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Abstract

In this paper, we address the issue of implementing matrix-matrix multi-
plication on heterogeneous platforms. We target two different classes of
heterogeneous computing resources: heterogeneous networks of worksta-
tions, and collections of heterogeneous clusters. Intuitively, the problem
is to load balance the work with different-speed resources while mini-
mizing the communication volume. We formally state this problem and
prove its NP-completeness. Next we introduce a (polynomial) column-
based heuristic, which turns out to be very satisfactory: we derive a
theoretical performance guarantee for the heuristic, and we assess its
practical usefulness through MPI experiments.

Keywords: heterogeneous resources, cluster, different-speed processors, load balancing, data
distribution, data allocation

Résumé

Dans ce rapport, nous nous intéressons au probléme de I'implémentation
du produit matrice-matrice sur des plateformes hétérogenes. Nous
considérons deux sortes de ressources de calculs hétérogenes : des réseaux
de stations hétérogenes et des collections de clusters hétérogenes. Intui-
tivement, le probléme est d’équilibrer la charge sur ces ressources de
vitesses différentes tout en minimisant le volume des communications.
Apres avoir correctement formulé le probléme, nous établissons sa NP-
complétude. Ensuite nous présentons une heuristique (polynomiale) qui
donne en pratique des résultats tres satisfaisant : nous garantissons une
performance théorique pour I’heuristique et nous prouvons son utilité
pratique grace a des expériences MPI.

Mots-clés: ressources hétérogenes, cluster, processeurs de vitesses différentes, distribution des
données, équilibrage de charges



1 Introduction

In this paper, we deal with the implementation of a very simple but important linear algebra ker-
nel, namely matrix-matrix multiplication (MMM for short), on heterogeneous platforms. Several
parallel MMM algorithms are available for parallel machines or homogeneous networks of work-
stations or PCs (see [1, 18, 27] among others). The popular ScaLAPACK library [5] includes a
highly-tuned, very efficient routine targeted to two-dimensional processor grids. This routine uses
a block-cyclic distribution of the matrices in both grid dimensions. We briefly recall parallel MMM
algorithms for homogeneous machines in Section 2.1.

Why extending parallel MMM algorithms to heterogeneous platforms? The answer is clear:
future computing platforms are best described by the key-words distributed and heterogeneous. We
target two different classes of heterogeneous computing resources:

Heterogeneous networks of workstations (HNOWSs) are ubiquitous in university departments
and companies. They represent the typical poor man’s parallel computer: running a large
PVM or MPI experiment (possibly all night long) is a cheap alternative to buying supercom-
puter hours. When implementing MMM algorithms on HNOWS, the idea is to make use of all
available resources, namely slower machines as well as more recent ones. This is a challenging
but very useful task, given the importance of MMM in scientific computing. Also, it is a first
step towards understanding how to implement more complicated linear algebra kernels on
HNOWs.

Collections of clusters are made up of nodes, or clusters, each of them being itself a HNOW of
a parallel machine. These nodes may well be geographically scattered all around the world.
Inter-nodes communications are typically an order of magnitude slower than intra-nodes com-
munications. The need to design a MMM algorithm which would execute on a collection of
clusters is less obvious. Are there actual applications which involve such huge matrices that
their product cannot be computed with a single parallel machine or workstation network?
Larger and larger experiments are conducted throughout the world within the NPACI! ini-
tiative, using tools such as Globus [16] and Legion [22]. Huge linear algebra kernels often are
at the core of these experiments, so investigating “metacomputing” MMM algorithms is quite
natural. Anyway, we view MMM algorithms as a perfect case study for the implementation of
tightly-coupled high-performance applications on the metacomputing grid [17]: indeed, such
applications are much more difficult to tackle than loosely-coupled cooperative applications.
Because MMM is a simple kernel which encompasses a lot of data movements, we view it as a
perfect testbed to be studied before experimenting more challenging computational problems
on the grid.

The major limitation to programming heterogeneous platforms arises from the additional dif-
ficulty of balancing the load when using processors running at different speeds. Data and com-
putations are not evenly distributed to processors. Minimizing communication overhead becomes
a challenging task: in fact, the MMM problem with different-speed processors turns out to be
surprisingly difficult. The main result of this paper is the NP-completeness of the MMM problem
on heterogeneous platforms.

The rest of the paper is organized as follows. In Section 2 we summarize existing MMM algo-
rithms for homogeneous platforms, and we discuss how to extend these to cope with heterogeneity.
In Section 3 we formally state the MMM optimization problem for heterogeneous platforms, and
we establish its NP-completeness (the long and technical proof of this important result is given in

!National Partnership for Advanced Computational Infrastructure, see http://www.npaci.edu.
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the Appendix). In Section 4 we briefly survey related NP-complete optimization problems. Sec-
tion 5 is devoted to the design of efficient (polynomial) heuristics, whose practical usefulness is
demonstrated through MPI experiments on a HNOW and on a 2-cluster configuration (Section 6).
We give some final remarks and conclusions in Section 7.

2 MMM Algorithms

In this section we briefly describe how to implement a parallel (or distributed) MMM algorithm
on a heterogeneous platform. We adopt an abstract view by assuming that we have a collection
of p heterogeneous computing resources P, P, ..., P,. If each computing resource F; reduces to
a single processor, we are dealing with a heterogeneous network of workstations or PCs (HNOW).
When each computing resource F; is itself a heterogeneous cluster or a parallel machine, we are
targeting a metacomputing environment, made up from a collection of clusters. The high-level
algorithmic description is the same for all target machines. However, our model will have to cope
with different hypotheses on communication issues. We come back to the impact of communication
modeling in Section 3.2. Before dealing with heterogeneous resources, we briefly summarize existing
algorithms for homogeneous machines.

