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We present an inversion algorithm for nonsingular n × n matrices whose entries are degree d polynomials over a field. The algorithm is deterministic and requires O˜(n 3 d) field operations for a generic input. The "soft Oh" notation O˜indicates some missing log(nd) factors. The polynomial matrix inverse can thus be computed by a straight-line program whose size is -asymptotically and up to logarithmic factors -the size of its output.

Introduction

Let K be an abstract commutative field. For two positive integers n and d, consider a nonsingular matrix A ∈ K[x] n×n of degree d. The inverse of A is the n × n matrix over K(x) defined by A -1 = A * / det A where A * and det A are the adjoint matrix and the determinant of A. Since the degrees of A * and det A are bounded by (n -1)d and nd, representing A -1 may require up to O(n 3 d) elements of K. In this paper, we present a deterministic algorithm for computing A -1 that generically requires O˜(n 3 d) field operations on an algebraic random access machine. By generically, we mean that the algorithm has the above asymptotic complexity for every n × n matrix polynomial of degree d whose coefficients do not belong to a certain strict subvariety of K n 2 (d+1) . Hence we establish a straight-line complexity estimate of O˜(n 3 d). Here and in the following, the O˜notation indicates some missing log(nd) factors.

When using either an algebraic random access machine and or the straight-line model, the best previously known complexity estimate was O˜(n ω+1 d) where ω is the exponent for multiplying two n × n matrices over K [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF]Chap. 1]. We thus improve the straight-line complexity estimate if ω > 2 and the improvement is by a factor n when considering standard matrix multiplication (ω = 3).

We assume that O(M (d)) operations in K are sufficient to multiply two polynomials in K[x] of degree at most d, and use M (d) = d log d log log d [START_REF] Schönhage | Schnelle Multiplikation[END_REF][START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. Let us recall how the above classical estimate O˜(n ω+1 d) for matrix inversion over K(x) is obtained. The determinant and the entries of the adjoint, whose degrees are bounded by nd, may be recovered for instance using an evaluation / interpolation scheme at nd points [9, §5.5]. A randomized Las Vegas algorithm or a straight-line program -A must be invertible at the nd evaluation points -may thus be based on O(n ω ) recursive matrix inversion over K [START_REF] Bunch | Triangular factorization and inversion by fast matrix multiplication[END_REF][START_REF] Schönhage | Unitäre Transformationen grosser Matrizen[END_REF] and on a fast evaluation / interpolation scheme for univariate polynomials of degree nd in O˜(M (nd)) operations [START_REF] Lipson | Chinese remainder and interpolation algorithms[END_REF], [9, §10]. Many other approaches may be considered such as a direct Gauss /Jordan elimination on truncated power series, Newton iteration [START_REF] Moenck | Approximate algorithms to derive exact solutions to systems of linear equations[END_REF] or linearization (see for instance [START_REF] Lin | An algorithm for inverting rational matrices[END_REF] and the references therein) but none of them seems to reduce the complexity estimate over K. A deterministic O˜(n ω+1 d) algorithm is given in [17, §2] for an algebraic random access machine. This algorithm is a fraction-free version over K[x] (Bareiss' approach [START_REF] Bareiss | Computational solution of matrix problems over an integral domain[END_REF]) of the recursive inversion algorithms over K cited above. We see that with standard matrix multiplication (ω = 3) the cost of inversion was still about n times higher than the typical size of the inverse.

