N
N

N

HAL

open science

A polynomial-time algorithm for allocating independent
tasks on heterogeneous fork-graphs

Olivier Beaumont, Arnaud Legrand, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Yves Robert. A polynomial-time algorithm for allocating in-
dependent tasks on heterogeneous fork-graphs. [Research Report] LIP RR-2002-07, Laboratoire de

I'informatique du parallélisme. 2002, 2+10p. hal-02101974

HAL Id: hal-02101974
https://hal-lara.archives-ouvertes.fr /hal-02101974
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02101974
https://hal.archives-ouvertes.fr

Laboratoire de I’ I nformatique du Parallélisme

O
< s - CENTRE NATIONAL
%‘ Ecole Normale Supérieure de Lyon % DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON rP 5668 SCIENTIFIQUE

A polynomial-time algorithm for allocating
independent tasks on heterogeneous
fork-graphs

Olivier Beaumont
Arnaud Legrand February 2002
Yves Robert

Research Report N° 2002-07

Ecole Normale Supérieure de Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France
III Téléphone : +33(0)4.72.72.80.37 1 N R] A
Télécopieur : +33(0)4.72.72.80.80 .

Adresse électronique : 1ip@ens-1lyon.fr

A polynomial-time algorithm for allocating independent tasks on
heterogeneous fork-graphs

Olivier Beaumont
Arnaud Legrand
Yves Robert

February 2002

Abstract

In this paper, we consider the problem of allocating a large number of
independent, equal-sized tasks to a heterogeneous processor farm. The
master processor Py can process a task within wg time-units; it communi-
cates a task in d; time-units to the i-th slave P;, 1 <4 < p, which requires
w; time-units to process it. We assume communication-computation
overlap capabilities for each slave (and for the master), but the commu-
nication medium is exclusive: the master can only communicate with a
single slave at each time-step.

We give a polynomial-time algorithm to solve the following scheduling
problem: given a time-bound 7', what is the maximal number of tasks
that can be processed by the master and the p slaves within 7" time-units?

Keywords: heterogeneous processors, scheduling, mapping, master-slave, complexity

Résumé

Nous nous intéressons a ’ordonnancement de taches indépendantes sur
une plateforme maitre-esclave hétérogéne, modélisée par un graphe fork.
Le maitre et les p esclaves ont des vitesses de calcul différentes. De
méme, les liens de communication entre le maitre et chaque esclave
ont des capacités différentes. Le modéle autorise le recouvrement calcul-
communication sur chaque processeur, mais on suppose que toutes les
communications s’effectuent en mode 1-port: & tout instant, le maitre ne
peut envoyer qu’un seul message (3 un esclave donné).

Nous présentons un algorithme polynomial pour résoudre le probléme
d’ordonnancement correspondant: étant donnée une borne temporelle 7',
maximiser le nombre total de taches qui peuvent étre effectuées par le
maitre et les p esclaves en temps 7.

Mots-clés: processeurs hétérogeénes, heuristiques d’ordonnancement, distribution,
maitre-esclave, complexité

1 Introduction

In this paper, we deal with the problem of allocating a large number of independent, equal-sized
tasks to a heterogeneous processor farm. The master processor Py can process a task within wy
time-units: it communicates a task in d; time-units to its ¢-th slave P;, 1 <14 < p, which requires w;
time-units to process it. We assume communication-computation overlap capabilities for each slave
(and for the master), but the communication medium is exclusive. In other words, the master can
only communicate with a single slave at each time-step. We state the communication model more
precisely:

e a given communication from Py to P; lasts d; units of time
e Py cannot be involved in any other communication during these units of time

e P, cannot start the execution of the task before the communication is completed.

We give a polynomial-time algorithm to solve the following scheduling problem (to be stated
more formally in Section 2: given a time-bound 7', what is the maximal number of tasks that can
be processed by the master and the p slaves within 7' time-units? The polynomial complexity of
this scheduling problem is established in Sections 3 and 4. This result is rather surprising: indeed,
two variants of the problem are shown NP-complete in Section 5. Finally, we survey several related
problems from the literature in Section 6.