2.1 Homogeneous Grids

We start by briefly recalling the MMM algorithm implemented in the ScaLAPACK library [5] on
2D homogeneous grids. For the sake of simplicity we restrict to the multiplication C = AB of
two square n X n matrices A and B. In that case, ScaLAPACK uses the outer product algorithm
described in [1, 18, 27]. Counsider a 2D processor grid of size p = p; X pg, and assume for a while
that n = p; = po. In that case, the three matrices share the same layout over the 2D grid: processor
P; j stores a; j, b; ; and c; ;. Then at each step k,

e each processor P, (for all < € {1,..,p1}) horizontally broadcasts a;j to processors P; .
e each processor Py ; (for all j € {1,..,p2}) vertically broadcasts by ; to processors P, ;.

so that each processor P;; can independently update ¢; ; = c(4,j) + a; 5 X b.j-

This current version of the ScaLAPACK library uses a blocked version of this algorithm to
squeeze the most out state-of-the-art processors with pipelined arithmetic units and multilevel
memory hierarchy [15, 11]. Each matrix coefficient in the description above is replaced by a r x r
square block, where optimal values of r depend on the memory hierarchy and on the communication-
to-computation ratio of the target computer. Finally, a level of virtualization is added: usually, the
number of blocks [%] x [2] is much greater than the number of processors p; x pp. Thus blocks
are scattered in a cyclic fashion along both grid dimensions, so that each processor is responsible
for updating several blocks at each step of the algorithm.

To prepare for the description of the heterogeneous version, we introduce another “logical”
description of the algorithm:

e We take a macroscopic view and concentrate on allocating (and operating on) matrix blocks
to processors: each element in A, B and C'is a square r X r block, and the unit of computation
is the updating of one block, i.e. a matrix-matrix multiplication of size r.

e At each step, a column of blocks (the pivot column) is communicated (broadcast) horizontally,
and a row of blocks (the pivot row) is communicated (broadcast) vertically.



e The C matrix is partitioned into p; X po rectangles. There is a one-to-one mapping between
these rectangles and the processors. Each processor is responsible for updating its rectangle:
more precisely, it updates each block in its rectangle with one block from the pivot row and
one block form the column row, as illustrated in Figure 1. For square p x p homogeneous
2D-grids, and when the number of blocks in each dimension n is a multiple of p (the actual
matrix size is thus n.r x n.r), it turns out that all rectangles are identical squares of % X %
blocks.

Figure 1: The MMM algorithm on a 4 x 4 homogeneous 2D-grid.

On Figure 1, we see that the total amount of communications performed by the MMM algorithm
is proportional to the sum of the perimeters of the rectangles allocated to the processors. More
precisely, at each step each processor responsible for a rectangle of h x v blocks must receive
(vertically) h blocks of matrix B and (horizontally) v blocks of matrix A. This explains why
rectangles are identical squares for square p X p homogeneous 2D-grids, when p divides n: in that
case, all rectangles of fixed area % x 2 are squares. Because the (half)-perimeter of a rectangle of
fixed area is minimized when it is a square, this choice does minimize the communication volume.

There are other homogeneous MMM algorithms: for instance Cannon’s algorithm [27] (whose
main drawback is to require an initial permutation of matrices A and B) replaces all the horizontal
and vertical broadcasts by nearest-neighbor shifts. The total communication volume at each step
is the same, but the communications are different. Still, all processors independently update their
rectangle of C' blocks at each step.

2.2 Heterogeneous Platforms

How to modify the previous MMM algorithms for a heterogeneous platform? The idea is to keep
the same framework: at each step, one pivot column and one pivot row are communicated to
all processors, and independent updates take place. However, with different-speed processors, we
cannot distribute same size rectangles from the C matrix to the processors. Intuitively, we want
to balance the computing load so that each processor receives an amount of work in accordance
to its computing power. Because all C' blocks require the same amount of arithmetic operations,
each processor executes an amount of work which is proportional to the number of blocks that are
allocated to it, hence proportional to the area of its rectangle. To parallelize the matrix-matrix
product C = AB, we have to tile the C matrix into p non-overlapping rectangles, each rectangle
being assigned to one processor. Figure 2 shows an example with 13 different-speed computing
resources.

The question is: how to compute the area and shape of these p rectangles so as to minimize the
total execution time? As usual with parallel algorithms, there are two non-independent and maybe
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Figure 2: The MMM algorithm on a heterogeneous platform.

conflicting goals: (i) load-balancing computations; (ii) minimizing communication overhead. Goal
(i) is related to the area of the rectangles that are allocated to the processors, while goal (ii) is
related to their shapes. We discuss areas and shapes in the next section, in order to formally state
(and try to solve) this difficult optimization problem.

3 The Heterogeneous MMM Optimization Problem

Consider a matrix-matrix product C' = A x B, where A, B and C are square matrices of n X n
square blocks of size r. Assume that we have p computing resources Pp, P%,... , P, of (relative)
cycle-times t1,%2,... ,t,: if all processors have same speed, then ¢; = 1 for 1 <14 < p. If, say, P
is twice faster than P, then t; = 2t,. We start with load-balancing issues before dealing with
communication overhead.

3.1 Load Balancing

To perfectly load-balance the computation, each processor should receive an amount of work in
accordance to its computing power. If, say, P» is twice faster than Py (t; = 2t3), then P» should
be assigned twice as many elements as P;. In other words, the area of its rectangle should be the
double of that of P;. Let s; be the area of the rectangle R; allocated to processor P;. Obviously,
the first equation is 25’:1 s; = n?, in order to obtain a true partition of the C' matrix. Next, since
P; processes its rectangle within s; x t; time-steps, we have

S1t1 = sate = ... = Sply.

The last constraint is to write s; as s; = h; X v;, where h; and v; are the number of rows and
columns of R;. These equations do not always have integer solutions, which means that a perfect
load balancing of the computations is not always possible.

