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Abstract

In this paper, we study domino tilings of polygons. We are especially interested
in what happens when the domino prototiles become smaller and smaller. This
study is done using tiling height functions, which are a numerical way to encode
tilings.

The main result of this paper is an analytic characterization of functions which
are limits of height functions when the size of dominoes converges to 0. It is
obtained from lattice properties of sets of tilings induced by height functions.

Keywords: tiling, height function

Résumé

nous tudions ici les pavages de polygones par des dominos. Nous nous intressons
en particulier ce qui ce passe quand ces dominos deviennent de plus en plus
petits. Cette tude est faite au moyen des fonctions de hauteur des pavages, qui
permettent de coder les pavages de manire numrique.

Le rsultat principal de ce papier est une caractrisation analytique des fonctions
qui se trouvent étre des limites des fonctions de hauteur, quand la taille des
dominos tend vers 0. Il est obtenu partir des proprits de treillis des ensembles
de pavages, induites par les fonctions de hauteur.

Mots-clés: pavage, fonction de hauteur
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Abstract

In this paper, we study domino tilings of polygons. We are especially
interested in what happens when the domino prototiles become smaller
and smaller. This study is done using tiling height functions, which are a
numerical way to encode tilings.

The main result of this paper is an analytic characterization of func-
tions which are limits of height functions when the size of dominoes con-
verges to 0. It is obtained from lattice properties of sets of tilings induced
by height functions.

1 Introduction

The study of tilings is a classical subject in mathematics. They appear in
computer science with the famous result of Berger [1], which proves the inde-
cidability of the problem of knowing if, given a finite set of prototiles, the whole
plane can be tiled only using copies of prototiles.

During the last ten years, a lot of advancements have been done about the
understanding of tilings. Especially, W. P. Thurston [8] introduced the notion
of height function of a tiling with dominoes (i. e. rectangles 2 x 1), which is a
numerical way to encode such a tiling.

From the height functions, W. P. Thurston exhibited a algorithm which,
given a polygon P with vertical and horizontal sides, gives a domino tiling of P
(or indicates that there is no tiling).

The notion of height function appears as a very powerful tool in tiling study.
It has later been adapted by different authors ([3], [5], [7]), who produced tiling
algorithms for other sets of prototiles.

In this paper, height functions are used in another direction. Informally,
we want to solve the following experiment : take a polygon P : a tiling with
dominoes induces a height function hgy, defined on points of P with integer
coordinates. Now, change of scales taking a tiling of P with p-dominoes, i. e.
2/2P x 1/2P rectangles. A tiling of T' with p-dominoes induces a height function
ho, defined on points of P of type (a2P,b2P), with a and b integers.



What happens when p is going to infinity 7 What are the functions which
are ”limits of tilings” 7 In section 2, we recall definitions and basic properties of
tiling height functions, and in order to give a precise formulation of our problem.
In section 3, we give some analytic necessary conditions for a function to be a
limit of tilings, and in section 4, we prove that each function satisfying these
necessary conditions can be approached by a tiling function.

Notice that the main tool for this study is the lattice structure, induced by
height functions, of sets of tilings, which is a combinatorial tool, and not an
analytic one.

This paper was inspired by a physical analogy. A solid is formed from an
arrangement, of microscopic atoms, which is a combinatorial structure, but
(except if we have complex tools), we can only get macroscopic values (like
curvature, density ...) about the solid, which are, in a certain way, limits of the
combinatorial structure and have no meaning in a microscopic point of view.
Here, we see how the link between macroscopic and microscopic (or discrete
and continuous) notions can be done.

The same problem can be easily stated for tilings with calissons (i.e. lozenges
an angle of which is ITI/3), and we hope that it can be solved using similar
techniques.

2 Tilings and their height functions

2.1 Tilings with p-dominoes

We work in the Euclidean plane R2. Let p be a fixed integer. A point v of the
plane is a p-point (we also say a p-vertex) if there exists a pair (a, b) of integers
such that : v = (a/2?,b/2P). The set of p-points is denoted by V,. Notice that
if p<p', then V, C V}y. Also notice that the set V = U,czV, is a dense subset
of the plane.

