
HAL Id: hal-02101979
https://hal-lara.archives-ouvertes.fr/hal-02101979v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When double rounding is odd
Sylvie Boldo, Guillaume Melquiond

To cite this version:
Sylvie Boldo, Guillaume Melquiond. When double rounding is odd. [Research Report] LIP RR-2004-
48, Laboratoire de l’informatique du parallélisme. 2004, 2+7p. �hal-02101979�

https://hal-lara.archives-ouvertes.fr/hal-02101979v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

When double rounding is odd

Sylvie Boldo,
Guillaume Melquiond

November 2004

Research Report No 2004-48

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

When double rounding is odd

Sylvie Boldo, Guillaume Melquiond

November 2004

Abstract

Double rounding consists in a first rounding in an intermediate extended
precision and then a second rounding in the working precision. The nat-
ural question is then of the precision and correctness of the final result.
Unfortunately, the used double rounding algorithms do not obtain a cor-
rect rounding of the initial value. We prove an efficient algorithm for
the double rounding to give the correct rounding to the nearest value
assuming the first rounding is to odd. As this rounding is unusual and
this property is surprising, we formally proved this property using the
Coq automatic proof checker.

Keywords: Floating-point, double rounding, formal proof, Coq.

Résumé

Le double arrondi consiste en un premier arrondi dans une précision
étendue suivi d’un second arrondi dans la précision de travail. La ques-
tion naturelle qui se pose est celle de la précision et de la correction du
résultat final ainsi obtenu. Malheureusement, les algorithmes de double
arrondi utilisés ne produisent pas un arrondi correct de la valeur initiale.
Nous décrivons ici un algorithme efficace de double arrondi permettant
de fournir l’arrondi correct au plus proche à condition que le premier
arrondi soit impair. Comme cet arrondi est inhabituel et que cette pro-
priété est surprenante, nous avons prouvé formellement ce résultat en
utilisant l’assistant de preuves Coq.

Mots-clés: Virgule flottante, double arrondi, preuve formelle, Coq.

When double rounding is odd 1

1 INTRODUCTION

Floating-point users expect their computations to be correctly rounded: this means that the
result of a floating-point operation is the same as if it was first computed with an infinite
precision and then rounded to the precision of the destination format. This is required by the
IEEE-754 standard [5, 6] that is followed by modern general-purpose processors.

But this standard does not require the FPU to directly handle each floating-point format
(single, double, double extended): some systems deliver results only to extended destinations.
On such a system, the user shall be able to specify that a result be rounded instead to a
smaller precision, though it may be stored in the extended format. It happens in practice
with some processors as the Intel x86, which computes with 80 bits before rounding to the
IEEE double precision (53 bits), or the PowerPC, which provides IEEE single precision by
double rounding from IEEE double precision.

Hence, double rounding may occur if the user did not explicitly specify beforehand the
destination format. Double rounding consists in a first rounding in an extended precision and
then a second rounding in the working precision. As described in Section 2, this rounding
may be erroneous: the final result is sometimes different from the correctly rounded result.

It would not be a problem if the compilers were indeed setting correctly the precisions of
each floating-point operation for processors that only work in an extended format. To increase
efficiency, they do not usually force the rounding to the wanted format since it is a costly
operation. Consequently, there is a first rounding to the extended precision corresponding to
the floating-point operation itself and a second rounding when the storage in memory is done.

Therefore, double rounding is usually considered as a dangerous feature leading to unex-
pected inaccuracy. Nevertheless, double rounding is not necessarily a threat: we give a double
rounding algorithm that ensures the correctness of the result, meaning that the result is the
same as if only one direct rounding happens. The idea is to prevent the first rounding to
approach the tie-breaking value between the two possible floating-point results.

2 DOUBLE ROUNDING

2.1 Floating-point definitions

Our formal proofs are based on the floating-point formalization of Théry and on the corre-
sponding library [3, 2] in Coq [1]. Floating-point numbers are represented by pairs (n, e) that
stand for n× 2e. We use both an integral signed mantissa n and an integral signed exponent
e for sake of simplicity.

