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Adresse électronique : lip@ens-lyon.fr



Straight-line computation of the

polynomial matrix inverse

Claude-Pierre Jeannerod
Gilles Villard

December 2002

Abstract

We present an inversion algorithm for nonsingular n × n matrices whose en-
tries are degree d polynomials over a field. The algorithm is deterministic and
requires O (̃n3d) field operations for a generic input. The “soft Oh” notation
O˜indicates some missing log(nd) factors. The polynomial matrix inverse can
thus be computed by a straight-line program whose size is — asymptotically
and up to logarithmic factors — the size of its output.

Keywords: Matrix polynomial, matrix inversion, minimal basis.

Résumé

On présente un algorithme pour inverser les matrices n × n dont les coeffi-
cients sont des polynômes de degré d sur un corps commutatif abstrait K. Cet
algorithme est déterministe et nécessite O (̃n3d) opérations sur K dans le cas
générique. (La notation O˜contient les facteurs logarithmiques.) L’inverse d’une
matrice polynomiale peut donc être calculé par un programme “straight-line”
de longueur égale — asymptotiquement et aux facteurs logarithmiques près —
à la taille de sa sortie.

Mots-clés: Matrices polynomiales, inversion matricielle, bases minimales.



1 Introduction

Let K be an abstract commutative field. For two positive integers n and d, consider a nonsingular
matrix A ∈ K[x]n×n of degree d. The inverse of A is the n × n matrix over K(x) defined by
A−1 = A∗/ detA where A∗ and detA are the adjoint matrix and the determinant of A. Since
the degrees of A∗ and det A are bounded by (n − 1)d and nd, representing A−1 may require up
to O(n3d) elements of K. In this paper, we present a deterministic algorithm for computing A−1

that generically requires O (̃n3d) field operations on an algebraic random access machine. By
generically, we mean that the algorithm has the above asymptotic complexity for every n × n
matrix polynomial of degree d whose coefficients do not belong to a certain strict subvariety of
Kn2(d+1). Hence we establish a straight-line complexity estimate of O (̃n3d). Here and in the
following, the O˜notation indicates some missing log(nd) factors.

When using either an algebraic random access machine and or the straight-line model, the best
previously known complexity estimate was O (̃nω+1d) where ω is the exponent for multiplying two
n×n matrices over K [5, Chap. 1]. We thus improve the straight-line complexity estimate if ω > 2
and the improvement is by a factor n when considering standard matrix multiplication (ω = 3).

We assume that O(M(d)) operations in K are sufficient to multiply two polynomials in K[x]
of degree at most d, and use M(d) = d log d log log d [16, 6]. Let us recall how the above clas-
sical estimate O (̃nω+1d) for matrix inversion over K(x) is obtained. The determinant and the
entries of the adjoint, whose degrees are bounded by nd, may be recovered for instance using an
evaluation / interpolation scheme at nd points [9, §5.5]. A randomized Las Vegas algorithm or a
straight-line program — A must be invertible at the nd evaluation points — may thus be based on
O(nω) recursive matrix inversion over K [4, 15] and on a fast evaluation / interpolation scheme for
univariate polynomials of degree nd in O (̃M(nd)) operations [11], [9, §10]. Many other approaches
may be considered such as a direct Gauss /Jordan elimination on truncated power series, Newton
iteration [13] or linearization (see for instance [12] and the references therein) but none of them
seems to reduce the complexity estimate over K. A deterministic O (̃nω+1d) algorithm is given
in [17, §2] for an algebraic random access machine. This algorithm is a fraction-free version over
K[x] (Bareiss’ approach [1]) of the recursive inversion algorithms over K cited above. We see that
with standard matrix multiplication (ω = 3) the cost of inversion was still about n times higher
than the typical size of the inverse.