Let v and v be p-points. We say that the segment [v,v'] is a p-edge and v’ is
a p-neighbor of v if the length of [v,v'] is 1/2P. Notice that each p-edge is either
vertical or horizontal. A p-cell is a (closed) square whose sides ares p-edges.
We divide the set of p-cells into black p-cells and white p-cells according to the
lower left corner v of the cell : if v = (a/2P,b/2P), with a + b even, then the cell
is white ; otherwise, the cell is black.

This coloration of edges permits to direct p-edges : for each pair (v,v')
of p-neighbors points, we define the spin of the ordered pair (v, v') (denoted by
sp(v,v")) by : sp(v,v') = 1if (v,v') if an ant moving from v to v’ has a white cell
on its left side (and a black cell on its right side), and sp(v,v') = —1 otherwise.

A p-path is a sequence (vo, vy, . .., v, ) of p-vertices such that, for each integer
i such that 0 < i < n, v;41 is a p-neighbor of v;. With these notations we say that
(vi,vir1) is a p-move of the path. We canonically have rightwards, leftwards,
upwards and downwards p-moves.

The length of such a path is n/2P, and its height difference is the sum
iy sp(vi,vig1) /2P

A p-polygon is a polygon (each side of which is either horizontal or vertical)
which is a finite union of p-cells. We only consider (which can be done without



loss of generality, up to translation) polygons a south-west corner of which is
the origin O = (0,0). The set of these p-polygons is denoted by S,. Notice that
if p<p', then S, C S,. We also state S = UpezSp.

A p-domino is a rectangle whose dimensions are 1/27 and 2/2P. A p-tiling T
of a subset F' of the plane is a set of p-dominoes with pairwise disjoint interiors
whose union equals F. A legal path of such a tiling is a p-path (vo,v1,...,v,)
such that, for each integer i such that 0 < i < n, the line segment [v;,v;+1] is
included in the boundary of a p-domino of T'.

We say that a polygon P can be p-tiled (respectively fully p-tiled) if there
exists a p-tiling of P (respectively there exists a p-tiling of P and a p-tiling of
the complementary of P (i. e. the set of points of the plane which are not in
the interior of P)). Notice that if a polygon P of S can be p-tiled (respectively
fully p-tiled), then for each integer p’ such that p’ > p, P can also be p'-tiled
(respectively fully p'-tiled), since each p-domino can be p’-tiled.

Proposition 1 FEach p-polygon can be fully p + 1-tiled.

Proof. Let P be a p-polygon. We define the level of a p+ 1-cell, by induction, as
follows : a p+ 1-cell is of level 0 if one of its corners is element of the boundary
of P, and a p + 1-cell is of level i + 1 if its is not of level j with 7 < i, and one
of its corners is shared with a cell of level <.

We cover cells of level 0 placing tiles along the boundary, inside and outside
of P, in such a way that no tile cuts the boundary (see figure 1). After this step
is done, the non-covered part is formed from a finite set of pairwise disjoint p-
polygons and the complementary of a big p-polygon which contains the previous
ones.

Afterwards, cells of level 1 are covered placing tiles along the boundaries of
the polygons. AS before, the non covered space after this step is still formed
from a finite set of pairwise disjoint p-polygons and the complementary of a
big p-polygon which contains the previous one. Thus this argument can be
repeated to cover cells of level 2, and so on for successive levels, which permits
to construct a p-tiling of the whole plane. 1

Figure 1: Construction of a p + 1-tiling of the plane, inducing a tiling of a
polygon P, by successive levels

Let P be a pp-polygon and p be an integer such that p > pg. Fix a p-tiling
Tp.comp Of the complementary of P (the p-tiling T} comp exists from the above
proposition). Using T} comp, each p-tiling of P can be extended to the plane.



Thus, for the following of this paper, a p-tiling of P will be seen as a tiling
of the plane.

2.2 Height function induced by a tiling

Proposition 2 Let T be a p-tiling of a polygon P. The height difference of any
legal cycle of P for T is null.