Let us now give an idea of our approach. The algorithm is iterative and consists in diagonalizing A in log n steps as

U A = B with U ∈ K[x] n×n nonsingular and B ∈ K[x] n×n diagonal. The inverse of A is then recovered as A -1 = B -1 U . The first observation is that A can be diagonalized in log n steps of type A = A L A R → U A = U U A L A R = U A L UA R (1) with A L , A R ∈ K[x] n×n/2
and where U , U ∈ K[x] n/2×n are bases of, respectively, ker A R and ker A L considered as K[x]-modules. (Here and hereafter, the blank areas in matrices are assumed to be filled with zeros.) The second and key point is that, generically, there exists among all possible kernel bases U , U some bases whose degree is no more than d; furthermore, if we choose such "low degree bases", this property carries over the next step. Hence, the degree of the working matrix polynomials only doubles at each step, whereas their size is divided by two. These "low degree bases" are so-called minimal bases [START_REF] Forney | Minimal bases of rational vector spaces, with applications to multivariable linear systems[END_REF], for which one knows deterministic O˜(n 2 M (nd)) algorithms [START_REF] Stuchlik-Quéré | How to compute minimal bases using Padé approximants[END_REF][START_REF] Beckermann | A uniform approach for the fast computation of matrixtype Padé approximants[END_REF]. Combining such algorithms with steps of type (1) eventually allows for A -1 to be computed in O(n 2 M (nd) log(nd)) = O˜(n 3 d) field operations by using only standard matrix multiplication.

The paper is organized as follows. In Section 2 we present our inversion algorithm, using block-diagonalization steps as in [START_REF] Bareiss | Computational solution of matrix problems over an integral domain[END_REF] and assuming that one can compute minimal bases of matrix polynomial kernels. Section 3 surveys minimal bases in the context of the matrix polynomial kernels of interest for our problem: general properties as well as a characterization of the degree of such bases are given in §3.1 and computation as matrix rational approximants is explained in §3.2. We give in Section 4 a sufficient, generically satisfied condition on the coefficients of the input A for the degrees of all the matrices involved at step i of our computation of A -1 to be no greater than 2 i-1 d. This degree bound allows for the complexity analysis of Section 5.

For the rest of the paper, we assume without loss of generality that n = 2 p and p ∈ N. Moreover, M L (resp. M R ) denotes the 2m × m matrix that consists of the first (resp. last) m columns of a given 2m × 2m matrix M ; the m × 2m submatrices M and M are defined similarly by considering rows instead. For example M L therefore denotes the upper left m × m submatrix of M .

Inversion algorithm

Algorithm Inverse is described below. We assume that we have a subroutine MinimalKernelBasis for computing a minimal basis of the left kernel of a matrix polynomial.

Algorithm Inverse(A)

Input: A ∈ K[x] n×n of degree d Output: A -1 Condition: det A = 0 and n = 2 p with p ∈ N
(1) B := copy(A); U := I n ;

(2) for i from 1 to p do // B = diag(B

i , . . . , B

(2 i-1 ) i ) for j from 1 to 2 i-1 do U (j) i := MinimalKernelBasis(B (j) i,L ); // U (j) i B (j) i,L = 0 U (j) i := MinimalKernelBasis(B (j) i,R ); // U (j) i B (j) i,R = 0 od; U i := diag(U (1) i , . . . , U (2 i-1 ) i ); // U (j) i = U (j) i U (j) i B := U i B; U := U i U ; od; (3) return B -1 U We now prove that Algorithm Inverse is correct. For i = 1, it follows from det A = 0 that both U (1) 1 and U (1) 1 are n/2 × n matrices over K[x] of rank n/2. Also, det U (1) 1 = 0 for otherwise ker A L ∩ ker A R = 0 which contradicts the fact that det A = 0. Therefore, the two n/2 × n/2 blocks of B = U (1)
1 A are nonsingular. Repeating the argument for i = 2, . . . , p, we see that at the beginning of step i the matrix B is block-diagonal with 2 i-1 nonsingular blocks of order 2 p-i+1 . Hence the 2 i-1 pairs of kernel bases U

(j) i , U (j) i with dimensions 2 p-i × 2 p-i+1 are such that det U (j) i = 0. The pth step of stage (2) therefore produces a nonsingular U ∈ K[x] n×n such that U A = B is diagonal and the algorithm is correct.
Notice that correctness of the algorithm does not require the computed kernel bases be minimal, that is, have "small" degrees. However, minimality -whose definition is recalled in Section 3is crucial for the complexity of the algorithm. In particular, we prove in Section 4 that minimality implies that the matrices B

(j) i,L , B (j) i,R , U (j) i , U (j) i of Algorithm Inverse generically have a degree equal to 2 i-1 d for 1 ≤ j ≤ 2 i-1 , 1 ≤ i ≤ p. Hence, at step i, one has for these matrices size × degree = n/2 i-1 × 2 i-1 d = nd for 1 ≤ i ≤ p.

