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In this article, we start by presenting some basic definitions, some new notions about regularity as well as a topology on the set of tilings. From there, after the study of a new structure on the tiling sets, we give some combinatorial results about the class of quasiperiodic tilings and we show two examples of set of tilings explaining the limits of the propositions given here. We finaly give some indications about 1D-periodicity in tilings.

Dans cet article, nous présentons tout d'abord quelques définitions de base sur les tuiles et les pavages, des notions nouvelles sur la régularité et une topologie intéressante sur les ensembles de pavages. Puis, après l'étude d'une nouvelle structure sur les ensembles de pavages, nous donnons des résultats de dénombrabilité sur les classes de pavages quasipériodiques, et étudions deux exemples d'ensemble de pavage afin de mieux cerner les limites des propositions présentées ici. Enfin, nous donnons quelques pistes de recherches sur la 1D-périodicité des pavages.
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Les résultats exposés dans cet article ont été obtenus pendant un stage effectué au LIP par Christophe Papazian sous la direction de Bruno Durand.

Introduction

Les fondements qui sont sous-jacents aux études portant sur les pavages se trouvent au croisement de plusieurs disciplines. En Mathématiques, en Physique ou en Informatique, plusieurs travaux, tous de motivations très différentes, ont déjà contribué grandement à la compréhension que l'on en a. Que ce soit un divertissement mathématique, comme les pavages de Penrose, une tentative d'explication de la formation des cristaux, ou des résultats de calculabilité, les chercheurs se retrouvent autour d'un problème commun : comprendre la structure des pavages du plan.

La problématique est ici de caractériser les ensembles de pavages obtenus à partir de certaines tuiles.

Dans un premier temps, nous rappelons quelques définitions de bases, ainsi que plusieurs notions importantes sur les tuiles de Wang, les motifs puis les pavages qu'il est possible de construire à partir de ces tuiles.

Puis, après une brève présentation de la structure topologique des ensembles de pavages, nous nous intéressons plus particulièrement à une nouvelle structure qui permet finalement d'obtenir des résultats pertinents sur la complexité de ces ensembles. Cette structure est justifiée par ses liens avec les propriétés de périodicité et de quasipériodicité. Deux cas particuliers d'ensembles de pavages sont ensuite étudiés, permettant ainsi de mieux cerner la diversité intrinsèque de ces ensembles. Nous parvenons ainsi à comprendre où se trouve la limite des théorèmes existants.

Finalement, alors que la périodicité se caractérise par des propriétés bien connues sur les pavages, nous donnons quelques pistes de recherches sur la 1D-périodicité, c'est à dire la périodicité unidirectionnelle que l'on peut parfois constater dans certains pavages.

Notre contribution est d'avoir étudié les différences de dénombrement entre les classes minimales périodiques et quasipériodiques de la structure considérée (cf Proposition 4)., d'avoir précisé les limites des théorèmes existants, et d'avoir étudié les liens entre les diverses manières de calculer la complexité des pavages.

Définitions

Les tuiles de Wang

Une tuile de wang est une tuile carrée dont les bords sont colorés (Figure 1). Elle est munie d'une orientation particulière : En faisant subir une rotation de 90 • ou une symétrie à une tuile non monochrome, on obtient effectivement une tuile différente.

Ne considérant que les ensembles finis de tuiles de wang, l'ensemble des couleurs utilisées est fini, donc l'ensemble des tuiles de Wang peut-être rendu isomorphe à N 4 . Par la suite, on va le plus souvent se limiter aux motifs carrés, car tout motif peut être considéré comme sous-ensemble d'un motif carré.

Notations :

m représente un motif.

-m x représente un motif de taille x × x.(cf figure 2). Remarquons qu'il suffit que tous les motifs carrés de taille 2 d'une configuration soient valides pour que cette configuration soit valide.

Notations :

-P (τ ) représente l'ensemble des pavages du plan formés à partir des tuiles de τ .

-M ∈ p signifie que le motif M est présent dans le pavage p, à une place quelconque.