However, we are not really interested in an exact solution. A more concrete and interesting
question is the following: given the p computing resources, how to compute the respective area of
the rectangles R; so that the workload is asymptotically optimally balanced: the larger the matrix
size (expressed in blocks), the more accurate the tiling into rectangles. This question translates
into the following system: given ¢1,... ,%,, search for real unknowns s; = h; x v;, 1 < ¢ < p, such
that:

(1) S1t1 = Sglg = ... = Sptp

(2)  Xiisi=1

(3)  The p rectangles of size h; x v;( where h;v; = s;) tile the unit square
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Condition (1) ensures that the area of the rectangle R; allocated to processor P; is inversely propor-
tional to its cycle-time. Condition (2) is for normalization: the sum of the areas of the p rectangles
is that of the unit square, a necessary condition for condition (3) to hold. Note that, as expected,
conditions (1) and (2) allow to compute the s;: we obtain

1
t;
P
i=1

8; = T
t;

We see that s; is computed from the harmonic mean of the ¢;, and it is not an integer (0 < s; < 1
as soon as p > 2).

There are always solutions to the normalized problem. For instance we fulfill condition (3) by
choosing to tile the unit square into p horizontal slices of height v; = s; (and width h; = 1), or into
p vertical slices of width h; = s; (and height v; = 1). This degree of freedom comes from the fact
that load balancing imposes constraints on the area of the rectangles R;, but not on their shapes.
Shapes come into the story when discussing communication issues, as explained below.

3.2 Communication Overhead

At each step of the MMM algorithm, communications take place between processors: the total
volume of data exchanged is proportional to the sum C' = >P_ (hi +v;) of the half perimeters of
the p rectangles R;. In fact, this is not exactly true: because the pivot row and columns are not sent
to the processors that own them, we should subtract 2 from C , 1 for the horizontal communications
and 1 for the vertical ones. Since minimizing CorC—2is equivalent, so we keep the value of C
as stated.

Minimizing C seems to be a very natural goal, because it represents the total volume of com-
munications. However, other objective functions could be selected, because the target computing
platform may influence the way communications are implemented. For instance it is natural to
assume that communications will be mostly sequential on a HNOW where processors are linked
by a simple Ethernet network; also, there will be little or none computation/communication over-
lap on such a platform. In that context, minimizing the total communication volume is the main
objective.

Conversely, some communications can occur in parallel, or some efficient broadcast mechanisms
can be used, if the computing resources are linked through a dedicated high-speed network, and
if parallel communication links are provided. In that context, we may want to use a columnwise
allocation as depicted in Figure 3: vertical communications are performed in parallel in all columuns,
and broadcasts or at least scatters can be performed horizontally.

Figure 3: Tiling the unit square into columns of rectangles.

Finally, in a metacomputing context, inter-cluster communications are typically one order of
magnitude slower than intra-cluster communications, so we may want to adopt a two-level scheme:
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we assign rectangles to clusters as above, while inside each cluster some master-slave mechanism
could be provided.

It seems that minimizing the total communication volume is the most important optimization
problem, because of its wide potential applicability. Also, forgetting about MMM algorithms for
a while, consider the implementation of any application (such as a finite-difference scheme) where
heterogeneous processors communicate boundary elements at each step (the communication scheme
need not be nearest-neighbor, it can be anything): minimizing the total communication volume
while load-balancing the work amounts to solving exactly the same optimization problem.

3.3 The MMM Optimization Problem

We are ready to state the MMM optimization problem for heterogeneous platforms. We have p
computing resources P;, 1 <1¢ < p. Each P; is assigned a rectangle R; of prescribed area s;, where
>-P | s; = 1. The shape of each R; is the degree of freedom: we want to tile the unit square so as to
minimize the total communication volume . The abstract optimization problem is the following:

Definition 1 MMM-OPT(s): Given p real positive numbers si,...,sp s.t. Y ¢ ;s = 1, find
a partition of the unit square into p rectangles R; of area s; and of size h; X v;, so that C =
P (hi 4+ v;) is minimized.

Given the solution (or an approximation of the solution) of MMM-OPT(s), we round up the
values to the nearest integers so as to derive a concrete solution for matrices of given size n. As

stated above, the integer solution will be asymptotically optimal. There is an obvious lower bound
for MMM-OPT(s):

Lemma 1 For all solutions of MMM-OPT(s), C > 23" /5.

Proof The half-perimeter of each rectangle R; will be always larger that 2,/s;, the value when it
is a square. Of course, tiling the unit square into p squares of area s; is not always possible, so this
lower bound is not always tight. [

3.4 NP-Completeness
The decision problem associated to the optimization problem MMM-OPT is the following;:

Definition 2 MMM-DEC(s,K): Given p real positive numbers si,... ,sp s.t. > b 1 si =1 and a
positive real bound K, is there o partition of the unit square into p rectangles R; of area s; and of
size hj X v;, so that Y 0 (h; +v;) < K?

Our main result states the intrinsic difficulty of the MMM optimization problem:
Theorem 1 MMM-DEC(s,K) is NP-complete.

Because the proof is both lengthy and technical, we provide it in the Appendix.

4 Related Results

We survey related results in this section. They range into two categories: papers dealing with
linear algebra on heterogeneous platforms on one hand, and papers covering geometric optimization
problems similar to MMM-DEC(s,K) on the other hand.
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4.1 Linear Algebra on Heterogeneous Platforms

Load balancing strategies for heterogeneous platforms have been widely studied. Distributing
the computations (together with the associated data) can be performed either dynamically or
statically, or a mixture of both. Some simple schedulers are available, but they use naive mapping
strategies such as master-slave techniques or paradigms based upon the idea “use the past predict
the future”, i.e. use the currently observed speed of computation of each machine to decide for the
next distribution of work [13, 12, 4]. There is a challenge in determining a trade-off between the
data distribution parameters and the process spawning and possible migration policies. Redundant
computations might also be necessary to use a heterogeneous cluster at its best capabilities.