Minimal kernel bases

For a positive integer m, let M ∈ K[x] 2m×m with rank m and degree d. Let further U ∈ K[x] m×2m with rows forming a basis of the K[x]-submodule ker M and denote by d 1 , . . . , d m its row degrees. When m i=1 d i is minimal among all the bases of ker M , the matrix U is known as a minimal basis of ker M [START_REF] Forney | Minimal bases of rational vector spaces, with applications to multivariable linear systems[END_REF].

First, we characterize in §3.1 the fact that U has degree d exactly when M is generic. In the latter case, we also identify a particular choice for the matrix U and write its entries as rational functions in the entries of M . This will be the main properties used for studying the generic behaviour of the whole inversion algorithm. Then we recall in §3.2 how to compute minimal bases.

General properties, degree characterization and explicit construction

We refer to Forney [START_REF] Forney | Minimal bases of rational vector spaces, with applications to multivariable linear systems[END_REF] and to Kailath [START_REF] Kailath | Linear systems[END_REF] for the definition and properties of minimal bases. Recall in particular that such bases are non unique but their row degrees are unique up to ordering [10, §6.5.4]. In this case, we shall refer to d 1 ≤ d 2 ≤ . . . ≤ d m as the minimal row degrees of ker M . A bound on the sum of the degrees may be seen by linearizing

M = d i=0 M i x i as L M =      M 0 -I 2m M 1 . . . . . . -I 2m M d-1      + x      I 2m . . . I 2m M d      ∈ K[x] 2md×(2md-m) .
Indeed, one can check first that U is a minimal basis of ker M if and only if the matrix L U defined as (

L U = [ U | xU | • • • | x d-1 U ] is
) 2 
Degrees of minimal bases may thus range from zero to md. For example, one can take U = [ I m | O ] for any M whose first m rows are zero; on the other hand, when

M =     x 0 1 x 0 1 0 0    
a minimal basis of ker M is given by

U = 0 0 0 1 1 -x x 2 0 .
Let us now characterize the situation where all the minimal row degrees are equal to d by associating with M = d i=0 M i x i the block-Toeplitz matrix

T (M ) =    M 0 M 1 • • • M d . . . . . . . . . . . . M 0 M 1 • • • M d    ∈ K 2md×2md . ( 3 
)
We see that ker M has a nonzero vector u =

d-1 i=0 u i x i of degree less than d if and only if [u T 0 , . . . , u T d-1
] T is a nonzero vector of ker T (M ). Therefore, d i ≥ d for 1 ≤ i ≤ m if and only if det T (M ) = 0. The characterization below then follows by using inequality [START_REF] Beckermann | A uniform approach for the fast computation of matrixtype Padé approximants[END_REF].

Lemma 1 The minimal row degrees of ker M satisfy

d i = d for 1 ≤ i ≤ m if and only if T (M )
is invertible, which is generically the case.

We use Lemma 1 in the proof of Proposition 2. We shall also use the fact that if T (M ) is invertible then, by uniqueness of the minimal degrees, every basis of ker M whose degree is at most d must be minimal.