Attention, P (τ ) peut être vide, si τ ne permet pas de paver le plan. Le problème de la pavabilité du plan par un ensemble de tuile donné est indécidable. [2] 

Équivalence entre les types de tuiles

Se limiter ainsi aux tuiles de Wang n'est en rien une réduction du problème des pavages en général. En effet, il est tout à fait équivalent de considérer des tuiles à bords colorés, des tuiles avec des flèches, avec des coins colorés, ou des pièces de puzzle à coordonnées entières.

Formalisation générale

Toutes ces différentes formalisations du problème des pavages sont équivalentes à la formalisation générale suivante : Définition 5 Un système de contraintes locales est un triplet (S, V, R) où :

-S est un ensemble fini de tuiles,de cardinalité s, dont on peut donc numéroter les éléments de 0 à s -1.

-V est le voisinage qui est un ensemble fini de l vecteurs de Z 2 qui définit, pour une case fixée de Z 2 , les cases à considérer pour les contraintes de placement.

-R est une relation l-aire de S l dans {0, 1}.

R renvoie 1 si et seulement si le voisinage défini par V de la cellule considérée est valide.

Un pavage est une configuration partout valide. En d'autres termes, une configuration est un pavage si et seulement si :

∀i ∈ Z 2 R (c(i + v 0 ), ..., c(i + v l-1 )) = 1
Un motif est valide si et seulement si toute cellule du motif dont le voisinage est contenu dans le motif, a son voisinage valide.

Les ensembles de Wang sont à contraintes locales

On peut aisément transformer un ensemble τ de tuiles de Wang en un système de contraintes locales :

On numérote chaque tuile de τ , et on pose s égale au cardinal de τ . On considère le voisinage formé de (0, 0) (0, 1) et [START_REF] Mignosi | Some combinatorial properties of sturmian words[END_REF]0). Donc l est égal à 3.

On construit la relation ternaire R en posant R(i, j, k) égal à 1 si et seulement si la motif formé de la tuile i, de la tuile j au dessus, et de la tuile k à droite, est valide.

Réciproque

Réciproquement, les ensemble à contraintes locales peuvent être transformés en ensemble de tuiles de wang :

Le voisinage V étant fini, il existe un entier naturel µ tel que tout voisinage d'une cellule peut être contenu dans un motif de taille µ × µ. On considère alors, dans les configurations du système à contraintes locales, l'ensemble G des motifs valides de taille µ × µ, puis le sous-ensemble Ψ de G 5 

, m µ 1 ), celle du côté bas est ( m µ 3 , m µ 0 ), celle du côté droit ( m µ 0 , m µ 2 ), et celle du côté gauche ( m µ 4 , m µ 0 )
. On obtient ainsi l'ensemble τ de tuiles de Wang.

Régularité

Notre étude consiste à s'intéresser à la régularité des pavages, et donc à la manière dont apparaissent les différents motifs qui les constituent.

Motifs réguliers

Intuitivement, nous voulons gratifier de régulier dans un pavage tout motif qui apparaît uniformément distribué dans le pavage.

Définition 6 Dans un pavage donné, un motif m est dit régulier si et seulement s'il existe un entier N m (appelé rang du motif ) tel que dans tout motif de taille N m ×N m on retrouve au moins une fois le motif m . Formellement, m est régulier si et seulement si :

∃N m ∀ M N m m ∈ M N m
Un motif est dit critique s'il n'est pas régulier, mais tous les motifs ne sont pas pareillement critiques.

Motifs pseudoréguliers

Intuitivement, un motif critique pseudorégulier est uniformément présent dans une sous-partie infinie du pavage. Ceux qui ne le sont pas sont strictement critiques.

Définition 7 Un motif critique est pseudorégulier si et seulement s'il existe un entier N et une suite de motifs carrés M

i i∈N telle que i > j =⇒ Dom( M i ) ) Dom( M j ) (suite strictement croissante) vérifiant:
Pour tout i, on retrouve on retrouve au moins une fois le motif m dans tout motif µ N ⊂ M i .

Motifs strictement critiques

Un motif critique, non pseudorégulier est dit strictement critique. Un motif µ strictement critique vérifie alors :

∀i ∈ N ∃N i ∈ N ∀ M N i ∃ m i ⊂ M µ ⊂ m
On peut toujours trouver dans le pavage des zones aussi grandes que l'on veut, réparties uniformément, qui ne contiennent pas le motif strictement critique considéré.