To the best of our knowledge, there has been little work devoted to the implementation of
dense linear algebra kernels on heterogeneous platforms. Extensions of parallel libraries such as
ScaLAPACK are not yet available, even for simple HNOWSs. Preliminary results on implementing
MMM and linear system solvers on a HNOWSs are reported in [8, 6, 9]. Load-balancing issues
for heterogeneous 2D-grids are studied by Kalinov and Lastovetky [23]: in fact, they arrange the
processors into columns. The load is first balanced inside each column independently; next the load
is balanced between columns, weighting each column by the inverse of the harmonic mean of the
cycle-times of the processors within the column. This leads to the so-called “heterogeneous block
cyclic distribution”, which ensures a perfect load balancing. It corresponds to a simple solution
to conditions (1) and (2) of Section 3.1, but communications are not taken into account, and the
number of horizontal neighbors of each processor is not bounded. Boudet et al [7] adopt a different
strategy: they enforce the design of a true 2D-grid, where each processor communicates only with
its four neighbors. The question is how to arrange the processors so that the load is best balanced?
In that case, a perfect load-balancing is possible only if the processor cycle-times can be arranged
into a rank-1 matrix. Heuristics are presented in [7] to obtain efficient solutions to that problem.

4.2 Problems Similar to MMM-OPT(s)
There are several problems related to MMM-OPT(s) in the literature:

e The most similar problem is the following: how to tile the unit square into p rectangles of
same area so as to minimize the maximum perimeter of these rectangles? This problem is
shown to be polynomial by Kong et al. [26, 25]: the optimal solution is one of the following
two arrangements: let either m = [,/p] or m = [,/p], and use m columns composed of ||
or [ ] rectangles. This problem is motivated by a data-allocation problem which is related
to ours in the following sense: assume that we have p equal-speed processors and that we aim
at minimizing the largest amount of communications made by one processor. Because the

above arrangements are optimal, we have a polynomial solution to this problem.

The heterogeneous counterpart of this problem is the following: given p different-speed pro-
cessors, how to allocate data so that the length of the largest communication is optimized?
in terms of tiling, how to tile the unit square into p non-overlapping rectangles of prescribed
area si,...,Sp whose sum is 1 so that the largest perimeter is minimized? This interest-
ing problem is NP-complete too [3], which again shows the intrinsic difficulty of designing
heterogeneous parallel algorithms!

e Another related problem is to find the minimum partition of a rectangle with interior points:
given a rectangle R and a finite set P of points located inside R, find a set of line segments that
partition R into rectangles such that every point in P is on the boundary of some rectangle.
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The goal is to minimize the total length of the introduced line segments. This problem is
shown NP-complete in [28, 20, 21], where approximation algorithms are given. The link with
our problem is that the objective function is the same, but the original motivation in [20, 21]
was a VLSI routing problem (and the constraints are quite different).

e There are several NP-complete geometric optimization problems that are listed in [14]. One
example is the minimum rectangle tiling problem [24]: given an n X n array A of non-negative
numbers, and a positive integer p, find a partition of A into p non-overlapping rectangular
subarrays, such that the maximum weight of any rectangle in the partition is minimized (the
weight of a rectangle is the sum of its elements).

5 Heuristics

In this section we introduce a polynomial heuristic to solve the MMM-OPT problem. After de-
scribing the heuristic, and proving its optimality among all column-based approaches, we report
experimental results that nicely demonstrate its efficiency. Finally we provide a theoretical guar-
antee for the heuristic, and we discuss possible extensions.

Y Cc1 ) c2 . c3
S1
S11 S
Ss
S,
S10 ®
S3 1
S
Se °
S12
So Sz

Figure 4: Column-based partitioning of the unit square: C = 3, k1 =5, ko = 3 and k3 = 4.

5.1 Optimal Column-based Tiling

As outlined in Section 3.3, the MMM-OPT(s) problem is the following: given p real positive
variables si,...,s, such that Ele s; = 1, tile the unit square into p non-overlapping rectangles
Ry,..., R, of respective areas sy, ... , s, so as to minimize the sum of the (half) perimeters of these
rectangles. Because the associated decision problem MMM-DEC(s,K) is NP-complete (Section 3.4),
we consider the more constrained problem MMM-COL(s) where we impose that the tiling is made
up of processor columns, as illustrated in Figure 4. In other words, MMM-COL(s) is the restriction
of MMM-OPT(s) to column-based partitions. In this section, we give a polynomial solution to the
MMM-COL(s), which will be used as a heuristic to solve MMM-OPT(s).

Framework We describe the MMM-COL(s) problem more formally: we aim at tiling the unit

square into C columns (where C is yet to be determined) of width ¢y,...,cc. Each column C;
is partitioned itself into k; rows (to be determined too) of respective area s, (; 1), -« s So(ik;)- Of
course, the final partitioning has Eic:l k; = p rectangles, and all the areas s1,... , s, are represented



once and only once. The goal is to build such a partitioning, subject to the minimization of the
sum of the rectangle perimeters.

Algorithm We describe the tiling algorithm; the optimality proof will be presented later. The
main points are the following:

1. Re-index the variables si,... ,s, such that s; < sy < ... <5,

2. Iteratively build the function f¢, by incrementing the value of C from 1 to the desired value.
For ¢ € {1,... ,p}, fc(q) represents the total perimeter of an optimal column-based parti-
tioning of a rectangle of height 1 and width (}.7 ;| s;) into ¢ rectangles of respective area

51,... ,8¢, using C columns.

To help understand the derivation, we apply the algorithm on the following toy example: we
have p = 8 areas of values (0.02,0.04,0.06,0.08,0.2,0.2,0.2,0.2). The results of the algorithm are
given in Table 1. Each column C; contributes to the sum of the half perimeters as follows: 1 for
the vertical line, and k; X ¢; for the k; horizontal lines of length ¢;. In the example, the optimal
partitioning is obtained for 3 columns (f3(8) = 5.4). The last column of width ¢3 = s7 + sg = 0.4
is composed of 2 elements. The second column of width ¢y = s5 + s¢ = 0.4 is also composed of 2
elements. Then the first column of width ¢; = s1 + s9 + s3 + s4 = 0.2 is made of the smallest 4
elements. Figure 5 represents this partitioning.

| | a=t | a=2 | 4=3 [ a=4 [ a=5 | =6 | a=7 | 4=8 |
C=1]1.02/0]112/0]136/0]1.8/0] 3/0 | 46/0]66/0] 9/0
C=2 206 /1(218/2| 24/2 |292/3(3.6/4] 46/4 | 58/5
C=3 312/2326/3| 36/4 |412/5|472/5|54/6
C=1 12/3 | 446 /4| 48/5 | 532/6 592/ 7
C=5 5.4/4 [ 566/5| 6/6 |652/7
C=6 66/5 |686/6]| 7.2/7
C=1 78 /6 | 8.06 /7
C=8 977
Table 1: Table containing the values of the couples fec(q)/r where fe(q) =

ming

/N

L (Speicg i) X (a=a) + fer(d)) = 1+ (Srcicgsi) % (¢ = 1) + feor(r). Bold
entries correspond to the optimal solution.