2 Problem statement

We consider a fork-graph (see Figure 1) with a master-processor Py and p slaves P;, 1 < i < p. The
master processor Py owns an arbitrarily large number of independent, equal-size, non-preemptive
tasks; it can process a given task within wg time-units; in parallel, it can send tasks to the p slaves,
but only to a single slave at a given time-step.

w1 Wao w; Wyp

Figure 1: Heterogeneous fork-graph

It takes d; time-units for slave P; to receive a task, 1 < ¢ < p. More precisely, if Py sends a task
to P; at time-step ¢, P; cannot start executing this task before time-step ¢ + d;, while Py cannot
initiate another communication before time-step ¢ + d;. P; can process a task within w; time-units;
while computing a given task, P; can receive another task from Fy. See Figure 2 for an example.

We deal with the following scheduling problem: given a time bound 7', determine the scheduling
and allocation of tasks to processor which maximize the total number of tasks whose execution is
completed no later than 7T'. Informally, we have to determine the best ordering of the messages sent
by the master, together with the identity of the processors which execute the corresponding tasks,
so as to maximize the total number of executed tasks. Note that this scheduling problem is called
the NOW-Exploitation problem in [17].

Py | [T T T T T T

7 7
¢ ¢
Y Y

I
I
!
I
I
P, | I I f f I I I T I } -
I
I
I
r
I
I
I

8 3\ 1 \ Sl (
, ,))

P1 - {\ A) I L {

L v \
K Comm. with P/ ’
\,
\

\

g)

T I I f oo § I I l/\ -----------------
) @ @& | n ‘ 1 |
3 2 6 '

Comm. with P Comm. with P

Figure 2: Example of execution: at most three tasks can be scheduled within 7" = 10 time-units.

Remark 1. Clearly, because the master processor can compute and communicate in parallel, it
should be kept busy; within T time-units, Py can execute Lwloj tasks. To deal with the case where the
master processor Py has no processing capability, simply let wy = 4+00. Similarly, to deal with the
case where the master cannot overlap its own computations with the communications to the slaves,

add a new child P_y such that d_1 = wy and w_1 = wy, and then let wy = 4+00.

To state our complexity result, we have to be more precise about the problem specification. The
expected output of the scheduling algorithm includes the list of tasks to be processed by each slave.
The size of this list will be linear in the time-bound T, therefore exponential in the problem size if
we only let 7" in the input (because it can be encoded with O(logT') bits). Rather, we let the input
include the original list of all tasks owned by the master. Such an hypothesis makes full sense in
practice: even though we assume equal-size tasks, each task will correspond to a different file, and
to a different computation, and we must keep track of which task is executed on which computing
resource.

We are ready to formally state our scheduling problem (in view of the previous remarks, we
omit the computations performed by the master processor):

Definition 1 (MAX-TASKS(n,F,p,W,D,T)). Given
e aset F ={F,F,,...,F,} of n equal-size independent tasks,
o aset W= {wi,ws,...,wp} of p execution times
o aset D= {dy,da,...,d,} of p communication delays,
e a time-bound T,

compute a maximal-cardinal subset of F of tasks that can be executed within T time-units on a
heterogeneous master-slave platform made up with p slaves P; of computation time w; and commu-
nication time d;, 1 <1 <p.

Theorem 1. MAX-TASKS(n,F,p,W,D,T) can be solved in polynomial time.

The proof is constructive. In the following, a (somewhat sophisticated) greedy algorithm is
shown to be optimal.

3 Reduction to a problem with at most one task per slave

Proposition 1. Any instance MAX-TASKS(n,F,p,W,D,T) can be polynomially reduced to an
instance MAX-TASKS-SINGLE(n,F,p', W', D', T) where each slave is constrained to ezecute at
most one task.