Ainsi, un tel motif est "uniformément absent".

Les pavages réguliers

Un pavage périodique admet deux vecteurs de périodicité non colinéaires.

Définition 8 Un vecteur de périodicité est un vecteur

--→ (i, j) (i,j)∈Z 2 tel que toute place (x, y) du plan contienne la même tuile que la place (x + i, y + j).

On déduit donc de cette définition que si un pavage p admet n vecteurs de périodicité indépendants, alors l'espace vectoriel engendré par ces vecteurs est l'ensemble des vecteurs de périodicité de p. -------→ (0, jkil) comme vecteurs de périodicité : tout pavage périodique est formé par la répétition d'un unique motif carré. Remarquons que ce motif carré peut être bien plus grand que le motif défini par le quadrilatère formé par

Ainsi, tout pavage périodique

p, admettant --→ (i, j) et --→ (k, l) comme vec- teurs de périodicité indépendants, admet aussi les vecteurs -------→ (il -jk, 0) et
--→ (i, j) et --→ (k, l).
Définition 9 Un pavage quasipériodique est un pavage dont tous les motifs sont réguliers.

La notion de quasipériodicité permet d'étendre la notion de périodicité à un concept plus général. Ainsi, un pavage périodique est un pavage quasipériodique.

Théorème 1 Si P (τ ) n'est pas vide, alors il contient au moins un pavage quasipériodique. [Durand, 1997, [5]] Ce résultat est positif, car il démontre l'existence de pavage quasipériodique dans P (τ ), mais n'est pas constructif, car sa preuve repose sur l'axiome du choix. Ce résultat est rendu possible par la compacité de P (τ ). (cf 3.2).

Théorème 2 Il existe des ensembles τ de tuiles, qualifié d'apériodiques, tels que P (τ ) est non vide (On peut paver le plan avec les tuiles de τ ), et P (τ ) ne contient aucun pavage périodique. [START_REF] Čulik | An aperiodic set of 13 Wang tiles[END_REF] Si P (τ ) est non vide, il reste indécidable de savoir si τ est apériodique ou non. [8] L'ensemble de tuiles de Robinson en est un bon exemple, [4, p.407] [6], mais il en existe bien d'autres.

Fig. 4 -Ensemble de tuiles "apériodique".

Les fonctions

On cherche alors à mesurer la régularité des différents pavages quasipériodiques de deux manières différentes: d'une part en mesurant la fréquence d'apparition des différents motifs et d'autre part en mesurant la diversité du pavage, c'est-à-dire le nombre de motifs différents présent dans le pavage.

Fonction de quasipériodicité

Définition 10 Dans tout pavage quasipériodique p, on pose avec les notations de la définition 5:

f p (x) = max RangN M x | M x ∈ p
Ainsi, dans tout pavage quasipériodique p, on retrouve dans tout motif carré de taille f p (x), tous les motifs carrés de taille x. 

Fonction d'énumération

La seconde méthode visant à évaluer la régularité d'un pavage consiste à considérer la fonction d'énumération g p (x) définie pour un pavage p par g p (x) par le nombre de motifs carrés de taille x présents dans p. Preuve. Si on a g p (x) M x différents, en les prolongeant "en haut et à droite" (ce qu'on peut toujours faire car le motif appartient à un pavage) (cf figure 6). on obtient au moins g p (x) M x+1 différents. Donc g p (x) ≤ g p (x + 1). 2

Fig. 6 -g p est croissante.

Notations : f p représente la fonction de quasipériodicité du pavage quasipériodique p.

g p représente la fonction d'énumération du pavage p.

Propriétés de régularité

La formule suivante découle directement des définitions :

∀n ∈ N g p (n) ≤ (f p (n) -n) 2
Preuve. En effet, dans tout motif de taille f p (n), on retrouve au plus (f p (n)n) 2 motifs de taille n différents. Or, dans tout motif de taille f p (n), tous les motifs de taille n sont présents. 2

Cette formule établit un premier lien entre les deux fonctions qui permettent de mesurer la régularité d'un pavage.