In addition to the bound d on the generic degrees, Proposition 2 relies on the following explicit construction of a kernel basis, assuming further that either M d or M d is nonsingular. In the generic case, we identify the matrix coefficients in both sides of matrix equation U M = 0. If det T (M ) = 0 and det M d = 0 then a minimal basis of ker M is given by the m × 2m matrix

N = d i=0 N i x i such that N d = I m -M d M -1 d , ( 4a 
)
N 0 • • • N d-1 = -N d 0 M 0 • • • M d-1 T (M ) -1 . ( 4b 
)
If det T (M ) = 0 and det M d = 0 then one can replace (4a) with

N d = [ -M d M -1 d | I m ]. ( 4c 
)

Computation as matrix rational approximants

We show in Proposition 1 below that computing a minimal basis U of ker M reduces to computing a suitable Padé approximant basis (called a σ-basis in [2, p. 809]) for the rows of M , a task for which one may use the algorithm of [2, §6]. This follows the idea of [START_REF] Quéré-Stuchlik | Algorithmique des faisceaux linéaires de matrices -Application à la théorie des systèmes linéaires et à la résolution d'équations algébro-élémentaires[END_REF]Chap. 4] and [START_REF] Stuchlik-Quéré | How to compute minimal bases using Padé approximants[END_REF] as applied in [START_REF] Beckermann | Shifted normal forms of polynomial matrices[END_REF]. As we detail next, we recover a minimal basis from a minimal approximant

V ∈ K[x] (2m)×(2m) such that V (x)M (x) = O(x σ ).
The approximation order σ we choose is sufficiently large -with respect to a degree bound for the basis -to ensure that m rows of V form a minimal basis U for the kernel. Let σ ∈ N and, writing M (i,j) for the (i, j)

entry of M , let f = [ f (i) ] i ∈ K[x] 2m where f (i) (x) = m j=1 x j-1 M (i,j) (x m ).
To define σ-bases with respect to the rows of M , we recall the notion of order [2, p. 809] of a polynomial vector

v T = [ v (i) ] i ∈ K[x] 2m : ord v = sup{τ ∈ N : v(x m )f (x) = O(x τ )}.
A σ-basis with respect to the rows of M is a matrix V ∈ K[x] 2m×2m such that:

i) for 1 ≤ i ≤ 2m, ord V (i, * ) ≥ σ where V (i, * ) is the ith row of V ; ii) every polynomial vector v ∈ K[x] 2m such that ord v ≥ σ admits a unique decomposition v T = 2m i=1 c (i) V (i, * ) where, for 1 ≤ i ≤ 2m, c (i) ∈ K[x] and deg c (i) + deg V (i, * ) ≤ deg v (minimality of the approximant).
The definition and the existence of such a basis V for a given (σ, M ) follow from [START_REF] Beckermann | A uniform approach for the fast computation of matrixtype Padé approximants[END_REF]. By the decomposition in ii), we see that V must be nonsingular.

The result below shows how to recover a minimal basis of ker M from a σ-basis when σ is large enough. Although a general version that is not restricted to the full rank 2m × m case can be found in [START_REF] Quéré-Stuchlik | Algorithmique des faisceaux linéaires de matrices -Application à la théorie des systèmes linéaires et à la résolution d'équations algébro-élémentaires[END_REF][START_REF] Stuchlik-Quéré | How to compute minimal bases using Padé approximants[END_REF], we give a proof for the sake of completeness.

Property 1 Let V be a σ-basis with respect to the rows of M and let d i be the ith minimal row degree of ker M . If σ ≥ m(max i d i + d + 1) then the m rows of V with smallest degrees define a minimal basis of ker M . Proof. For 1 ≤ i ≤ 2m, one has V (i, * ) (x m )f (x) = O(x σ ) where the left hand side is a polynomial of degree at most m(deg