Proof. Each slave P; can be dealt with separately, so let 7, 1 < 4 < p, be fixed. We replace slave
P; by a collection of I; slaves P;;, 1 < j <1 = min(n, LTA_/[?”J + 1), where M; = max(d;, w;). See
Figure 3: all the new slaves have the same communication capability d; as P;, but P; j processes a
task in w; j = w; + (j — 1).M; time-units. Obviously, the j + 1-th task executed by P; in the original
instance will be executed by F; ; in the new instance.

After the transformation, the total number of slaves is bounded by p X n, which is indeed
polynomial in the size of the input (because F is of size at least O(n) and W, or D, of size at least

O(p))- o

Figure 3: Replacing a slave by a collection of uni-task slaves

4 With at most one task per slave

In this section, we solve MAX-TASKS-SINGLE(n, F,p, W, D, T), the problem where each slave is
limited to executing at most one-task. The problem is reduced to deciding which slave to communi-
cate with, and in which order. For simplicity, we still use the notations p, W, D while in fact there
are p' = O(pn) slaves after the transformation of Section 3.

We start with a technical lemma:

Lemma 1. Consider a set of k slaves capable of executing k tasks (one each) within T units with
some scheduling. Then, if we sort these slaves by computation times (largest first), and if we
schedule the communications from the master Py in that order, we can also execute k tasks within
T time-units.

Proof. To simplify notations, let Py, Ps,..., P, be the sorted slaves: wy > ws > ... > wg. Let
(P, ..., P,) be the ordering of the communications from P in the original schedule. The following
set of equations is satisfied:

(Ly) d; + wj, <T first task
(L2) di, +di, + wj, <T second task

(Lg) diy +diy +---+di, +w;, <T last task

Let jq,...,Jr be the indices of the tasks of the sorted slaves in the original schedule: i;, =1,
tj, = 2, ...and 4;, = k. ij, = 1 means that processor P; is assigned the j;-th task in the original
schedule. We prove by induction that tasks can be assigned in the ordering 1,2,...,k of sorted
computation times:

i) For the first task, we have d; +w; < T. Indeed, see equation Lj : d;, +-- ddi;, +di+w <T.
ii) For the second task, we have d; + dy + w9 < T. Indeed, there are two possibilities:

e Either jo > ji; then the inequality Lj, contains the quantity di; + d
d1 + d2 + w2 S T

ij, + wij,, hence

e Or jp < ji1; then the inequality L;, contains the quantity dz-].1 +d
we derive that di + do + wo < T'.

iz, T Wi because wy < w1,

iii) For the general case, let i < k. Assume that for all | < i we have d; +--- +d; +w; <T. We
aim at proving that dy + - -+ + dj11 + wip1 < T. Let m; = max(j1,..., ;).

e Either j;11 > m;; then we consider the inequality Lj, , ,, which contains the terms dy, da, ..., d;

(because jj+1 > m;) as well as the term d;;1 + w;y1. Hence dy + -+ + djpq + wipq < T.

e Or jiy1 < m;; then we consider the inequality L,,;, which contains the terms d;,ds, ..., d;+1
as well as the term d; +w;. Hence dy +- -+ d;11 +w; < T. Because w; > w;11, we finally
derive that dy + -+ dj11 +wipy <T.

We introduce the following greedy algorithm:

MASTER-SLAVE((P, ..., Pp),T)

Sort slaves such that dy < d>... < d,

L+

For: =1 To p Do
If LU{P;} can be scheduled within T" time-units
Then L <~ LU {P;}

Return (L)

A

The condition at line 4 can be checked using Lemma 1: sort the current list L according to the
computation times and verify that all inequalities are satisfied.

Proposition 2. The Master-Slave algorithm returns a mazimal set of tasks that can be processed
within T time-units.