Théorème 3 Les propositions suivantes sont équivalentes:

1. p est périodique. -3 ⇐⇒ 4 :

Notons simplement que g p (x) = g p (x + 1) =⇒ g p (x + 1) = g p (x + 2), car si tout motif de taille x ne peut se prolonger que d'une unique manière, alors il en va de même pour les motifs de taille x +1, qui sont constitués de 4 motifs de taille x, comme le montre la figure 7. 3 Topologie et pavages

Définition

On considère un ensemble τ de tuiles, et on va construire sur l'ensemble des configurations possibles du plan (valides ou non) la topologie suivante : les ouverts sont engendrés par les O i,j qui sont les ensembles des configurations ayant la tuile j à la place i.

Numérotons les cases de Z 2 selon la figure 8.

Définition 11 On définit une distance entre les pavages:

-Si p = q alors d(p, q) = 0.

-Si p = q alors d(p, q) = 2 -i où i est le plus petit indice de l'ensemble des indices des places où p et q diffèrent. Théorème 4 τ Z 2 est un ensemble métrique compact. 

Les configurations valides

Théorème 5 Soit τ un ensemble de tuiles. L'ensemble P (τ ) des pavages est un compact.

Preuve.

Toute configuration non valide contient un motif non valide, dans lequel une des contraintes sur les tuiles n'est pas respectée. Pour un motif M , on peut considérer l'ouvert O M = M (i)=j O i,j , qui est l'ensemble des configurations contenant M (la place de M est ici fixée).

L'ensembles des configurations non-valides est l'union des O M pour tout M contenant une erreur. C'est un ouvert. Son complémentaire P (τ ) est donc fermé. 2

Topologie induite

Restreignons-nous au compact P (τ ), et considérons la topologie induite. Une base d'ouvert est donc l'ensemble des O M ,i (ensemble des pavages contenant le motif M la place i.)

Structure des ensembles de pavages

Soit un ensemble fini τ de tuiles, et l'ensemble P (τ ) des pavages du plan construits à partir de τ . On va étudier la structure de cet ensemble en utilisant notamment la relation d'extraction.

La relation d'extraction

Définition 12 Soit deux pavages p et q. On dit que p est extrait de q si et seulement si les motifs de p apparaissent tous présents dans q.

On le note p ≺ q.

Quelques propriétés

Proposition 3 Si p ≺ q alors 1. Tous les motifs réguliers de q sont des motifs réguliers de p.

2. Les motifs présents dans q mais pas dans p sont des motifs pseudopériodiques ou critiques de q.

3. Tous les motifs réguliers de p sont des motifs réguliers ou pseudoréguliers de q, ce qui est équivalent à Tous les motifs strictement critiques de q, présents dans p restent strictement critiques.

4. ∀x g p (x) < g q (x) par définition.

Preuve.

1. Si on considère un motif régulier de q, m de rang N , alors tous les motifs M N de p appartiennent aussi à q, et donc contiennent également m . Ainsi, m est aussi régulier dans p, de rang plus petit. (La présence uniforme est conservée) 2. Contraposée du point précédent.

3. On peut considérer de la même manière que pour le premier point, l'absence uniforme de ces motifs strictement critiques.

Par définition de la relation d'extraction.

2

Si p ≺ q alors p semble moins compliqué (plus régulier) que q.

Un ordre Total ?

Un première idée est d'utiliser la fonction de quasipériodicité, et donc de rechercher une relation d'ordre entre les fonctions de N → N. Mais, la seule relation d'ordre totale existante est la relation lexicographique, or, a priori, la complexité est essentiellement traduite par le comportement asymptotique de la fonction de quasipériodicité, et pas par ses premières valeurs. On ne peut donc pas traduire convenablement la structure de cet ensemble par un ordre total. De plus, on ne tient pas ainsi compte du fait que des pavages différents peuvent être construits à partir de tuiles ou de motifs différents.