0.2 0.4 0.4

1
perimeter perimeter perimeter partitioning of the whole square
02x4+1 04x2+1 04x2+1
fi(4)=18 f2(6) =3.6 f3(8) =54

Figure 5: Optimal column-based partitioning for the example. Thicker lines correspond to the sum
of the half perimeters.

Algorithm The algorithm is outlined as follows:

S=0
for q=1to p
S=5+sg
{Jerzmeter(q) =1 + S X q
ff""(q) =0
endfor
for C=2 to p
for q=C to p

fé)erimeter(q) _ min1gr§q—C+1 (1 + S xr+ fé)irlimeter(q — 7‘))

fCCUt(q) =(q — Topt
endfor
endfor

The worst-case complexity of the algorithm is O(p?log(p)): indeed, fc11(g) can be built from f¢
in O(logp) steps, since the minimum in the algorithm can be searched by dichotomy: since for each
C, fc—1 is an non-decreasing function, ge 4(r) =1+ 8 xr+ fgirfmeter(q —r) is a convex function of
r. Hence, the minimum min;<,<¢—c+1 (gc,¢(r)) can be found by dichotomy in O(log(¢ —C +1)) =
O(logp) steps. Note that in practice the complexity will be lower than the worst-case analysis
shows, because fc(p) is a function that is first decreasing and then increasing as C varies. All the
functions fe¢ will not be built, the expected cost will be pCop; log(p) =~ p\/plog(p).

The final partitioning corresponding to the function fe,,(p) = mini<c<, fc(p) is found using
the following algorithm:
q=p
for C = C,,; downto 2

ke =q— fE""(q)

q=f"(q)
endfor
ki =gq

which corresponds to tracking (backwards) the bold entries in Table 1. The unit square is
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partitioned into C,,; columns. The i column contains the rectangles sg;1,... ) Sd4k; With d =
kl—i-kg—i-...—i-ki_l.

Correctness To prove the optimality of the algorithm, we show that the optimum solution can
be achieved with a well-ordered partitioning: a partitioning is said to be well-ordered if for every
pair of columns C; and C;, either all the elements of C; are smaller than (or equal to) all the elements
of Cj, or the other way round. See figure 6 for an illustration.

6 6
0 @ 6 | 15
9 6 6
6 9 6
28
@/ 6 28 6
3 12 3
3 3
not well-ordered well-ordered

Figure 6: Two partitioning of the same problem instance. The left one is well-ordered while the
right one is not.

We start from a given partitioning, made up of, say, C columns of size k; > ko > ... > kg.
Suppose for convenience that s; < sp < ... < s, ; 7 is a permutation of {1,2,... ,p} such that the it
column of this partitioning contains the rectangles s;(j11),- -, Sr(d4k;) With d = k1 +ka+.. .+ k1.

d+ki—1

Now, recall that the cost of column Cj is 1 + k; x ) . Hence, the total “perimeter” is

j=d+1 S7(5)

cC + klsT(l) + klsT(g) +...+ kls’r(lﬂ)
+ KaSr(ky 1)+ R2Sr(k2) oo K280k ko)
+

+ KiSr(kyothioi+1) T RiSr(ky oy 42) T oo - T KiSr(ky ks

Since k1 > ko9 > ... > k;, this expression is minimized for 7 = Identity which corresponds to
a “well-ordered” partitioning. Hence, for each partitioning, there exists a corresponding better or

equivalent partitioning that is “well-ordered” . This achieves the proof of correctness.

5.2 Experimental Comparison with the Lower Bound

As shown in Section 3.3, a lower bound for the sum C of the half-perimeters is twice the sum of the
square roots of the areas LB = 2> F | \/s;. Of course this bound cannot always be met: consider
an instance of MMM-OPT(s) with only two processors, s; = 1 — € and s = €, where € > 0 is an
arbitrarily small number. Partitioning into two rectangles requires to draw a line of length 1, hence
C = 3. However, LB = 2(v/1 — e+ \/€) > 2 can be arbitrarily close to 2.

In this section, we experimentally compare, using a large number of random tests, the value C
given by our partitioning against the absolute lower bound LB. Figure 7 represents two curves for
a number of processors varying from 1 to 40. The first curve corresponds to the mean value of the
ratio % while the second curve gives the minimum values of this ratio. We see that in average,
the optimal column-based tiling given by our algorithm gives a solution that is “almost” optimal,
so that we can be satisfied with the results for all practical purposes.

11



Experimental results using 2000000 random tests per point
T T T T T

11 ! B

105F gy N b

ratio (sum of perimeters)/(lower bound)

>‘§ Average values

| \ Minimum values;

V7 L Il
0 5 10 15 20 25 30 35 40
Number of processors

Figure 7: For each number of processors (varying from 1 to 40), 2,000,000 values for the s; have
been randomly generated. For each case, we compute the ratio of the sum C of the half perimeters
of our partitioning over the absolute lower bound LB. The average and minimum values of this
ratio are reported in the two curves.

5.3 Theoretical Comparison with the Lower Bound

The column-based heuristic appears to be quite satisfactory in practice. Still, the following theo-
retical questions can be raised:

1. Is this “absolute lower bound” realistic? How far from the actual optimal solution is the
optimal column-based algorithm?