A floating-point format is denoted by B and is composed by the lowest exponent −E

available and the precision p. We do not set an upper bound on the exponent as overflows
do not matter here (see below). We define a representable pair (n, e) such that |n| < 2p and
e ≥ −E. We denote by F the subset of real numbers represented by these pairs for a given
format B. Now only the representable floating-point numbers will be refered to; they will
simply be denoted as floating-point numbers.

All the IEEE-754 rounding modes were also defined in the Coq library, especially the
default rounding: the even closest rounding, denoted by ◦. We have f = ◦(x) if f is the
floating-point number closest to x; when x is in the middle of two consecutive floating-point
numbers, the even one is chosen.

2 Sylvie Boldo, Guillaume Melquiond

A rounding mode is defined in the Coq library as a relation between a real number and
a floating-point number, and not a function from real values to floats. Indeed, there may be
several floats corresponding to the same real value. For a relation, a weaker property than
being a rounding mode is being a faithful rounding. A floating-point number f is a faithful
rounding of a real x if it is either the rounded up or rounded down of x, as shown on Figure
1. When x is a floating-point number, it is its own and only faithful rounding. Otherwise
there always are two faithful roundings when no overflow occurs.

faithful roudings

correct rounding (closest)

x

Figure 1: Faithful roundings.

2.2 Double rounding accuracy

In some situations, a floating-point computation may first be done in an extended precision,
and later rounded to the working precision. The extended precision is denoted by Be =
(p+k,Ee) and the working precision is denoted by Bw = (p,Ew). If the same rounding mode
is used for both computations (usually to closest even), it can lead to a less precise result
than the result after a single rounding.

For example, see Figure 2. When the real value x is in the neighborhood of the middle of
two close floating-point numbers g and h, it may first be rounded in one direction toward this
middle t in extended precision, and then rounded in the same direction toward f in working
precision. Although the result f is close to x, it is not the closest floating-point number to x,
h is. When both roundings are to closest, we formally proved that the distance between the
given result f and the real value x may be as much as

|f − x| ≤

(

1

2
+ 2−k−1

)

ulp(f).

When there is only one rounding, the corresponding inequality is |f − x| ≤ 1
2
ulp(f). This

is the expected result for a IEEE-754 compatible implementation.

2.3 Double rounding and faithfulness

Another interesting property of double rounding as defined previously is that it is a faithful
rounding. We even have a more generic result.

Let us consider that the relations are not required to be rounding modes but only faithful
roundings. We formally certified that the rounded result f of a double faithful rounding is
faithful to the real initial value x, as shown in Figure 3. The requirements are k ≥ 0 and
k ≤ Ee − Ew (any normal float in the working format is normal in the extended format).

This means that any sequence of successive roundings in decreasing precisions gives a
faithful rounding of the initial value.

When double rounding is odd 3

Be step

Bw step

x
t

first rounding

second rounding

g h

f

Figure 2: Bad case for double rounding.

x

f f

Figure 3: Double roundings are faithful.

3 ALGORITHM

As seen in previous sections, two roundings to closest induce a bigger round-off error than
one single rounding to closest and may then lead to unexpected incorrect results. We now
present how to choose the roundings for the double rounding to give a correct rounding to
closest.

3.1 Odd rounding

This rounding does not belong to the IEEE-754’s or even 754R1’s rounding modes. Algorithm
1 will justify the definition of this unusual rounding mode. It should not be mixed up with the
rounding to the closest odd (similar to the default rounding: rounding to the closest even).

We denote by 4 the rounding toward +∞ and by 5 the rounding toward −∞. The
rounding to odd is defined by:

¤odd(x) = x if x ∈ F,

= 4(x) if 4(x) is odd,

= 5(x) otherwise.

Note that the result of an odd rounding may be even only in the case where x is a
representable even float.

The first proofs were to guarantee that this operator is a rounding mode as defined in
our formalization [3] and a few other useful properties. This means that we proved that odd
rounding is a rounding mode, this includes the proofs of:

• Each real can be rounded to odd.

1
See http://www.validlab.com/754R/.

http://www.validlab.com/754R/

4 Sylvie Boldo, Guillaume Melquiond

• Any odd rounding is a faithful rounding.

• Odd rounding is monotone.

We also certified that:

• Odd rounding is unique (meaning that it can be expressed as a function).