Classes d'équivalences sur les pavages

On considère les classes d'équivalences par la relation ≺ : Soit deux pavages du plan p et q, alors p $ q ⇐⇒ p ≺ q et q ≺ p On note p, la classe d'équivalence de p.

On étend évidemment le préordre ≺ sur les pavages en un ordre sur les classes d'équivalence.

Classes minimales : énumération

Comme de tout pavage apériodique, on peut extraire un pavage quasipériodique, et que les pavages quasipériodiques sont les minima de la relation ≺ , alors les classes minimales sont exactement les classes quasipériodiques.

Les minima

Considérons les classes minimales pour la relation ≺ . Ce sont les classes p, avec p quasipériodique ou périodique.

Le proposition suivante est un résultat intéressant, puisqu'il montre d'une part que la structure des ensembles de pavages est relativement simple quelquesoit l'ensemble de tuiles considéré, et d'autre part que la notion de quasipériodicité offre une diversité beaucoup plus importante que la simple périodicité.

Proposition 4 L'ensemble des classes d'équivalence périodiques minimales pour la relation ≺ est au plus dénombrable, alors que l'ensembles des classes d'équivalence quasipériodiques strictes est au plus indénombrable.

Preuve. On peut construire une injection de l'ensemble des classes périodiques dans l'ensemble des motifs en assignant à chaque classe périodique un unique motif carré de taille minimale qui permet, par sa simple répétition de construire les pavages de la classe considérée.

Deux classes différentes ont des images différentes par cette injection. Comme l'ensemble des motifs est de cardinal dénombrable, on en déduit le théorème. 2

Le cas périodique strict

Théorème 6 Les classes minimales p avec p quasipériodique stricte, contiennent un nombre indénombrable de pavages. [Durand, 1997, [5]]

Si p est périodique, alors p contient un nombre fini d'éléments. Les contraintes portant ensuite sur les couleurs nous obligent à obtenir l'un de ces motifs 3 × 3 :

Fig. 12 -Croix 3 × 3
Le plus petit pavage périodique non constant n'utilise pas de tuiles colorées, mais seulement les tuiles "en étoile" : Fig. 13 -Plus petit pavage périodique non constant.

A partir de 1, 2, 3 ou 4, on obtient soit un pavage apériodique en étoile autour de ce motif, soit, si on a la présence de deux de ces motifs, on obtient un pavage périodique ("en carré").

La taille de ce carré pouvant être un nombre paire quelconque, on obtient donc une infinité de classes périodiques, alors que toutes les classes minimales sont bien périodiques.

Considérations topologiques

Proposition 6 Soit τ , l'ensemble de tuiles de la figure 9. Preuve. Les pavages apériodiques de P (τ ) sont les pavages "en étoile", ne contenant qu'une seule tuile en croix (Cf fig 10).

Or tous les pavages apériodiques peuvent être considérés comme limite d'une suite de pavages périodiques en carré, dont la taille tend vers l'infini.

2

Cela est possible grâce à une particularité de cet ensemble de pavages: il n'existe pas de motif qui ne soit présent que dans des pavages apériodiques, ainsi il n'existe pas de motif qui soit toujours strictement critique. De plus remarquons que parmi les classes p, certaines sont formées avec des mots sturmiens [Penczek, Szalas, 1996, [7]] (qui sont des suites quasipériodiques dans lesquelles on peut trouver n + 1 motifs de taille n différents), sur les motifs noirs et blancs verticaux. Or, ces classes contiennent un nombre indénombrable de représentants distincts.

Une particularité de ce pavage est l'existence d'une classe maximale : c'est la classe du pavage noir et blanc, séparé par le mot vertical noir et blanc contenant tous les mots finis possibles.

En général, la structure d'un ensemble quelconque P (τ ) de pavages n'est pas un sup-demi treillis.

Les motifs binaires

On considère les configurations construites à partir d'un ensemble de deux tuiles, l'une blanche, l'autre noire, sans aucune contrainte de voisinage.

Les mots

Limitons-nous d'abord aux motifs 1D, qui sont en fait des mots infinis sur l'alphabet {0, 1}.