Proof. To simplify notations, we say that a set of indices Z = {iy,...,ix} is schedulable if there
exists a valid scheduling executing £ tasks within 7" time-units, with processors {P;,,..., P;, }.
Assume that the set Z = {iy,...,4x} is schedulable, and further (without loss of generality) that
di, < d;, < d;,. We show that the MASTER-SLAVE algorithm returns at least £ values, i.e. a
schedulable set G = {g1, ..., gk}, which will conclude the proof. We proceed by induction.

i) Let Zyp = {i1,...,ir}. The set Zy is schedulable. Each subset of Z; is schedulable. In particular,
each singleton {i;} is schedulable. By construction of the MASTER-SLAVE algorithm, g¢;
exists and g < min(éy,...,i;). This is because the MASTER-SLAVE algorithm selects the

4

ii)

iii)

smallest index of a schedulable task. Now we show that there exists a schedulable set Z; of k
elements which contains g;. If g1 € Zy we are done: 7y = 7. Otherwise consider the ordering

Gy s 0jys - - -4, in which Zg is scheduled: we have the set of inequalities:
(Ly) dih + Wi, <T
(L2) dij, +dij, +wij, <T
(Lg) dih + dij2 +--+ dijk + Wi, <T

We replace the first scheduled index i; by g1 to build I;: we let Iy = I \ {ij, } U {g1}. The
first inequality cg, +wy, < T holds because g; is schedulable. The other inequalities (L2) to
(Ly) still hold because dg, < d;; . Hence Zy = {g1,%js, - - -,%j, } is schedulable.

Therefore there exists a schedulable set Z; = {g1,4},...,9,_,}. Forall j, 1 < j <k, the pair
{gl,i;-} is schedulable, which establishes that the MASTER-SLAVE algorithm does select an
index go after selecting gi. Furthermore, go < min(#},...,# ;). Now we show that there exists
a schedulable set Z, of k elements which contains g1 and go. If g € {d},... i} _,} let o =T;.
Otherwise, consider the ordering in which Z; is scheduled. There is no reason that g; should
be scheduled first in 77, hence we have two cases:

e g; is indeed the first task in Z; to be communicated by FPy. Let f be the index of the
second task in Z; to be communicated by Py. Because the pair {g1, g2} is schedulable,
we can replace f by go: the first two inequalities (L) and (L) are satisfied (maybe we
have to swap g; and go, but anyway this pair can be scheduled), and the following &k — 2
inequalities still hold true because dg, < dy.

e The index f of the first task in Z; to be communicated by Py is different from g;. Then
we replace f by go: the first inequality (L;) is satisfied because {g2} is schedulable, and
the following £ — 1 inequalities still hold true because dg, < dy.

We conclude that Zy is schedulable.

For the general case, assume we have a schedulable set Z; 1 = {g1,...,9j-1,%,... ,i%7j+1}.
For every [, 1 <1k —j+1, the subset {g1,...,gj—1,1;} is schedulable, hence the the MASTER-
SLAVE algorithm does select an index g; after selecting gi,...,gj—1. Furthermore, g; <
min(i}, ... ,z';cfjﬂ). Now we show that there exists a schedulable set Z; of k elements which
contains {g1,92,...,9;} U gj € {i,...,9_;,,} let Z; = T; ;. Otherwise, consider the order-
ing in which Z; ; is scheduled. We pick up the first task f to be scheduled that is different
from the MASTER-SLAVE indices g1, g2, ..., gj—1- We replace this index f by g; to derive
I]'-. We claim that Z; is schedulable. To see this, consider the scheduling of Z; 1, and let [be
such that the first [inequalities (L) to (L;) deal with MASTER-SLAVE indices g;,, giy, - - -,
gi,, while (Lj41) deals with index f:

(a) {gi1s---,9i, 94} is schedulable as a subset of {g1,...,g;}: a valid ordering of these [+ 1
tasks provide the first [+ 1 inequalities.