This proposition is a particular case of a more general result of J. H. Conway
[2] about tilings .

Proof. (sketch) It suffices to prove it for elementary legal cycles since the height
difference of each cycle is the sum of the height differences of the elementary
cycles which compose it.

This is done by induction on the number of dominoes enclosed by the cycle :
if only one domino is enclosed, one verifies that the proposition holds. Otherwise,
the area enclosed can be cut by a legal path, which induces two new legal cycles,
each of them enclosing less dominoes than the original cycle. Thus, by induction
hypothesis, the height difference of both induced cycles is null, from which it is
easily deduced that the height difference of the original cycle is null. O

This proposition guarantees the correctness of the definition below.

Definition 1 Let T be a p-tiling of a polygon P. The p-height function hr
induced by T is the function from the set of p-vertices which are in P (possibly
on the boundary), defined as follows : for each p-vertex v, hy(v) is the height
difference of any legal path (for T) from the origin O = (0,0) to v.

Figure 2: Computation of the height function induced by a tiling (example with
p =0). We obtain hy(v) =2

Remark 1 For a fized integer p, each path following the boundary of P is a
legal path for any p-tiling, thus the value of the p-height function of a p-vertex
of the boundary does not depend on the p-tiling chosen.

Proposition 3 Let (T,T") be a pair of p-tilings of a same polygon P. If, for
each p-vertex v of P, hp(v) = hp (v), then T =T".

Informally, this proposition means that a height function is a way to encode
a p-tiling.



Proof. Let (v,v") be a pair of neighbors p-vertices of P such that sp(v,v') = 1.
We have two cases :

e the edge [v,v'] cuts no domino of T'. Thus hp(v') = hy(v) + 1/2P,

e the edge joining v to v' is a symmetry axis of a domino of T. Thus
hr(v') = hr(v) — 3/2P (following the boundary of this domino).

Thus, the tiling T is formed from p-tiles whose central axis is an edge [v, v']
such that |hr(v') — hr(v)] = 3/2P. The same argument can be used for 77,
which yields : T =T". |

Height functions also permit to compare some p-tilings. Precisely, we have
the following definition :

Definition 2 (Order on p-tilings) Let (T,T') be a pair of p-tilings of a
same polygon P. If, for each p-vertex v of P, hyp(v) < hy(v), then we say that
T<T

3 Limit of a sequence of height functions
From this section, we fix an integer py and a pg-polygon P of S.

Definition 3 Let h be function defined on VN P and (hy)p>p, be an infinite
sequence such that, for each integer p, h, is the p-height function of a p-tiling
of P. We say that h is the limit of the sequence (hp)p>p, if, for each vertex v
of V.N P and each positive number €, there exists an integer p1 such that, for
each integer p such that p > p1, we have |hy(v) — h(v)| < e.

The goal of this paper is to give a characterization of those limits functions.
We first give two necessary conditions satisfied by each limit function.

3.1 The boundary condition

Proposition 4 Let T' be a p-tiling of P, with p > py, and h, denote its height
function. For each p-vertex v of the boundary of P, we have |hy(v)| < 1/2P.

Proof. Let (O = wg,v1,v2,...,u, = O) denote the p-cycle following the
boundary of P, counterclockwise. We claim that, for each integer ¢ such that
0 < i < n/2, we have h,(ve;) = 0. This is obvious by induction on i, once it
has be remarked that the length of the line segment [ve;,v2;42] is included in
the boundary of P of and moreover, the length of [vs;, v2;yo] is 2/2P.

On the other hand, for each integer i such that 0 < ¢ < n/2, we have :
|hp(Va2i41) — hyp(v2;)] < 1/2P, which concludes the proof. O

Corollary 1 (boundary condition) If h is the limit of a sequence of tiling
functions, then for each vertex v of S which is on the boundary of P, we have
h(v) = 0.