V (i, * ) + d + 1) -1. (5) 
It thus follows from ( 5) and from σ ≥ m(max i d i + d + 1) that a row of V whose degree is no more than max i d i is a vector of ker M . Let us now show that V has m rows of respective degrees d 1 , . . . , d m . By definition, a vector u 1 of ker M of degree d 1 can be written as

u 1 = 2m h=1 c (h) 1 V (h, * ) with deg c (h) 1 + deg V (h, * ) ≤ d 1 .
Hence there exists h 1 such that deg V (h1, * ) ≤ d 1 . Now assume that V has i -1 rows V (h1, * ) , . . . , V (hi-1, * ) of respective degrees d 1 , . . . , d i-1 and let u i be a vector of ker M that does not belong to the submodule generated by these i -1 rows and such that deg u i = d i . As for i = 1, there exists h i ∈ {h 1 , . . . , h i-1 } such that deg V (hi, * ) ≤ d i . Therefore V contains m distinct rows (indexed by h 1 , . . . , h m ) such that the h i -th row belongs to ker M and has degree at most d i . These m rows are linearly independent in ker M and, since m i=1 d i is minimal for any such set of rows, they must form a minimal basis. Notice that the remaining m rows of V cannot belong to ker M and therefore have degrees greater than max i d i . The choice of the m rows with smallest degrees in the statement of the proposition is thus well-defined.

When multiplying two polynomials of degree d costs O(M (d)), one can compute a σ-basis with respect to the rows of M in O(m 2 M (σ) log σ) field operations [START_REF] Beckermann | A uniform approach for the fast computation of matrixtype Padé approximants[END_REF]Theorem 6.2]. Lemma 1 and Proposition 1 thus yield the corollary below.

Corollary 1 Let U be a minimal basis of ker M of given degree d U . We have an algorithm for computing

U in O(m 2 M (m(d U + d)) log(m(d U + d))) field operations. Thus if det T (M ) = 0 this cost is O(m 2 M (md) log md).

Generic degrees of intermediate minimal bases

In this section we study the generic behaviour of Algorithm Inverse. More precisely, we prove the degree bound 2 i-1 d for the intermediate matrices at step i. First, we define in Lemma 2 a rational function ∆ in the entries of the algorithm input matrix. The existence of this rational function implicitly yields an inversion straight-line program where minimal kernel bases are computed with scheme (4). Second, we show in Proposition 2 that if ∆ is well-defined and nonzero for a given input A then the degree bound 2 i-1 d holds for any choice of minimal basis.

Consider n 2 (d + 1) indeterminates α i,j,k for 1 ≤ i, j ≤ n, 0 ≤ k ≤ d, and let

A ∈ K[α 1,1,0 , . . . , α i,j,k , . . . , α n,n,d ][x] n×n
have its (i, j) entry equal to d k=0 α i,j,k x k . Recall that n = 2 p and let

ν i = n/2 i-1 and δ i = 2 i-1 d for 1 ≤ i ≤ p.
Following Algorithm Inverse, we apply (4a-b) and (4b-c) formally and iteratively for i = 1, . . . , p with degree δ i at step i. We show in Lemma 2 below that this construction actually leads to a well-defined and nonzero rational funtion ∆ in the α i,j,k 's. This means that (4a-b) and (4b-c) reflect the quantities computed by the algorithm in the generic case. For 1

≤ i ≤ p, 1 ≤ j ≤ 2 i-1 , let the matrices A (j) i , N (j) i ∈ K[x
] νi×νi be of degree δ i and such that:

A (1) 1 = A; N (j) i is the minimal basis of ker A (j) i,R of the form (4a-b); N (j) i is the minimal basis of ker A (j) i,L of the form (4b-c); for 1 ≤ i ≤ p -1, 1 ≤ j ≤ 2 i-1 , A (2j-1) i+1 A (2j) i+1 = N (j) i N (j) i A (j) i,L A (j) i,R . (6) Writing L (j) 
i for the leading matrix of A (j)

i and using the notation of (3) for block-Toeplitz matrices, define further ∆

(j) i,L = det L (j) i,L det T (A (j) i,L ) and ∆ (j) i,R = det L (j) i,R det T (A (j) i,R ). Then let ∆ = p i=1 2 i-1 j=1 ∆ (j) i,L ∆ (j) i,R . Lemma 2 For n ≥ 2, ∆ is a nonzero element of K(α 1,1,0 , . . . , α i,j,k , . . . , α n,n,d ).
Proof. We prove the statement by recurrence on the ith stage of the construction. To prove both the existence of ∆ -matrix inversions in (4a-b-c) -and the fact that ∆ = 0, it suffices to show that the successive determinants ∆ 