On sait déjà que si g(n) = n + 1, on obtient un mot sturmien, quasipériodique. [de Luca, Mignosi, 1994, [START_REF] Mignosi | Some combinatorial properties of sturmian words[END_REF]] Réciproquement, si il existe n, tel que g(n) ≤ n, alors le mot est périodique, avec une période de longueur au plus égale à n.

Sur un alphabet de taille i + 1, on considère une suite quasipériodique. Il y a au moins i + 1 motifs de taille 1. S'il existe n, tel qu'il y a moins de i + n motifs de taille n, alors la suite est périodique, car il existe un indice sur lequel g est constante. Et, si g(i) = g(i + 1), le vecteur de periodicité est au plus de longueur g(i).

Comme il n'existe pas de contrainte, on peut construire un mot qui contient tous les motifs. Il sera donc le maximum pour la relation ≺ .

On peut par exemple considérer le mot formé par la suite des entiers naturels codés en binaire selon la représentation : ... 

Les pavages

On recherche la meilleure fonction P, qui par majoration de la fonction d'énumération entraîne une 1D-périodicité du pavage :

g(n) ≤ P(n) =⇒ 1D-periodicité 6.2.1 1D-periodicité orthogonale Proposition 8 P(n) ≥ 2n
Preuve. Si on raisonne par contraposée, on peut considérer un pavage sans aucun vecteur de périodicité. Alors, il y a au moins n + 1 motifs de n tuiles alignées verticalement. On considère donc les motifs de taille 1×n (vertical). Il y en a au moins n + 1. S'il y a aussi n + 1 motifs de taille 2 × n, alors, on obtient un vecteur de périodicité horizontale, donc il y a au moins n + 2 motifs de taille 2×n. Par récurrence, il y a donc au moins 2n motifs différents de taille n × n dans ce pavage.

2

Une autre approche: Regardons alors à nouveau les motifs 1 × n. Si pour tout n, il existe une bande horizontale de hauteur n, ne comportant que n motifs de taille n × 1, alors on va pouvoir extraire un pavage ayant un vecteur de périodicité vertical. C'est absurde. Donc il existe n, tel que sur toute bande de hauteur n, on ait au moins n + 1 motifs n × 1 différents. Une bande de cette taille peut donc être considérée comme un mot sur un alphabet de n + 1 lettres. Donc il y a au moins 2n motifs de taille n. (6.1)

∃n g p (n) < 2n =⇒ (p est 1D-périodique)
Une réciproque est délicate, car on peut construire un pavage qui dans une direction (par exemple, verticale) est très complexe, comme le mot qui contient tous les motifs de 0, 1 N , (le mot constitué de la suite des entiers naturels codés en binaire sur {noir,blanc} convient parfaitement), et qui dans l'autre direction (horizontale), est constant. On va alors obtenir une fonction d'énumération g(n) = 2 n ... On peut donc obtenir un pavage 1Dpériodique ayant une fonction d'énumération presque aussi grande que l'on veut.

Majoration de P

Exemple de pavage quasipériodique : On considère un mot biinfini sturmien " ..a -n ..a -1 a 0 a 1 a 2 ..a n ... " sur {0, 1}, que l'on place sur les tuiles d'abscisse ou d'ordonnée nulle (en croix, avec a 0 en (0,0)).

Puis on complète par : tuile(x,y)=tuile(x,0) ⊗ tuile(0,y), ou ⊗ symbolise l'opérateur binaire booléen ou exclusif.

On vérifie aisément qu'on a (p + 1) × (q + 1) motifs de taille p × q. Si on considère également les pavages apériodiques, on peut obtenir une majoration plus fine en considérant le pavage formé de la tuile noire en (0, 0), et de tuiles blanches partout ailleurs.

Ce pavage n'a donc pas de vecteur de périodicité, et a pour fonction d'énumération g(n) = n 2 + 1.

Problèmes ouverts

Les résultats obtenus, tout en apportant certains éléments de réponses, soulèvent toutefois de nombreuses questions intéressantes sur les différentes manières de calculer la complexité des pavages.