Proof. obvious. O



3.2 The Lipschitz condition

Definition 4 Let (v,v') be a pair of distinct p-points. A p-path (v =

Vo, U1,-..,Un = V') is called increasing (respectively decreasing) if, for each in-

teger i such that 0 < i < n, sp(v;,vip1) =1 (respectively sp(v;,vip1) = —1).
We define 6,(v,v') as the length of a shortest increasing path from v to v’

Lemma 1 Let v = (a/2P,b/2P) and v' = (a'/2P,b'[2P) be p-points. We have
the double inequality :

2dso (v,0") = 1/2P < 6,(v,0") < 2doo(v,0") +1/2P
where ds(v,v") denotes the value max(la —a'|, |b—b'|)/2P.

Proof. By symmetry, we can assume without loss of generality that a < o,
b<b,and b —b<d —a.

Each increasing path from v to v’ contains at least (a’- a) rightwards p-
moves, and two rightwards p-moves are necessarily separated by at least one
vertical p-move. This gives the first inequality.

The second inequality is obtained constructing an increasing path from v’
to v of length at most 2d(v,v'). Let v” = ((a+b' —b)/2P,V'/2P). Since v' and
v” have the same second coordinate, there obviously exists an increasing path,
from v” to v', formed from at most 2(a' — a + b — b') + 1 p-moves.

Moreover, since v” and v are on a same straight line which is parallel to the
diagonal line (whose equation is : & = y), there exists an increasing path from
v” to v formed from 2(b' — b) p-moves.

Thus, concatening the previous paths, we obtain an increasing path from o’
to v formed from at most 2(a’ — a) + 1 paths, which concludes the proof. [

Proposition 5 Let T be a p-tiling of P, with p > py, and h, denote its height
function. For each pair (v,v") of vertices of V, N P, we have the inequality :

hp(v') = hp(v) < 6p(0,0")

Proof. Let (v =wvp,v1,...,v, =v) be an increasing path from v to v'. We have
. n—1
hp(v') = hp(v) =Y (hp(vig1) = hp(vi))
i=0
But, for each integer i such that 0 < i < n, we have : hy(viy1) — hp(v;) < 1/2P,
which yields : hp(v') — hy(v) < n/2P. O

Corollary 2 (Lipschitz condition) If h is the limit of a sequence of tiling
functions, then for each pair (v,v") of vertices of V N P, we have the inequality

[h(v) = h(v")] < 2doc(o,0)
Proof. From the previous inequalities, for each integer p, we have :
|hp(v) = hy (V)| < maz(d,(v,v"), 8,V ,v)) < 2do(v,0") + 1/2P

which obviously gives the result. 1



Each function h simultaneously satisfying the boundary condition and the
Lipschitz condition can be extended by continuity from VNP to P, since VNP is
a dense subset of P and the Lipschitz condition implies the uniform continuity.

Moreover, the function h can be extended to the complementary of P,
stating h(v) = 0 for each point v outside of P.

The Lipschitz condition is actually be transformed into a local condition.
This fact is formally expressed by the following proposition.

Proposition 6 Let h be a real function, defined on the plane, such that h is
null outside of P and on the boundary of P.

The function h is the extensions of a function which satisfies the Lipschitz
condition if and only if h satisfies the local following condition :

for each point v of P, there exists a positive real € such that, for each point
v" of P such that de(v,v") < €, we have : |h(v) —h(v")| < 2ds (v, v").

Proof. The direct part of this proposition is obvious. Conversely, assume that
h satisfies the local condition of the proposition, and let (v,v’) be a pair of
elements of VN P. Consider the set

{v” € [v,v'] such that for each point w of [v,v"],|h(v) — h(w)| < 2ds (v, w)}

This set is closed since h is continuous, and this set is open from the local
condition. Moreover this set is not empty, thus, since the segment [v,v'] is a
connected topological set, the set above necessarily equals [v,v'], which gives
the Lipschitz condition. |

4 Construction of a p-approximation

Definition 5 Let h be a function defined on V, N P. A tiling p-approzimation
of h is a p-height function hy is a tiling p-approximation of h, of parameter o
if, for each p-vertex v of P, we have : |h(v) — h,y(v)| <

Let h be a function defined on V' N P. Assume that, for each integer p such
that p > po, h has a p-approximation h, of parameter a,, and the sequence
(ap)p>p, converges to 0, then h is the limit of the sequence (hp)p>p, -

In this section we will prove the theorem below.