• Odd rounding is symmetric, meaning that if f = ¤odd(x), then −f = ¤odd(−x).

These properties will be used in the proof of Algorithm 1.

3.2 Correct double rounding algorithm

Algorithm 1 first computes the rounding to odd of the real value x in the extended format
(with p + k bits). It then computes the rounding to the closest even of the previous value
in the working format (with p bits). We here consider a real value x but an implementation
does not need to really handle x: it can represent the abstract exact result of an operation
between floating-point numbers.

Algorithm 1 Correct double rounding algorithm.

t = ¤
p+k
odd

(x)

f = ◦p(t)

Assuming p ≥ 2 and k ≥ 2, and Ee ≥ 2 + Ew, then

f = ◦p(x).

Although there is a double rounding, we here guarantee that the computed result is correct.
The explanation is in Figure 4 and is as follow.

When x is exactly equal to the middle of two consecutive floating-point numbers g and h

(case 1), then t is exactly x and f is the correct rounding of x. Otherwise, when x is slightly
different from this mid-point (case 2), then t is different from this mid-point: it is the odd
value just greater or just smaller than the mid-point depending on the value of x. The reason
is that, as k ≥ 2, the mid-point is even in the p+k precision, so t cannot be rounded into it if
it is not exactly equal to it. This obtained t value will then be correctly rounded to f , which
is the closest p-bit float from x. The other cases (case 3) are far away from the mid-point and
are easy to handle.

Note that the hypothesis Ee ≥ 2 + Ew is not a strong requirement: due to the definition
of E, it does not mean that the exponent range (as defined in the IEEE-754 standard) must
be greater by 2. As k ≥ 2, a sufficient condition is: any normal floating-point numbers with
respect to Bw should be normal with respect to Be.

3.3 Proof

The pen and paper proof is a bit technical but does seem easy (see Figure 4). Unfortunately,
the translation into a formal proof was unexpectedly tedious because of some complicated

When double rounding is odd 5

h
g

1 23

Figure 4: Different cases of Algorithm 1.

degenerate cases. The complex cases were especially the ones where v was a power of two,
and subsequently where v was the smallest normal float. Those many splittings into subcases
made the final proof rather long: 7 theorems and about one thousand lines of Coq, but we
are now sure that every case (normal/subnormal, power of the radix or not) are correctly
handled.

The general case, described by the preceding figure, was done in various subcases. The
first split was the positive/negative one, due to the fact that odd rounding and even closest
rounding are both symmetrical. Then let v = ◦p(x), we have to prove that f = v:

• when v is not a power of two,

– when x = t (case 1), then f = ◦p(t) = ◦p(x) = v,

– otherwise, we know that |x−v| ≤ 1
2
ulp(v). As odd rounding is monotone and k ≥ 2,

it means that |t− v| ≤ 1
2
ulp(v). But we cannot have |t− v| = 1

2
ulp(v) as it would

imply that t is even in p + k precision, which is impossible. So |t − v| < 1
2
ulp(v)

and v = ◦p(t) = f .

• when v is a power of two,

– when x = t (case 1), then f = ◦p(t) = ◦p(x) = v,

– otherwise, we know that v − 1
4
ulp(v) ≤ x ≤ v + 1

2
ulp(v). As odd rounding is

monotone and k ≥ 2, it means that v − 1
4
ulp(v) ≤ t ≤ v + 1

2
ulp(v). But we can

have neither v − 1
4
ulp(v) = t, nor t = v + 1

2
ulp(v) as it would imply that t is even

in p + k precision, which is impossible. So v − 1
4
ulp(v) < t < v + 1

2
ulp(v) and

v = ◦p(t) = f .

• the case where v is the smallest normal floating-point number is handled separately, as
v − 1

4
ulp(v) should be replaced by v − 1

2
ulp(v) in the previous proof subcase.

Even if the used formalization of floating-point numbers does not consider Overflows, this
does not restrict the scope of the proof. Indeed, in the proof +∞ can be treated as any other
float (even as an even one) and without any problem. We only require that the Overflow
threshold for the extended format is not smaller than the working format’s.