2. How can we improve the column-based algorithm?

In this section, we prove that the column-based partitioning is not far from being optimal, especially
when the ratio r between max s; and min s; is small. In other words, we are able to give the following
guarantee to the column-based heuristic:

Proposition 1 Let r = ﬁ?;(ss:, and let C denote the sum of the half perimeters of the rectangles

obtained with the optimal column-based partitioning. Then,

C 1
o= S Vril+ —)
2> Vsi VP
Proof Consider a column based partitioning with C = [y/r)_./s;] columns. Rectangles are
evenly distributed amongst columns, so that the numbers of rectangles in each column is either
|£] or [£]. Letting C* denote the sum of the half perimeters of the rectangles obtained with this
column partitioning, we have:

¢ < MZ@]HVéﬁw
< 2+\/FZ\/§+L

N
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Thus

¢r 1 Vo p
25 T XVE 2 VT s
Moreover,
Zsi =1 — pmaxs; >1
1
= mins; > —
pr
and thus
S VA > py/mins; > \/E
T
Therefore,

o oV
2E@gﬁ+2+
S\/F(H%

Because the sum C of the half-perimeters of the optimal column-based partitioning satisfies to
C < C*, this concludes the proof. |

S

).

If r =1, i.e. all the processors have the same speed, the column-based partitioning is asymp-
totically optimal. On the other hand, if r is large, i.e. one processor is much faster than another,
the bound is very pessimistic.

5.4 Looking for a Better Solution

As already said, this section is mostly theoretical. We investigate new algorithms for the sake of
improving the column-based solution, which is very satisfactory except in some “degenerate” artifi-
cial cases. To illustrate the point, consider the following partitioning problem into p = 6 rectangles
of respective areas (0.2488,0.2488,0.2488,0.2488,0.0024,0.0024) (the relative cycle-times of the 6
processors are approximately (1,1,1,1,100,100)). The absolute lower-bound for this example is
LB =2 2?21 Vv/s5i = 4.19. Consider the following solutions, which have different degrees of freedom:

1. The partitioning is constrained to be a column-based partitioning. Using the column-based
algorithm, we obtain the solution depicted in Figure 8.

2. The partitioning is constrained to be recursively defined as follows. The unit square is divided
into several columns. Each column is in turn divided into several rows, and so on. Of course
there are multiple choices for the number of columns, and for the number of rows within each
column, and so on. In Figure 9 we give an example with 2 columns divided into 2 and 3
rows respectively. Finally, the last row of the second column is split into two rectangles. In
the example, this partitioning is optimal amongst recursively defined partitionings (proof by
exhaustive case-analysis).

3. The partitioning is only constrained to be made out of rectangles. An example is given in
Figure 10. Note that this solution is neither column-based nor recursively defined. This
partitioning is optimal amongst all rectangle-based partitionings.
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0.4967 0.0048

0.2488 0.2488 05

05 0.2488 0.2488 00024

Figure 8: Optimal column-based partitioning. The sum of the half-perimeters is 5.

04967 05133

0.2488 02488
05 0.2488 0.2488 0.4952
T 1 0009

%0024

Figure 9: Optimal recursively defined partitioning. The sum of the half-perimeters is 4.51.

0.0693 0.4654
02488 | 02488
: —— 00024
P
1 { 0.0693
0.2488 0.2488
0.5346

Figure 10: Optimal rectangle-based partitioning. The sum of the half-perimeters is 4.19.
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Clearly, the less constrained the partitioning, the better the solution. Note that the improvement
over the column-based partitioning can be important, roughly 16% for the rectangle-based solution.
Again, in a realistic experiment, we would never use a processor in conjunction with another one
which is 100 times faster! Also, with a library designer’s perspective, a simple column-based
partitioning has many advantages regarding code generation issues.

6 MPI Experiments

To provide a preliminary experimental validation of our approach, we have implemented the hetero-
geneous MMM algorithm using the MPI library [29]. In this section, we report a few experiments
performed on a HNOW, and on a (very small!) collection of two clusters.

6.1 Using a Single HNOW to Compare Different Partitions

In this section we use a cluster of 7 heterogeneous machines of relative cycle-times equal to
(1,1, %, %, %, %, 2—10) These 7 machines are SUN workstations of our laboratory, linked by a sim-
ple Ethernet network. We compare the partition given by the optimal column-based heuristic (see
Figure 11) with 4 different partitions of the same matrices which are shown in Figure 12.

2

18
10

40

18 10

Figure 11: Partition given by the column-based heuristic (Cost C' = 5.1)

| Partition | n=640 r=32 | n=1280 r=32 | n=1280 r=64 |

C=5.1 T=33 T=269 T=258
C=5.3 T=34 T=287 T=265
C=5.4 T=48 T=289 T=264
C=5.6 T=34 T=290 T=267
C=6.4 T=72 T=367 T=302

Table 2: Average times for a matrix-matrix multiplication.

The measures were realized for matrices of size n = 640, using a blocksize r = 32, and for
matrices of size n = 1280, using two blocksize values r = 32 and r = 64. Table 2 gives the
average time to compute the MMM product for the five partitions. In the case of a matrix of size
n = 1280, we see that the time is slightly smaller if we increase the blocksize, because there are
fewer communications. We check that the execution time does grow with the cost of the partition,
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Figure 12: Four different column-based partitions
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which shows that our modeling of the communication costs is very reasonable, and is in good
adequation with these experiments. Note that (for fairness) we have not compared the results with
the homogeneous block-cyclic distribution: because the processor speeds are very different, the
performances would have been disastrous.

6.2 Experimenting with Two Clusters

In this section, the target platform is made up of two clusters. The first cluster is a pile of Pentium
Pros and the second cluster is a pile of Power PCs. The interconnection network within both
clusters is a Myrinet network. There is also a Myrinet link between the two clusters. Hence, all
communications are very fast. In the experiments, either we allocate to each cluster a fraction
of the matrix which is proportional to its computing power, according to Section 3.1, or we give
the same fraction to each processor, as in the homogeneous case. When we use the load-balancing
strategy, we use each cluster as a farm of processors, and equally distribute the workload inside the
farm.