Theorem 1 Let h be a function defined on VNP, simultaneously satisfying the
boundary condition and the Lipschitz condition.

For each each integer p such that p > po, there exists a tiling p-approximation
of h, of parameter 3/2P.

This theorem has the following corollary, since the limit the sequence from
the above p-approximations of h is obviously A :

Corollary 3 (Characterization of limit functions) A function h, defined
on V N P is the limit of a sequence of tiling functions if and only if h simulta-
neously satisfies the boundary condition and the Lipschitz condition.

The proof of the theorem needs to extend the notion of height function, and
to point out algebraic properties of these functions. We do it in the the following
parts.



4.1 Extension of the notion of height function

Proposition 7 Let h;, be a function from the set of p-vertices in P to the set
of real numbers such that :

i hP(O) = 07

e for each pair (v,v') of neighbors p-vertices such that sp(v,v') = 1, either
hp(v") = hyp(v) +1/2P or hy(v') = hy(v) — 3/2P,

e if, moreover, the edge [v,v'] is on the boundary of P, then h,(v') = hp(v)+
1/2v.

There ezists a p-tiling T of P such that hy, = hr.

Proof. Let (vo,v1,v2,v3,04 = vg) be a cycle around a white p-cell, counter-
clockwise. The second constraint of the proposition implies that we have three
vertices w; such that h(viy1) = h(v;) + 1 and a unique vertex v; such that
h(vj4+1) = h(v;) — 3. One easily obtains a symmetric condition for black p-cells.

Thus, the set T of p-dominoes which are cut into both halves by an edge,
say [v,v'], such that |h(v) —h(v")| = 3, is a p-tiling of P. One obviously verifies,
(by induction on the length of a shortest legal path from O to v) that, for each
p-vertex v of P, h(v) = hr(v). O

Definition 6 The /-congruence of a p-verter v = (a/2P,b/2P) (denoted by
congp(v)), is the value of Z/4Z given below :

e if (a,b) = (0,0)[2], then cong,(v) = 0[4],
e if (a,b) = (1,0)[2], then cong,(v) = 1[4],
e if (a,b) = (1,1)[2], then cong,(v) = 2[4],
e if (a,b) = (0,1)[2], then cong,(v) = 3[4].

Proposition 8 For any p-tiling T and each p-vertexr v of P, we have :
2Phr(v) = congp(v)[4].

Proof. obvious by induction on the length of a shortest path (staying in P) from
O tov. |

We want to keep the above properties of height function of tilings, except
the boundary constraint (in order to construct tilings of the whole plane). This
is done by the definition below :

Definition 7 A generalized p-height function hy is a function from the set V,,
of p-vertices in P to the set of real numbers such that :

e for each pair (v,v') of neighbors p-vertices such that sp(v,v’) = 1, either
hyp(v') = hp(v) +1/27 or hy(v') = hy(v) — 3/27,

e for each vertex v of V), 2Phy(v) = cong,(v)[4].



Proposition 9 (Fundamental example) Some generalized p-height func-
tions can be constructed as follows : take a vertexr vy and z a value such that
2Pz = congp(vo)[4].
The function hy v, 2, defined by : hp 4, -(v) = 2 + dp(vo,v), is a generalized
p-height function.
The function h'
p-height function.

pwo.zs defined by o by, o (v) =2 —d,(v,v0), is a generalized

Proof. The second condition (hy 4,,.(v) = congp(v)[4]) is obvious, by induction
on 6, (vg,v).
Moreover, for each pair (v,v") of neighbors p-vertices such that sp(v,v') = 1,
we have :
dp(vo,v") < 6,(vo,v) +1/27

using an increasing path from vy to v’ passing through v, starting by a shortest
path from vy to v.
On the other hand, using a similar method, we obtain

0p(vo,v) < dp(vo,0') +3/2"
Those equalities yield that :
hpﬂﬂo,z (U) - 3/2p S hpﬂﬂo,z (UI) S hPﬂ)o,Z(v) + 1/2p

which give the first condition of the previous definition : among the five possible
values of hy, 4, - (v') left by the previous double inequality, only the two extremal
ones are possible, because of the congruence condition.