Ainsi, on peut se demander si P(n) = n 2 c'est à dire si ∃n g p (n) ≤ n 2 =⇒ (p est 1D-périodique) ne pourrait être vrai, comme semble le laisser supposer le dernier exemple. En effet la minoration qui permet d'obtenir P(n) ≥ 2n peut paraître trop simpliste, et il apparait difficile de construire un pavage non 1D-périodique vérifiant g p (n) ≤ n 2 . Ensuite, on peut s'interroger sur la possiblité d'une réciproque à la propriété énoncée au début de la section 2.4.3, c'est-à-dire s'il existe une majoration de f p par une expression qui dépend de g p vraie pour tout pavage ? Cela nous permettrait d'obtenir une relation forte entre les deux manières d'évaluer la complexité d'un pavage, étant donné que nous disposons déjà des résultats énoncés dans la section 2.4.3 dans le cas des pavages périodiques.

Finalement, on peut constater que la plupart des résultats et des propriétés enoncés au sujet des configurations et des pavages du plan doivent pouvoir être étendus aux espaces de dimensions supérieures finies. En effet, étudier les pavages du plan par rapport aux ensembles de mots permet de mieux comprendre les difficultés que l'on peut rencontrer dans de tels ensembles par rapport à ceux contenant des éléments de plus petites dimensions.

• • •

"L'enfer est pavé de bonnes intentions."

Fig. 1 -Définition 1 Définition 2

 112 Fig. 1 -Tuiles de Wang Pour la suite, fixons nous un ensemble fini, noté τ de tuiles de Wang. Définition 1 On appelle configuration, un recouvrement du plan Z 2 par des tuiles de τ . Ainsi, une configuration est une application de Z 2 dans τ . L'ensemble des configuration est donc τ Z 2 . Définition 2 On appelle motif, une partie finie d'une configuration. Autrement dit, un motif est la restriction d'une configuration à un ensemble fini de Z 2 .

Fig. 2 -Définition 3 Définition 4

 234 Fig. 2 -Un motif 3 × 3 valide

Proposition 1 Fig. 5 -

 15 Fig. 5 -f p est strictement croissante.

| M ∈ p Proposition 2

 2 g p (x) = Card Mx La fonction d'énumération est croissante.

2 .- 1

 21 f p est de la forme x f -→ x + c à partir d'un certain rang.3. g p est constante à partir d'un certain rang.4. Il existe un rang x tel que g p (x) = g p (x + 1).Preuve. ⇐⇒ 2[Durand, 1997, [5]] -2 =⇒ 3 : A partir d'un certain rang, (f p (n)n)2 est constant. Comme g p est croissante, majorée par une constante, elle est constante à partir d'un certain rang. -3 =⇒ 1 : A partir d'un certain rang g p (n) ≤ n. Donc toute bande de n cellule de largeur (verticale ou horizontale) est périodique, admettant une période plus petite que n. (cf 6.1). Donc le pavage est périodique, admettant comme vecteurs de périodicité ---→ (n!, 0) et ---→ (0, n!).

Fig. 7 -

 7 Fig. 7 -Les 4 motifs de taille x d'un motif de taille x + 1

Fig. 8 -

 8 Fig. 8 -Numérotation des places de Z 2 .

Fig. 9 -Fig. 10 - 4 Fig. 11 -

 910411 Fig. 9 -L'ensemble de tuiles

Fig. 14 -

 14 Fig. 14 -Périodique "en carré"

5. 3 . 2 Proposition 7 Fig. 15 -

 32715 Fig. 15 -L'ensemble de tuiles Ce jeu de tuiles permet d'obtenir trois types de pavages différents : Deux pavages périodiques constants qui sont les deux classes minimales, et un troisième type de pavage apériodique. Dans ce troisième type, les motifs

Fig. 16 -

 16 Fig. 16 -Les pavages obtenus

Fig. 17 -

 17 Fig. 17 -Pavage basé sur deux mots sturmiens Soit (i, j) un vecteur de periodicité (hypothétique). Alors, ∀(x, y)(a x ⊗ a y ) = (a x+i ⊗ a y+j ) Donc en prenant y = x + i, on obtient a x = a x+i+j , ce qui est contradictoire avec l'hypothèse de suite sturmienne ! Ainsi P< (n + 1) 2
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