif i = trueg est invariante pour C i . L'ensemble des programmes s equentiels A peut servir de squelette a u n e n s e m ble d'absorbeurs de synchronisations. Soit un ensemble de p variables X = (X i) 16i6p , et l'ensemble de p programmes s equentiels A X] = (A i X]) 16i6p d e ni comme suit : A i X] if Even(nsync i) then sync end X i := fa ls e sync while (_ k X k) do sync sync end

C i 8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : f9m : 8k : nsync k = mg Actif 0 i := Actif i ^bi Actif i := true while (Actif 0 i) do S i f9m : 8k : nsync k = m ^Actif i = trueg C i sync T i Actif 0 i := Actif 0 i ^bi end f9m : 8k : nsync k = m ^Actif i = trueg A i 8 > < > :
if (even (nsync i)) then f9m : 8k : nsync k = m ^Actif i = true ^Even(nsync i)g A Propri et e 3 . 3 Soit un programme parall ele sur p processeurs C = C 1 j j::: j jC p . S o i t p variables X i de C. Soit un ensemble d' etats initiaux E. S i E j = 9m : 8k : nsync k = m, et s'il existe une annotation valide du programme parall ele fPg C fQg telle que : { E j = P { l'assertion fX i = trueg est invariante pour C i alors, l'ensemble des programmes A X] = (A i X]) 16i6p est un absorbeur de synchronisations pour C et E.

La preuve est une application du th eor eme 1 comme l'exemple pr ec edent.

Cons equence 1 Tout programme parall ele C = C 1 j j ::: j jC p peut être l i b er e de risque de blocage.

On introduit un ensemble de nouvelles variables X i , e t l e p r ogramme C 0 = (X 1 := true sync C 1) j j::: j j(X p := true sync C p) a c omme absorbeur de synchronisations A X] pour tout ensemble d' etats initiaux E tel que E j = 9m : 8k : nsync k = m.

4 Compilation de DPC et modularit e de programmes parall eles 4.1 Retour a la compilation de boucles while DPC Soit Actif = (Actif i) 16i6p . P our toute boucle while DPC a n d ependances, il existe une traduction qui ne bloque pas. Le sch ema de traduction est pr esent e sur la gure 9. Si aucun bloc de code S j i ne modi e une variable de Actif, l'assertion fActif i = trueg est invariante dans la boucle de calcul du processeur i. D'apr es la propri et e 3 . 3 , A Actif] est un absorbeur de synchronisations pour tout ensemble d' etats initiaux E tel que E j = 9m : 8k : nsync k = m. L'absorbeur de synchronisations est ind ependant du nombre de d ependances.

Il est a noter que cette traduction n'est possible que de par la s emantique du while DPC. Les processeurs devenus inactifs dans la boucle ne pouvant être r eactiv es par des e ets de bords des processeurs actifs, il est possible de d egager au cours de l'ex ecution deux boucles successives calcul et attente. Cette optimisation est donc impossible dans le cas du whilesomewhere de Hyper C qui permet la r eactivation de processeurs inactifs par des e ets de bords des actifs. Cela souligne l'importance du choix de la s emantique des structures de contrôle pour une compilation e cace. U = (S 1 sync T 1) j j: : : j j(S p sync T p) v eri e la sp eci cation fPg U fQg. Preuve De par la s emantique de l'instruction sync, e t d e p a r l ' h ypoth ese de non blocage de S, aucun processeur i ne pourra entamer le bloc de code T i alors qu'il reste un processeur j ex ecutant une partie de S j . D'autre part, comme S est sp eci e p a r fPg S fRg, les processeurs ne d ebuterons l'ex ecution du bloc de T qu' a partir d'un etat satisfaisant R. Comme T est sp eci e par fRg T fQg, alors l' etat nal satisfera Q.

Compositionnalit e de programmes parall eles

Il existe donc un moyen pratique de composer s equentiellement deux programmes parall eles sur p processeurs S et T : { s i S n'est pas libre de blocage, lui adjoindre un absorbeur de synchronisations (par exemple

A X] comme le sugg ere la consequence 1)

{ e ectuer la composition s equentielle r epartie [START_REF] Apt | Veri cation of Sequential and Concurrent Programs[END_REF]) de S, sync et T, i . e .