The function h;, , . is treated in a similar way.

|

4.2 Lattice properties

Proposition 10 Let (hy,h;) be a pair of generalizedp-height function. The

functions hpmin and hpmaz, defined by hpmin(v) = min(hy(v), hy,(v)) and

hyp max(v) = max(hy(v), hy,(v)), are generalized p-height functions.

Proof. We prove this lemma for hy min (the proof for hp e, is similar) using
proposition 7. The second constraint is obviously satisfied.

Let (v,v") be a pair of neighbors p-vertices of P such that sp(v,v’) = 1.
Assume that hp(v) < hy,(v). Then, from proposition 8, we have : h,(v) <
hy,(v) —4/2P. On the other hand, hy(v') < hy(v) + 1/2P and hy,(v') > hy,(v) —
3/2P. Thus :

hyp(v') < hp(v)+1/27 < B (v)—4/27+1/27 < B (') +3/27—4/2P+1/27 = B! (v

This proves that if hy(v) < hy,(v) then hymin(v') = hy(v'). Consequently
(since, of course, hp min(v) = hp(v)) hpmin (V") — hp.min(v) = hp(v") — hy(v),
which guarantees the first constraint of proposition 7.

The case when hy,(v) > hi,(v) is treated with the same kind of argument and
the case when hy(v) = hy,(v) is obvious. O

Corollary 4 The set of p-tilings of P, ordered as defined in section 2, is a
distributive lattice.



Proof. obvious. O
This lattice structure has been previously studied with more details in [6]

Corollary 5 Let vy be a p-vertez and z be a value such that 2Pz = cong,(vo)[4].
The set Hp,, ., formed from generalized p-height functions h, such that
hp(vo) = z, is a distributive lattice (for the canonical order on real functions).

Moreover, the function hy, , . is the mazimum of Hy, v, . and hy, ,, . is min-
imum of Hy y, .2

Proof. The first part of this proposition is obvious from proposition 10. The
second part is a direct consequence of proposition 5. (I

4.3 Applications

We now have the necessary tools to construct a p-approximation. This will be
done below using the following proposition.

Proposition 11 Let h, p, .. denote the height function of the mazimum p-
tiling of P, and hy, p, . denote the height function of the minimum p-tiling of
P. For each vertex v of V, N P, we have the equalities :

Bp, Prnae (V) = miny esp (hp ot (o) (V)

B, Prin () = mazyesp(hy, (o) (V)

where JP denotes the boundary of P, and hy(v') is the common value of all the
p-height functions in v'.

Proof. For each p-vertex v' of 0P, hpp,,.. can be seen as an element of

Hy v b, (), Which yields that hy p,.,. < hpon, ). Thus for each vertex v

of V, N P, we have

P, Pra (V) < Mt esp (hp oty (0) (V)
On the other hand, minvreap(hp’vr’hp(vl) induces a tiling of P; which gives
the converse inequality. The function h, p,,,, is treated in a similar way. [

Corollary 6 Let h be a function, defined on V N P, such that h simultaneously
satisfies the boundary condition and the Lipschitz condition. For each vertex v
of Vp, N P, we have :

hp. P (V) = 2/20 < h(v) < hy P, (V) +2/2°
This corollary is an application of lattice structures to limits of tilings.