80

T T
5+3 non-balanced
4+2 non-balanced -------

4+2 balariced -------

70 5+3 balanced B

50 |

30

Execution times (seconds)
B
o
T

10 |+

0 L L L L L L
500 1000 1500 2000 2500 3000 3500 4000
Matrix size

Figure 13: MPI experiments with two clusters.

We use two configurations, one with 5 processors in the first cluster and 3 in the second one,
and the other one with only 4 processors in the first cluster and 2 processors in the second one. In
both cases, the gain of the load-balancing heuristic over the homogeneous block-cyclic distribution
(a meaningful comparison here because the processor speeds are rather similar) is very important.

6.3 Future work

The preliminary MPI experiments reported in Sections 6.1 and 6.2 are promising. At the very least
they fully demonstrate the importance of using a good load-balancing strategy.

Clearly, further and larger experiments must be performed. More experimental results will be
provided in the final version of the paper. In particular, we aim at testing a larger collection of
clusters with slower inter-cluster links. The Globus system [16] provides a perfect framework for
such experiments, because hardware resources are used in a dedicated mode through a remote batch
system, so that static load-balancing strategies such as the one presented in this paper have all
their significance.
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7 Conclusion

In this paper, we have dealt with the implementation of MMM algorithms on heterogeneous plat-
forms. The bad news is that minimizing the total communication volume is NP-complete. The good
news is that efficient polynomial heuristics can be provided, as we have shown both theoretically
(by guaranteeing their performance) and through simulations and MPI experiments.

The MMM algorithm is the prototype of tightly-coupled kernels that need to be implemented
efficiently on distributed and heterogeneous platforms: we view it as a perfect testbed before
experimenting more challenging computational problems on the grid.

It is not clear which is the good level to program metacomputing platforms. Data-parallelism
seems unrealistic, due to the strong heterogeneity. Explicit message passing is too low-level. Despite
their many advantages, object-oriented approaches (e.g. [22, 2]) still request the user to have a deep
knowledge and understanding of both its application behavior and the underlying hardware and
network. Remote computing systems such as NetSolve [10] face severe limitations to efficiently load-
balance the work to processors. For the inexperienced user, relying on specialized but highly-tuned
libraries of all kinds (communication, scheduling, application-dependent data decompositions) may
prove a good trade-off until the programming environments evolve into “high-level-yet-general-
purpose-and-efficient” solutions!
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Appendix: Proof of Theorem 1

Definition 2 MMM-DEC(s,K): Given p real positive numbers sq,... ,sp s.t. Y7 s, = 1 and a
positive real bound K, is there a partition of the unit square into p rectangles R; of area s; and of
size h; X v;, so that >F_ (h; +v;) < K?

Theorem 1 MMM-DEC(s,K) is NP-complete.

Proof Obviously, MMM-DEC(s,K) € NP. In this section, we prove the following lemma

Lemma 2

2P-eq <p SSP <p MMM-DEC,

where SSP and 2P-eq are defined as follows

Definition 3 2-Partition-Equal (2P-eq)
Given a set of p integers A = {a1,... ,ap}, is there a partition of {1,... ,p} into two subsets A,
and As such that

Z a; = Z a; and card(A;) = card(Ag) ?
€Ay i€ A2

Definition 4 Square-Square-Partition (SSP)
Given a set A= {s1,...,sp} of p real positive numbers such that 25’:1 s; = 1, is there a partition
of the unit square into p squares S; of area s;?

Since 2P-eq is known to be NP-Complete [19], Lemma 2 will complete the proof of Theorem 1.
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7.1 Reduction: SSP <, MMM-DEC(s,K)

We start by proving the easy part of Lemma 2, i.e. SSP <p MMM-DEC(s,K). Let A = {s1,...,5,}
be a set of p real positive numbers s.t. > ¢, s; = 1. Solving SSP is equivalent to solving MMM-

DEC(s,K) with
p
K=2) 5
1=1

and therefore,
SSP <p MMM-DEC.

7.2 Reduction: 2P-eq <p SSP

In this section, we consider an arbitrary instance of the 2-Partition-Equal problem, i.e. a set
A ={ay,... ,a,} of n integers. We assume that n > 400 without loss of generality. We have to
polynomially transform this instance into an instance of the SSP problem which has a solution iff
the original instance of 2-Partition-Equal has one solution.

Define {by,... ,b,} as Vi,b; = 2(a; + 2n maxy a;). Thus, b; > %’Cb’“, b; is even. Moreover, if
we let M = max, b, and S = %, then S > 100M. We build the following instance of the SSP
problem (SSP(bi,...,by,)): is there a partition of the unit square into 14 +n + >, bi(M — by)
squares of respective area

2 2 2 2
WITIME I (o), QST (), BEZIMT (),
2 2 2
BETIMP - (g, BEERT gy By L (2 b0 =)

where A = (205 + 17TM)? ?

For convenience, in what follows, we consider the (equivalent) scaled problem: is there a parti-
tion of the (205 + 17M) x (205 + 17M) square into 14 +n + ), by(M — by) squares of respective
area

Az = (13S+11M)*  (x1),
A7 = (1S+6M)*  (x3),
Ay = (4S+3M)*  (x2),
Ass = (3S+3M)*  (x2),
Azs = (3S+2M)*  (x2),
Ayy = (2S+2M)*  (x4),
Ay = b (Vi1<i<n),
A =1 Zbk — b))

In what follows, we prove that such a partition is necessarily the one depicted in Figure 14,
where the two small M x S rectangle areas are shown by arrows in Figure 14 and fully described
in Figure 15. The intuitive idea of the proof is the following: the large squares are used to prevent
the two small M x S rectangle areas to be neighbors. Hence these areas must be filled separately
by the remaining squares, those of area b; and those of area 1. This will be possible iff there the
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Figure 14: General position of the squares

A
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|
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Figure 15: Zoom on the M x S rectangle areas

b8i can be partitioned into two subsets of same cardinal and same sum. The number of squares of

area 1 is computed so as to fill the holes and obtain a true tiling of the whole area.