4 APPLICATIONS

4.1 Rounding to odd is easy

This whole study would have no interest if rounding to odd was impossible to achieve. For-
tunately, it is quite easy to implement it in hardware. Rounding to odd the real result x of a

6 Sylvie Boldo, Guillaume Melquiond

floating-point computation can be done in two steps. First round it to zero into the floating-
point number Z(x) with respect to the IEEE-754 standard. And then perform a logical or
between the inexact flag ι (or the sticky bit) of the first step and the last bit of the mantissa.
We later found that Goldberg [4] used this algorithm for binary-decimal conversions.

If the mantissa of Z(x) is already odd, this floating-point number is the rounding to
odd of x too; the logical or does not change it. If the floating-point computation is exact,
Z(x) is equal to x and ι is not set; consequently ¤odd(x) = Z(x) is correct. Otherwise the
computation is inexact and the mantissa of Z(x) is even, but the final mantissa must be odd,
hence the logical or with ι. In this last case, this odd float is the correct one, since the first
rounding was toward zero.

Computing ι is not a problem per se, since the IEEE-754 standard requires this flag
to be implemented, and hardware already uses sticky bits for the other rounding modes.
Furthermore, the value of ι can directly be reused to flag the odd rounding of x as exact or
inexact.

Another way to compute the rounding to odd is the following. We first round x toward
zero with p + k − 1 bits. We then concatenate the inexact bit of the previous operation at
the end of the mantissa in order to get a p + k-bit float. The justification is similar to the
previous one.

4.2 Multi-precision operators

A possible application of our result is the implementation of multi-precision operators. We
assume we want to get the correctly rounded value of an operator at various precisions (namely
p1 < p2 < p3 for example). It is then enough to get the result with odd rounding on p3 + 2
bits (and a larger or equal exponent range) and some rounding to closest operators from the
precision p3 + 2 to smaller precisions p1, p2 and p3. The correctness of Algorithm 1 ensures
that the final result in precision pi will be the correct even closest rounding of the exact value.

The same principle can be applied to the storage of constants: to get C correctly rounded
in 24, 53 and 64 bits, it is enough to store it (oddly rounded) with 66 bits. Another example
is when a constant may be needed either in single or in double precision by a software.
Then, if the processor allows double-extended precision, it is sufficient to store the constant
in double-extended precision and let the processor correctly round it to the required precision.

5 CONCLUSION

The algorithm described here is very simple and can be used in many real-life applications.
Nevertheless, due to the bad reputation of double rounding, it is difficult to believe that double
rounding may lead to a correct result. It is therefore essential to guarantee its validity. We
formally proved its correctness with Coq, even in the unusual cases: power of two, subnormal
floats, normal/subnormal frontier. All these cases made the formal proof longer and more
difficult than one may expect at first sight. It is nevertheless very useful to have formally
certified this proof, as the inequality handling was sometimes tricky and as the special cases
were numerous and difficult.

This algorithm is even more general than what is presented here. It can also be applied
to any realistic rounding to the closest (meaning that the result of a computation is uniquely
defined by its operands and does not depend on the machine state). In particular, it handles
the new rounding to the closest up defined by the revision of the IEEE-754 standard.

When double rounding is odd 7

References

[1] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development.

Coq’Art : the Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[2] Sylvie Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École
Normale Supérieure de Lyon, November 2004.

[3] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library of floating-point
numbers and its application to exact computing. In 14th International Conference on

Theorem Proving in Higher Order Logics, pages 169–184, Edinburgh, Scotland, 2001.

[4] David Goldberg. What every computer scientist should know about floating point arith-
metic. ACM Computing Surveys, 23(1):5–47, 1991.

[5] David Stevenson et al. A proposed standard for binary floating point arithmetic. IEEE

Computer, 14(3):51–62, 1981.

[6] David Stevenson et al. An American national standard: IEEE standard for binary floating
point arithmetic. ACM SIGPLAN Notices, 22(2):9–25, 1987.

	1 INTRODUCTION
	2 DOUBLE ROUNDING
	2.1 Floating-point definitions
	2.2 Double rounding accuracy
	2.3 Double rounding and faithfulness

	3 ALGORITHM
	3.1 Odd rounding
	3.2 Correct double rounding algorithm
	3.3 Proof

	4 APPLICATIONS
	4.1 Rounding to odd is easy
	4.2 Multi-precision operators

	5 CONCLUSION