A n,d = x d I n/2 -C n/2 -I n/2 x d I n/2 N n,d = x d I n/2 C n/2 I n/2 x d I n/2
where

C n/2 =           1 1 I 2 I 4 . . . I n/8 I n/4           .
We show that the determinants used to define ∆ are nonzero by proving that construction (6) yields A

(j) i = A νi,δi and N (j) i = N νi,δi . (7) 
By definition A 

T (A (1) 1,R ) =        -C n/2 O O I n/2 . . . . . . -C n/2 O O I n/2        ∈ K nd×nd . To obtain N (1) 1 = N n , notice further that T (A (1) 1,R ) -1 is equal to the transpose of T ([-C -1 n/2 | x d I n/2 ] T ): T (A (1) 1,R ) -1 =               -C -1 n/2 O . . . -C -1 n/2 O O I n/2 . . . O I n/2               ∈ K nd×nd .
It then follows from (4a-b) that N

(1) 1 = N n ; with (4b-c), the fact that T (A

(1) 1,L ) -1 is equal to the transpose of T ([x d I n/2 | -I n/2 ] T ) yields N (1) 1 = N n . Hence N (1) 1
= N n and ( 7) holds for i = 1. Now, assuming that (7) holds for i ∈ {1, . . . , p -1}, let us show that this is still true for i + 1. It follows from the block-diagonalization scheme [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF] and from the recurrence formula

N n,d A n,d = A n/2,2d A n/2,2d that A (j) i+1 = A νi+1,δi+1 for 1 ≤ j ≤ 2 i . Hence L i+1,L = L (j)
i+1,R = I νi+2 ; we further obtain det T (A

(j) i+1,L ) = 0, det T (A (j)
i+1,R ) = 0 and N (j) i+1 = N νi+1,δi+1 by using the same arguments as for i = 1.

Actually, with the construction of ∆ we have also shown that Algorithm Inverse, with each call to MinimalKernelBasis replaced by (4a-b) or (4b-c), leads to a degree bound 2 i-1 d in the generic case. The next proposition shows that the bound remains valid in the generic case for any choice of minimal bases. This is clearly a consequence of the uniqueness of the minimal degrees.

Property 2 Let

A ∈ K[x] n×n be nonsingular of degree d. If ∆(A) = 0 then, for 1 ≤ i ≤ p, the matrices B (j) i,L , B (j) i,R , U (j) i , U (j) i computed by Algorithm Inverse have degree δ i . Proof. Let B (j) i , U (j) i
be the quantities computed by Inverse(A) and, since ∆(A) = 0, consider A (j) i , N (j) i as in [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. It then suffices to show that there exists invertible constant matrices C

(j) i such that B (j) i = C (j) i A (j) i , 1 ≤ j ≤ 2 i-1 , 1 ≤ i ≤ p. This indeed implies that det T (B (j) i,L ) = 0 if and only if det T (A (j) i,L ) = 0 (similarly for T (B (j) i,R
)) and conclusion follows from ∆(A) = 0 and from the "if" part of Lemma 1.

We now prove by recurrence on i that such C (j) i exist. This is true when i = 1, for

B (1) 1 = A (1) 1 = A. Now assuming that B (j) i = C (j) i A (j) i , let us show that B (2j-1) i+1 = C (2j-1) i+1 A (2j-1) i+1 for some constant invertible matrix C (2j-1) i+1 over K. It follows from Algorithm Inverse that B (2j-1) i+1 = U (j) i B (j) i,L = U (j) i C (j) i A (j) i,L with U (j) i a minimal basis of ker C (j) i A (j) i,R . Hence U (j) i C (j) i is a basis of ker A (j)
i,R and is minimal since C (j) i having degree zero implies that U When ignoring logarithmic factors, we see that (8a) and (8b) respectively read O˜(f (i)) and O˜(g ω (i)) where f (i) = 2 -i n 3 d and g ω (i) = 2 (3-ω)i n ω d for 1 ≤ i ≤ p. For i ranging from 1 to p, the cost for computing minimal kernel bases therefore decreases from O˜(n 3 d) to O˜(n 2 d); simultaneously, the cost of matrix updates increases from O˜(n ω d) to O˜(n 3 d). Hence basis computations dominate at early stages of the algorithm whereas matrix updates dominate at the end.