7.2.1 Position of the Largest Four Squares

The general position of the largest four squares is shown in Figure 16a. Obviously, if we can tile the
remaining area with the remaining squares, this will also be the case for the configuration shown
in Figure 16b. Therefore, from now on, we assume (without loss of generality) that the largest four

rectangles are arranged as shown in Figure 16b.

7.2.2 Tiling the Remaining Surface

Now we discuss the tiling of the remaining surface (the white area of Figure 16b). We give all
dimensions in Figure 17). In the following figures, A;, denotes a square of size zS + yM. We

proceed by an exhaustive case analysis:
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Figure 16: General position of the largest four squares

7S +6M

6S +5M

135 + 11M S+ M

7S +6M

6S +5M

Figure 17: Remaining surface
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S+ M
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Aa3
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6S +5M

A212 _noj
S+ M
Aa3
Az 2
7S +6M
Az 2
Aa3
Az 2
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Figure 18: Some impossible configurations with a 45 4+ 3M square.

(s + M
A3z 3
no
7S +6M
Az 2
Ay
Az 2
6S +5M

S+ M
Az 3 no |Asg 2
Asy |7S+6M
Ay
Az 2
6S +5M

Figure 19: Some impossible configurations with a 45 4+ 3M square.

e First case: we start by tiling the 65 + 5M basis with a 45 + 3M square.

The different situations to consider are shown in Figures 18, 19 and 20 respectively. The only
correct configuration is the one depicted in Figure 20.

e Second case: we start by tiling the 65 4+ 5M basis with a 35 + 3M square.

The different situations to consider are shown in Figures 21, 22 and 23. The only correct
configuration is the one depicted in Figure 23.

e Moreover, any solution requires either a 45 4+ 3M square or a 35 + 3M square to be on the

65 + 5M basis.

Therefore, Figures 20 and 23 describe the only two possibilities to start the tiling of the re-
maining surface described in Figure 17. By symmetry, we can complete these partial tilings into

the solution described in Figure 24 (other equivalent solutions are also possible).
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Figure 20: The only correct configuration with a 4S5 + 3M square.
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6S +5M
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EENY;
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Figure 21: Some impossible configurations with a 35 + 3M square.

A4,3 no |y S
Agp |S+M
A3z A3z 2
7S +6M
A3z 3 A3z 2
6S + 5M
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Az 2 Az 3
7S +6M
Az A3z
6S +5M

S+ M
A3z 3
no A2’2
7S +6M
A3z 3 A3z 2
6S +5M

Figure 22: Some impossible configurations with a 35 + 3M square.

25



S+ M
As 2
Ay
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Figure 23: The only correct configuration with a 35 + 3M square

7S +6M
As3 Aus
6S +5M
Aa,2 Az | Az
13S +11M S+ M
Az 3 Az 2
7S +6M
As 2
Aaz
As 2
6S + 55

Figure 24: One possible tiling of the remaining surface.
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7.2.3 Partial conclusion

We have proved that any tiling of the remaining surface (see Figure 17) is similar to the one depicted
in Figure 24: after using all the large rectangles A, ,, there remains two non-adjacent rectangle
areas of area M x S to be tiled. Therefore, we can solve the SSP problem iff we can tile these two
areas with the remaining squares, i.e. n squares of area b?,l <i<mn,and ), by(M — by) squares
of area 1. Since ming by > %Xb’“ and ), by = 2S5, one can easily check that both M x S rectangle
areas have to be tiled as depicted in Figure 15. Therefore, our instance of the SSP problem has a
solution iff there exists a partition of {b1,... ,b,} into two subsets of same sum.

7.2.4 Final reduction

To complete the reduction, we have to show that there exists a partition of {b,... ,b,} into two
subsets of same sum iff the original instance of the 2-Partition-Equal problem has a solution.
First, suppose that the original instance of the 2-Partition-Equal problem has a solution, i.e.

there exists a partition of {1,... ,n} into two subsets A; and Ay satisfying
Z ap = Z ar, and card(A;) = card(Ay).
keA; k€A

Recall that by = 2(ay + 2n MAX), where MAX = maxy, aj. Then,
Z by = Z ar + 2n MAX card(A;)

ke A, ke A
= Z ar + 2n MAX card(As)
keAs
= Db
keAs
Therefore, there exists a suitable partition of {b1,... ,b,}.
Conversely, suppose that there exists a partition of {1,... ,p} into two subsets A; and Ay such
that
> b= be
ke Ay keAz
Thus,
Z ap = Z by, — 2n MAX card(A;)
ke A, ke A
Z ar = Z by, — 2n MAX card(As)
keAs keAs
Z ag — Z ar = 2n MAX card(As — A;)
ke Ay keAs
Moreover, since
Z ap — Z ar < n MAX,
ar €A ar €A

we obtain

card(A;) = card(Az) and Z ay = Z ar

ke Ay keAs
Therefore, the original instance of the 2-Partition-Equal problem has a solution.
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7.3 Conciseness of the Transformation

The last element of the proof is the conciseness of the transformation: we have to proof that
our instance of the SSP problem has a size polynomial in the size of the original instance of the
2-Partition-Equal problem.

Lemma 3 Define MAX = maxy, ay as above, and let c(a) and c(b) denote respectively the encoding
of the data a and b. Then,
Length(c(b)) = O(Length(c(a))?).

Proof

Length(c(a)) = Z log(ag) > log(MAX) + (n — 1) log(mkin ag) > (n—1)log2+ log MAX.
k

ag

Length(c(b)) = Z log(bg) = Zlog(Qn MAX(1 + nMAX)) <1+ n(logn + log2) + nlog MAX.
k k

Therefore,
Length(c(b)) = O(Length(c(a))?).

This achieves the proof of the NP-completeness of SSP, and therefore the NP-completeness of
MMM-DEC. |
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