Proof. From proposition 11, there exists a vertex v’ of V, N JP such that
hp.p,...(0) = hy(v') + 6,(v',v). On the other hand, we recall that

h(v) = h(v') < 25 (v,0") < §,(v',0) +1/27
Thus, since h(v') = 0, we obtain :
B(©) < by (0) = (') + 1/28 < oy, (0) +1/20 4+ 1727

which is the second inequality of the proposition. The first inequality is obtained
in a symmetric way. (I
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Definition 8 For each function h, defined on V, N P, we define the function
round, p, by : for each vertex v of V,NP, round, »(v) = a, /2P where a, denotes
the unique integer such that 2Pa, = cong(v)[4] and (a, — 2)/2? < h(v) < (a, +
2)/2P (except in the extremal particular case when h(v) = hp p,,..(v) +2/2P ;
in this case, we state round, ,(v) = hp p,... (V).

We also define the function approz, by : for each vertex v of V, N P,

approry n (U) = Miny, cp (hp,v’ sroundy , (v') (U))

Remark 2 Notice that, from the above proposition, for each vertex v of V,NP,
we have
by, P, (V) < roundy,p(v) < by p,,. (v)

Especially, if v is on the boundary of P, round, ,(v) is the common value of all
p-tilings height functions.

Proposition 12 The function approx, ; is the tiling function of a p-tiling of
P.

Proof. We will prove that there exists a p-tiling of P, for each p-vertex v of
the boundary of P, approx, j,(v) = hyp p,... (v). This fact gives the result from
proposition 7.

First notice that :

approz, p(v) < Py v round, »(v) (v) = round, p(v)

and round, ,(v) = hp p,,,, (v) from remark 2. Thus

approzp p(v) < hy p,... (V)

Moreover, for each vertex v’ of V,, N P, we have the inequalities
hp Pruin (V) = By, (V) < 6(0,0)

from proposition 5, and

hy p,...(v") < round, p(v")
from remark 2. Adding these inequalities, we obtain

bp,Prin (V) < hp ot round, 1 (v') (V)

which yields that
p,Prnin (V) < approzp p(v)

and finishes the proof. O

Proposition 13 For each vertez v of V, N P, we have

|h(v) — approxy n(v)| < 3/2°
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Proof. Let v' be any element of V,, N P. for each vertex v of V, N P, we have :
h(v) — h(v') < 2ds (v, v) < dir(v',v) +1/2P
Thus
h(v) < h(v")+dir(v',v)+1/2P < round, p(v')+2/2P+dir(v',v)+1/2P = hp vt round, »(v') (V) +3/2F

which gives : h(v) < approz, n(v) + 3/2P.
On the other hand,

h(v) > round, p(v) —2/2° = Py v round, »(v) (v) —2/2P
which yields : h(v) > approx, (v) — 2/2P. O

This last proposition finishes the proof of the theorem claimed at the begin-
ning of this section.

5 Extremal examples

We finish this paper giving an example of non-trivial limit function, which is
the highest one.

Proposition 14 Let hy,q, be the function defined by :
hmaz (V) = 2doo(v,0P) (i. €. 2min, esp(ds (v,0”)))
The function hy, p,... is an approzimation of hmaes, with parameter 2/2P.

Proof. Let v be any p-point. For each p-vertex v” of the boundary of p, we
have, from lemma 1 :

h(v) < 2doo(v”,v) < 6(v”,v) +1/2°
Thus, from proposition 4 :
h(’U) S hp,v”,hp(v”)(v) + 2/21)

where h,(v”) denotes the only possible value for a tiling height function in v”.
Thus, from proposition 11 :

h(v) < hyp,P,,., (v) +2/2°

On the other hand notice that, since the boundary of P is compact, there exists
a point v’ of the boundary of P, such that do(v,0P) = doo(v,v"). Moreover,
one easily sees that v’ can be chosen in such a way that v’ is a corner of P, and,
consequently, a p-vertex.

From lemma, 1, we have

h(v) = 2doo (v,0") > 6(v",v) — 1/2P

which yields :
h(’l}) Z hp,v’,hp(v’)(v) — 2/21)

Thus
h(v) > hy,p,,.(v) —2/2°

which concludes the proof. |
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Figure 3: Construction of h,,q; for a rectangle and an Aztec diamond. The
polygon is divided into polygonal regions on which h,,az is linear. The numbers
indicate the values of A4, in the corners of the regions
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