(b) inequalities (L;12) to (Lg) still hold because dgy; < dy.

This establishes Proposition 2. [|

Proof of Theorem 1. We go back to the proof of Theorem 1. First we note that the complexity
of the Master-Slave algorithm is quadratic in the number of slaves: each task is processed once,
and the test for its insertion in the returned scheduled is easily implemented in time linear in the
number of already selected tasks. To see this, simply maintain the list of already selected tasks
together with their current termination time. When a new task Fj is inserted, we increment by d;
the termination times of all tasks F; whose w; is smaller than w;, and we check on the fly that these
termination times still do not exceed T'.

Going back to the original problem, the complexity is thus bounded by O(n?p?): after the
transformation of Section 3, the number of uni-task slaves is bounded by O(n.p), and the complexity

of the greedy algorithm is at most quadratic in that quantity. This concludes the proof of Theorem 1.
[|

5 Extensions

In this section we discuss two variants which are natural extensions of the MAX-TASKS(n, F,p, W, D, T)
problem. The first variant deals with a two-port communication model, where the master can com-
municate to at most two slaves simultaneously. The second variant deals with two masters sharing
slaves. Both variants turn out to be NP-complete.

5.1 With a two-port communication model

We state the decision problem associated with the extension to a two-port communication model
as follows:

Definition 2 (MAX-TASKS-2PORTS(n,F,p,W,D,T,K)). Given a set F = {F|,Fs,...,F,}
of n equal-size independent tasks, a set W = {wy,ws,...,w,} of p execution times, a set D =
{di1,da,...,d,} of p communication delays, a time-bound T, and a task-bound K, is it possible to
execute at least K tasks within T time-units on a heterogeneous master-slave platform made up with
p slaves P; of computation time w; and communication time d;, 1 <1 < p, and a master capable of
communicating to at most two slaves simultaneously?

Proposition 3. MAX-TASKS-2PORTS(n,F,p,W,D,T,K) is NP-complete.

Proof. MAX-TASKS-2PORTS(n, F,p, W, D, T, K) clearly belongs to the class NP. We use a reduc-
tion from 2-PARTITION [8] to show its completeness. We are given an instance I; of 2-PARTITION,
i.e. aset of n integers A = {ay,...,a,}, and we ask whether there exists a partition of {1,...,n}
into two subsets A; and A such that

Zai:Zai ?

€A €A

Let S = %Z?:l a;.

Given I, we build an instance I of MAX-TASKS-2PORTS as follows. We use a set F of n
tasks and p = n slaves with w; = 25 and d; = a; for 1 <7 <mn. Welet T =35 and K = n. The
size of I is polynomial (even linear) in the size of I;.

Assume that I1 has a solution A; and Ay. Let the master communicate along its first commu-
nication channel with the slaves whose index is in \A;, and along its second communication channel
with with the slaves whose index is in 4s. The ordering of the communications is not important.
At time S, the last two processors have completed the reception of their message from the master.
At time 35, each processor has executed one task, hence a solution to Is.

6

Assume now that Iy has a solution. Let A; denote the set of indices of those processors which
communicate with the master along its first communication channel, and Ay denote the set of
indices of those processors which communicate with the master along its second communication
channel. Each processor can execute at most one task, because 2w; = 4S5 > T for all . Hence,
because K = n, each processor executes exactly one task. Therefore the sets A; and As represent
a partition of {1,...,n}.

The last processor to receive a message along the first communication channel does complete
the execution of its task within 7" time units, which translates into

Z di+28<T
€A

Similarly, >7;c 4, di +2S < T'. Since Y i, d; = 25, we get
Z d; = Z dy =S,
€A €A1

hence a solution to I. [|

5.2 With two masters

We state the decision problem associated with the extension for two masters (see Figure 4) as
follows:

Figure 4: Variant with two masters.