Let us now give an idea of our approach. The algorithm is iterative and consists in diagonalizing
A in �log n� steps as UA = B with U ∈ K[x]n×n nonsingular and B ∈ K[x]n×n diagonal. The
inverse of A is then recovered as A−1 = B−1U . The first observation is that A can be diagonalized
in �log n� steps of type

A =
[

AL AR

]
→ UA =

[
U
U

][
AL AR

]
=

[
UAL

UAR

]
(1)

with AL, AR ∈ K[x]n×n/2 and where U, U ∈ K[x]n/2×n are bases of, respectively, kerAR and
kerAL considered as K[x]-modules. (Here and hereafter, the blank areas in matrices are assumed
to be filled with zeros.) The second and key point is that, generically, there exists among all
possible kernel bases U , U some bases whose degree is no more than d; furthermore, if we choose
such “low degree bases”, this property carries over the next step. Hence, the degree of the working
matrix polynomials only doubles at each step, whereas their size is divided by two. These “low
degree bases” are so-called minimal bases [7], for which one knows deterministic O (̃n2M(nd))
algorithms [19, 2]. Combining such algorithms with steps of type (1) eventually allows for A−1 to
be computed in

O(n2M(nd) log(nd)) = O (̃n3d)

field operations by using only standard matrix multiplication.
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The paper is organized as follows. In Section 2 we present our inversion algorithm, using
block-diagonalization steps as in (1) and assuming that one can compute minimal bases of matrix
polynomial kernels. Section 3 surveys minimal bases in the context of the matrix polynomial
kernels of interest for our problem: general properties as well as a characterization of the degree
of such bases are given in §3.1 and computation as matrix rational approximants is explained in
§3.2. We give in Section 4 a sufficient, generically satisfied condition on the coefficients of the
input A for the degrees of all the matrices involved at step i of our computation of A−1 to be no
greater than 2i−1d. This degree bound allows for the complexity analysis of Section 5.

For the rest of the paper, we assume without loss of generality that n = 2p and p ∈ N.
Moreover, ML (resp. MR) denotes the 2m × m matrix that consists of the first (resp. last) m
columns of a given 2m× 2m matrix M ; the m × 2m submatrices M and M are defined similarly
by considering rows instead. For example ML therefore denotes the upper left m × m submatrix
of M .

2 Inversion algorithm

Algorithm Inverse is described below. We assume that we have a subroutine MinimalKernelBasis
for computing a minimal basis of the left kernel of a matrix polynomial.

Algorithm Inverse(A)
Input: A ∈ K[x]n×n of degree d
Output: A−1

Condition: detA �= 0 and n = 2p with p ∈ N

(1) B := copy(A);
U := In;

(2) for i from 1 to p do // B = diag(B(1)
i , . . . , B

(2i−1)
i )

for j from 1 to 2i−1 do
U

(j)
i := MinimalKernelBasis(B(j)

i,L); // U
(j)
i B

(j)
i,L = 0

U
(j)

i := MinimalKernelBasis(B(j)
i,R); // U

(j)

i B
(j)
i,R = 0

od;
Ui := diag(U (1)

i , . . . , U
(2i−1)
i ); // U

(j)
i =

[
U

(j)
i

U
(j)
i

]
B := UiB;
U := UiU ;

od;
(3) return B−1U

We now prove that Algorithm Inverse is correct. For i = 1, it follows from detA �= 0 that
both U

(1)
1 and U

(1)

1 are n/2 × n matrices over K[x] of rank n/2. Also, detU
(1)
1 �= 0 for otherwise

kerAL ∩ kerAR = 0 which contradicts the fact that detA �= 0. Therefore, the two n/2 × n/2
blocks of B = U

(1)
1 A are nonsingular. Repeating the argument for i = 2, . . . , p, we see that

at the beginning of step i the matrix B is block-diagonal with 2i−1 nonsingular blocks of order
2p−i+1. Hence the 2i−1 pairs of kernel bases U

(j)
i , U

(j)

i with dimensions 2p−i × 2p−i+1 are such
that det U

(j)
i �= 0. The pth step of stage (2) therefore produces a nonsingular U ∈ K[x]n×n such

that UA = B is diagonal and the algorithm is correct.
Notice that correctness of the algorithm does not require the computed kernel bases be minimal,

that is, have “small” degrees. However, minimality — whose definition is recalled in Section 3 —
is crucial for the complexity of the algorithm. In particular, we prove in Section 4 that minimality
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implies that the matrices B
(j)
i,L, B

(j)
i,R, U

(j)
i , U

(j)

i of Algorithm Inverse generically have a degree
equal to 2i−1d for 1 ≤ j ≤ 2i−1, 1 ≤ i ≤ p. Hence, at step i, one has for these matrices

size × degree = n/2i−1 × 2i−1d = nd for 1 ≤ i ≤ p.