We have presented an algorithm for inverting matrix polynomials whose straight-line complexity matches the size of the output up to logarithmic factors. We may note that in a work in progress we show that as a side-effect, our algorithm yields a straight-line program for computing the determinant in O˜(n ω d) operations. To our knowledge, Storjohann's algorithm [START_REF]High-order lifting[END_REF] is the only method that gives this estimate for the determinant problem; this solution is superior to our method since it runs on a random access machine.

A task remaining is to obtain the same complexity estimate for matrix polynomial inversion on a random access machine.

  a minimal basis of ker L M . Second, the row degrees d 1 + d -1, . . . , d m + d -1 of L U are known to be the left indices of the Kronecker canonical form of the matrix pencil L M [8, §12.5]. The uniqueness of the d i 's thus corresponds to the uniqueness of the Kronecker indices. By bounding the sum of the Kronecker indices by the column dimension of the pencil L M it further follows that m i=1 (d i + d -1) ≤ 2mdm. In other words, the minimal row degrees of ker M satisfy m i=1 d i ≤ md.

  are nonzero for a particular matrix over K[x]. Define A n,d , N n,d ∈ K[x] n×n of degree d as

  = I n/2 and one can verify by inspection that T (A (1) 1,L ) and T (A

  ) are invertible, of determinant ±1; for example one has

Corollary 3

 3 of the minimal row degrees and normalization (4a) of the leading matrix of N (j) i imply that the degree of C (2j-1) i+1 must be equal to zero. This proves the existence of When using the "slow" version of the algorithm in[START_REF] Beckermann | A uniform approach for the fast computation of matrixtype Padé approximants[END_REF] -that is, without Fast Fourier Transform -for computing a minimal basis as in Corollary 1, one would end up with complexityO(n 3 d 2 log n) instead of O(n 2 M (nd) log(nd)).The corollary below follows from Theorem 1 by taking M (d) = d log d log log d. Except for a subvariety of K n 2 (d+1) , Algorithm Inverse computes the inverse of a nonsingular A ∈ K[x] n×n of degree d in O˜(n 3 d) field operations.

The degree bound of Proposition 2 is achieved independently of the way minimal kernel bases are computed. Also note that det A = 0 and ∆(A) = 0 are two distinct assumptions. As illustrated by

∆(A) = 0 does not imply that det A = 0. Conversely, every 2n×2n nonsingular matrix polynomial of the form d+1) , the subset {A ∈ K[x] n×n : deg A ≤ d and (∆(A) is undefined or ∆(A) = 0)} can be identified with the (strict) subvariety of K n 2 (d+1) defined by the zeros of the denominator and the numerator of ∆.

Corollary 2 Except for a certain subvariety of

As already mentioned at the beginning of the section, replacing in Algorithm Inverse the calls to MinimalKernelBasis by the explicit constructions (4a-b) and (4b-c) yields an algebraic straight-line program for inversion.

Complexity analysis

We now deduce from Corollaries 1 and 2 the straight-line complexity of Algorithm Inverse. When ∆(A) = 0, the 2 i minimal bases of step i can be computed by

field operations. The update of B consists in multiplying two block-diagonal matrices, each of them having 2 i-1 diagonal blocks of order ν i and degree δ i . This costs

where ω is the exponent for square matrix multiplication. To update the dense matrix U , we update each of its 2 i-1 block-rows with 2 i-1 matrix products of order ν i and degree δ i . This costs

. The total cost of matrix updates at step i is therefore bounded by