2. 2 Fig. 3 -

 23 Fig. 2 -Code DPC avec une d ependance et une premi ere t r aduction

2. 3 Fig. 5 -

 35 Fig. 5 -Code DPC avec d e u x d ependances et une traduction directe

=Fig. 7 -

 7 Fig. 7 -Suppression de la synchronisation redondante dans la boucle de calcul

Fig. 8 -

 8 Fig. 8 -Absorption de synchronisations

Fig. 9 -

 9 Fig. 9 -Sch ema de traduction sans blocage d'une boucle a n d ependances

 U = (S 1 sync T 1) j j::: j j(S p sync T p) Cette technique permet une approche modulaire de la conception des programmes parall eles. L'application est d ecompos ee en couches successives. Le d eveloppement d e c haque couche est e ectu e en faisant abstraction des probl emes de blocages, l'existence d'absorbeurs universels permettant d'assurer le non-blocage de chaque couche. 5 Conclusion Dans cette etude de la compilation des boucles DPC propos ee par Hatcher et Quinn, nous avons d egag e une m ethode de ra nement des sch emas de compilation d'un langage data-parall ele. Celle-ci consiste a : { rechercher des propri et es implicites d'un sch ema de traduction directe { isoler les causes de perte de performance et proposer des optimisations locales { r eintroduire explicitement les propri et es perdues lors de l'am elioration. La propri et e que nous avons cherch e a maintenir est celle de l'absence de blocage de la traduction. Le probl eme pos e rentre dans un cadre plus large : l'absorption des synchronisations d'une it eration r epartie et la d erivation d'absorbeurs corrects. La s emantique axiomatique d'Owiki et Gries a servi de cadre formel a l a v alidation du sch ema de traduction. Nous y avons ajout e une axiomatisation de la barri ere de synchronisation disponible sur toute architecture a m emoire partag ee. Nous avons d e ni la notion de blocage induite par cette nouvelle primitive, et d eriv e des conditions su santes de non blocage. Ensuite, nous avons d e ni la notion d'absorbeur de synchronisations d'un programme parall ele. Nous avons observ e que le sch ema de traduction d'une boucle a une d ependance contenait le sch ema d'un tel absorbeur.

 Chaque processeur peut acc eder aux el ements d'un autre comme dans l'expression Ma t i]:B col j].

	Les quatre phases de compilation d ecrites par Hatcher et Quinn sont les suivantes.
	Analyse des d ependances du code data-parall ele. La m emoire etant partag ee, les interac-tions entre les processeurs sont e ectu ees par de simples lectures en m emoire. De par l'asyn-chronisme de la machine cible, le compilateur doit d etecter les points de d ependance de donn ees entre les processeurs.
	Factorisation des points de d ependance. Le compilateur g en ere des points de synchronisation qui regroupent de mani ere optimale plusieurs d ependances.
	R e ecriture des structures de contrôle. Les points de synchronisation d egag es auparavant sont g en er es a partir du graphe de d ependance des donn ees uniquement. Les d ependances de contrôle ne sont pas prises en compte. Par exemple, un point d e s y n c hronisation peut être g en er e dans un if et non dans le else correspondant. Le code est transform e de telle mani ere que tous les processeurs ex ecutent les points de synchronisation.
	La compilation de DPC pour machines MIMD a m emoire partag ee telles que le Sequent o u la KSR-1 est d ecrite dans 7]. Par rapport au mod ele d'ex ecution SIMD du data-parall elisme, il appara^ t deux di erences majeures :
	{ asynchronisme entre les instructions : chaque processeur poss ede son propre s equenceur
	{ nombre d e p r ocesseurs x e : dans DPC, aucune limite sur le nombre de processeurs virtuels n'est x ee.

 4 -Suppression de la synchronisation redondante dans la boucle de calcul { la boucle d'attente e ectue le test de terminaison sur une parit e x ee { Actif i ne peut être mis a fa u xque sur l'autre parit e (comme il y a une synchronisation avant la boucle de calcul, ceci est vrai pour la premi ere modi cation de Actif i).Une hypoth ese su sante a la correction de cette traduction est que tous les processeurs aient e ectu e u n n o m bre de synchronisations de parit e egale avant d'entamer le code. Dans la traduction globale d'un programme DPC, cette hypoth ese est v eri ee car tous les processeurs e ectuent u n nombre de synchronisations identique pour chaque phase du calcul. Si on supprime la deuxi eme synchronisation dans la boucle de calcul, alors l'invariance de parit e n'est plus v eri ee. La modi cation de l'activit e d'un processeur et l' evaluation du ou global par d'autres ne sont plus n ecessairement s epar ees par une synchronisation. Une solution consiste a (gure 4) : R etablir une parit e x ee a la sortie de la boucle de calcul : chaque processeur ex ecute ou non une nouvelle synchronisation selon la parit e d u n o m bre de synchronisation qu'il a e ectu ees.Mettre a fa u xla variable Actif i a cette parit e seule () :une nouvelle variable Actif 0 i est introduite et repr esente l'activit e pour la boucle de calcul (0), et Actif i est initialis ee a true (") (Actif 0 i) Actif i). Ins erer une synchronisation avant la boucle d'attente : elle s epare la modi cation d'une variable Actif i de l' evaluation du ou global. La synchronisation avant la boucle de calcul n'est plus n ecessaire. Cette solution assure que tous les processeurs termineront e n m ême temps lorsque tous les processeurs seront inactifs. Par rapport a l a p r ec edente version, les processeurs e ectueront deux fois moins de synchronisations.