Definition 3 (MAX-TASKS-2MASTERS(n, F1, F2,p, W, D1, Do, T, K)). Given a master-slave
heterogeneous computing platform made up with

e a first master holding a set Fi = {F1, Fs, ..., F,} of n equal-size independent tasks,

e a second master possessing a set Fo = {F{,Fy,...,F} of n equal-size independent tasks,
e p slaves,
o aset W= {w;,1 <i<p} of ezecution times of the p slaves,

e a set Dy = {d;,;,1 <i < p} of communication delays from the first master to the p slaves,

e a set Dy = {d;,,1 < i <p} of communication delays from the second master to the p slaves,

given a time-bound T, and a task-bound K, s it possible to execute at least K tasks within T time-
units on the platform, assuming that each processor is capable of sending to or receiving from at
most another processor at any time-step?

Proposition 4. MAX-TASKS-2MASTERS(n, Fi, Fa,p, W, D1, Dy, T, K) is NP-complete.

Proof. MAX-TASKS-2MASTERS clearly belongs to NP. Again, we use a reduction from 2-PARTITION
to show its completeness. We are given an instance I; of 2-PARTITION, i.e. a set of n integers

A ={ay,...,a,}, and we ask whether there exists a partition of {1,...,n} into two subsets .4; and
As such that

Z a; = Z a; ?

€A €A

Let S =250 a;.

Given I1, we build an instance I of MAX-TASKS-2MASTERS as follows. We use p = n slaves
with w; =28 forall 1 <¢ < n.. Welet d;, =d;, =a; for 1 <i<n. Welet T =35 and K = n.
The size of Iy is polynomial (even linear) in the size of I;.

The proof that I; has a solution if and only if Is has a solution is quite similar to that of
Proposition 3. |

6 Related problems

This paper is a follow-on of two previous papers that study the same scheduling problem. In [3],
communication links are assumed to be homogeneous. In other words, d; = d for 1 <17 < p. We use
a matching algorithm to compute the optimal solution in this context. In [2] we deal with master-
slave tasking on more general tree-structured networks: in other words, the underlying architecture
is a tree, it is no longer restricted to a fork graph. We do not know the complexity of the master-
slave scheduling problem on a general tree graph, which seems to be a challenging open problem.
Rather than searching a solution to this problem, we characterize in [2] the best steady-state for
various operation models (i.e. we neglect the initialization and termination phases).
We classify several related papers along the following three main lines:

Scheduling fork graphs The complexity of scheduling fork graphs has been widely studied in the
literature. Given a task graph, the standard macro data-flow model [5, 16] assumes that: (i)
processors are homogeneous; (ii) communication delays are paid each time a task and one of
its successors are not assigned to the same processor. In this model, scheduling a fork graph
with an inifinite number of processors is a polynomial problem [9], while scheduling a fork-join
graph is NP-complete [6].

Extensions of the standard macro data-flow model includes the one-port model [13, 14] (just
as in this paper, each processor can communicate with at most another processor at a given
time-step) and the LogP model [7]|. Scheduling fork graphs in the one-port model [1] or in the
LogP model [20] remains NP-complete, even for an infinity of resources. Extensions of the
result under the LogP model to allow message forwarding are dealt in [21].

Collective communications on heterogeneous platforms Several papers deal with the com-
plexity of collective communications on heterogeneous platforms: broadcast and multicast
operations are addressed in [4, 15|, gather operations are studied in [11].

Master-slave on the computational grid Master-slave scheduling on the grid can be based on
a network-flow approach [19, 18] or on an adaptive strategy [12|. Enabling frameworks to
facilitate the implementation of master-slave tasking are described in [10, 22].

7

Conclusion

In this paper, we have shown that master-slave tasking using heterogeneous fork-graphs can be
solved in polynomial time, using a non-trivial greedy algorithm. The complexity of this scheduling
problem for arbitrary tree graphs is a challenging open problem. A first step to solving this problem
would be to study the complexity for a linear chain of processors.