 r egles pour la partie s equentielle du langage sont d e nies classiquement. Dans ce qui suit x repr esente une variable, E une expression, B une expression bool eenne, S et S i des blocs de programmes s equentiels, P et Q des assertions. la r egle d'it eration. Ici I repr esente ce qu'on appelle un invariant de boucle. Si la condition B est v eri ee, alors l'ex ecution du corps S de la boucle dans un etat respectant l'invariant conduit a un autre etat qui le respecte encore. L'ex ecution s'arrête quand la condition B n'est plus v eri ee.La preuve d'un programme S peut être repr esent ee par le code original agr ement e d'assertions interm ediaires. Il se note par S et est appel e l ' annotation du programme S. P our toute construction C du programme S, pre(C) est la pr e-condition de C dans le programme annot e, et post(C) e s t l a post-condition. D e nition 1 (Validit e) Soit S un programme parall ele. On dit que l'annotation fPg S fQg est valide si pour toute instruction C de S, s a p r e-condition (resp. post-condition) pre(C) (resp. post(C)) dans S v eri e la propri et e suivante :pour toute ex ecution de S a p artir d'un etat satisfaisant P, l ' etat 0 avant (resp. apr es) ex ecution de C satisfait pre(C) (resp. post(C)).

	It eration
	fI ^Bg S fIg fIg while B do S end fI : Bg
	A ectation
	fP E=x]g x := E fPg
	est l'instruction d'a ectation de l'expression E a l a v ariable x. P E=x] r e p r esente l'assertion P o u toutes les occurrences libres de x sont remplac ees par l'expression E
	Alternative
	fP ^Bg S fQg P: B) Q fPg if B then S end fQg
	est l'alternative, c.-a-d. si B est vraie alors l'ex ecution de S dans un etat satisfaisant P m ene a u n etat satisfaisant Q, sinon P satisfait Q
	Composition s equentielle
	fPg S 1 fRg fRg S 2 fQg fPg S 1 S 2 fQg
	est la composition s equentielle. Si l'ex ecution de S 1 partant d'un etat satisfaisant P conduit a un etat satisfaisant R, e t d e m ême si l'ex ecution de S 2 partant d'un etat satisfaisant R conduit a u n etat satisfaisant Q, alors l'ex ecution de la composition s equentielle S 1 S 2 partant d'un etat satisfaisant P conduit a u n etat satisfaisant Q.

est La correction du syst eme de preuve par rapport a l a s emantique op erationnelle du langage de programmation assure que toute annotation correcte d'un programme est valide 11].

Nous etudions la compilation des boucles while des langages data-parall eles pour les architectures MIMD a m emoire partag ee. Une compilation e cace doit r eduire le nombre de barri eres de synchronisation induites par les d ependances. Nous validons une optimisation propos ee par Hatcher et Quinn pour le langage DPC. Elle consiste a d egager une boucle de calcul sans d ependances de contrôle suppl ementaires et une boucle d'attente assurant la terminaison. Le corps de la boucle de calcul contient u n n o m bre minimal de barri eres de synchronisation. Nous etudions informellement sa correction et d egageons la m ethode qui a permis sa conception. La preuve formelle est bas ee sur la s emantique axiomatique d'Owiki et Gries. Nous proposons une axiomatisation de la barri ere de synchronisation et d erivons des conditions su santes de non-blocage. Dans la solution de Hatcher et Quinn, nous observons que la boucle d'attente est ind ependante de la boucle de calcul et permet de r esoudre un probl eme plus g en eral : l'absorption des synchronisations r esiduelles des programmes parall eles. Nous en d eduisons une m ethode de conception modulaire des programmes parall eles.Mots-cl es: programmation parall ele langages data-parall eles compilation validation des sch emas de compilation s emantique axiomatique.