References

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

[11]

O. Beaumont, V. Boudet, and Y. Robert. A realistic model and an efficient heuristic for
scheduling with heterogeneous processors. In HCW’2002, the 11th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2002.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric allocation
of independent tasks on heterogeneous platforms. In International Parallel and Distributed
Processing Symposium IPDPS’2002. IEEE Computer Society Press, 2002. Extended version
available as LIP Research Report 2001-25.

O. Beaumont, A. Legrand, and Y. Robert. The master-slave paradigm with heterogeneous
processors. In D.S. Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzycki, and R. Buyya,
editors, Cluster’2001, pages 419-426. IEEE. Computer Society Press, 2001. Extended version
available as LIP Research Report 2001-13.

P.B. Bhat, V.K. Prasanna, and C.S. Raghavendra. Efficient collective communication in dis-
tributed heterogeneous systems. In 19th IEEE International Conference on Distributed Com-
puting Systems (ICDCS’99). IEEE Computer Society Press, 1999.

P. Chrétienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors. Scheduling Theory and its
Applications. John Wiley and Sons, 1995.

P. Chrétienne and C. Picouleau. Scheduling with communication delays: a survey. In P. Chré-
tienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Appli-
cations, pages 65-89. John Wiley & Sons, 1995.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: A practical model of parallel computation. Communications of the
ACM, 39(11):78-85, 1996.

M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1991.

Apostolos Gerasoulis and Tao Yang. On the granularity and clustering of directed acyclic task
graphs. IEEE Trans. Parallel and Distributed Systems, 4(6):686-701, 1993.

J.P Goux, S.Kulkarni, J. Linderoth, and M. Yoder. An enabling framework for master-worker
applications on the computational grid. In Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC’00). IEEE Computer Society Press, 2000.

J.-I. Hatta and S. Shibusawa. Scheduling algorithms for efficient gather operations in distributed
heterogeneous systems. In 2000 International Conference on Parallel Processing (ICPP’2000).
IEEE Computer Society Press, 2000.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E. Heymann, M.A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-worker
applications on the computational grid. In R. Buyya and M. Baker, editors, Grid Computing
- GRID 2000, pages 214-227. Springer-Verlag LNCS 1971, 2000.

S.L. Johnsson and C.-T. Ho. Spanning graphs for optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Computers, 38(9):1249-1268, 1989.

D.W. Krumme, G. Cybenko, and K.N. Venkataraman. Gossiping in minimal time. SIAM J.
Computing, 21:111-139, 1992.

R. Libeskind-Hadas, J.R.K. Hartline, P. Boothe, G. Rae, and J. Swisher. On multicast algo-
rithms for heterogeneous networks of workstations. Journal of Parallel and Distributed Com-
puting, 61(11):1665-1679, 2001.

C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis of par-
allel algorithms. STAM Journal on Computing, 19(2):322-328, 1990.

A L. Rosenberg. Sharing partitionable workloads in heterogeneous NOWs: greedier is not
better. In D.S. Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzycki, and R. Buyya, editors,
Cluster Computing 2001, pages 124-131. IEEE Computer Society Press, 2001.

G. Shao. Adaptive scheduling of master/worker applications on distributed computational re-
sources. PhD thesis, Dept. of Computer Science, University Of California at San Diego, 2001.

G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In Heterogeneous
Computing Workshop HCW’00. IEEE Computer Society Press, 2000.

J. Verriet. Scheduling with communication for multiprocessor computation. PhD thesis, Dept.
of Computer Science, Utrecht University, 1998.

K.N. Venkataraman W. Zimmermann, W. Lowe. On scheduling send-graphs and receive-graphs
under the LogP model. Information Processing Letters, to appear.

J.B. Weissman. Scheduling multi-component applications in heterogeneous wide-area networks.
In Heterogeneous Computing Workshop HCW’00. IEEE Computer Society Press, 2000.

10