3 Minimal kernel bases

For a positive integer m, let M ∈ K[x]2m×m with rank m and degree d. Let further U ∈ K[x]m×2m

with rows forming a basis of the K[x]-submodule kerM and denote by d1, . . . , dm its row degrees.
When

∑m
i=1 di is minimal among all the bases of kerM , the matrix U is known as a minimal basis

of kerM [7].
First, we characterize in §3.1 the fact that U has degree d exactly when M is generic. In the

latter case, we also identify a particular choice for the matrix U and write its entries as rational
functions in the entries of M . This will be the main properties used for studying the generic
behaviour of the whole inversion algorithm. Then we recall in §3.2 how to compute minimal
bases.

3.1 General properties, degree characterization and explicit construc-
tion

We refer to Forney [7] and to Kailath [10] for the definition and properties of minimal bases. Recall
in particular that such bases are non unique but their row degrees are unique up to ordering [10,
§6.5.4]. In this case, we shall refer to d1 ≤ d2 ≤ . . . ≤ dm as the minimal row degrees of kerM . A
bound on the sum of the degrees may be seen by linearizing M =

∑d
i=0 Mix

i as

LM =




M0

−I2m M1

. . .
...

−I2m Md−1


 + x




I2m

. . .
I2m

Md


 ∈ K[x]2md×(2md−m).

Indeed, one can check first that U is a minimal basis of kerM if and only if the matrix LU

defined as LU = [ U |xU | · · · |xd−1U ] is a minimal basis of kerLM . Second, the row degrees
d1 + d− 1, . . . , dm + d− 1 of LU are known to be the left indices of the Kronecker canonical form
of the matrix pencil LM [8, §12.5]. The uniqueness of the di’s thus corresponds to the uniqueness
of the Kronecker indices. By bounding the sum of the Kronecker indices by the column dimension
of the pencil LM it further follows that

∑m
i=1(di +d−1) ≤ 2md−m. In other words, the minimal

row degrees of kerM satisfy
m∑

i=1

di ≤ md. (2)

Degrees of minimal bases may thus range from zero to md. For example, one can take U =
[ Im |O ] for any M whose first m rows are zero; on the other hand, when

M =




x 0
1 x
0 1
0 0




a minimal basis of kerM is given by

U =
[

0 0 0 1
1 −x x2 0

]
.
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Let us now characterize the situation where all the minimal row degrees are equal to d by associ-
ating with M =

∑d
i=0 Mix

i the block-Toeplitz matrix

T (M) =




M0 M1 · · · Md

. . . . . .
...

. . .
M0 M1 · · · Md


 ∈ K2md×2md. (3)

We see that kerM has a nonzero vector u =
∑d−1

i=0 uix
i of degree less than d if and only if

[uT
0 , . . . , uT

d−1]
T is a nonzero vector of kerT (M). Therefore, di ≥ d for 1 ≤ i ≤ m if and only if

det T (M) �= 0. The characterization below then follows by using inequality (2).

Lemma 1 The minimal row degrees of kerM satisfy di = d for 1 ≤ i ≤ m if and only if T (M)
is invertible, which is generically the case.

We use Lemma 1 in the proof of Proposition 2. We shall also use the fact that if T (M) is
invertible then, by uniqueness of the minimal degrees, every basis of kerM whose degree is at
most d must be minimal.

In addition to the bound d on the generic degrees, Proposition 2 relies on the following explicit
construction of a kernel basis, assuming further that either Md or Md is nonsingular. In the
generic case, we identify the matrix coefficients in both sides of matrix equation UM = 0. If
det T (M) �= 0 and detMd �= 0 then a minimal basis of kerM is given by the m × 2m matrix
N =

∑d
i=0 Nix

i such that
Nd =

[
Im −MdM

−1
d

]
, (4a)[

N0 · · · Nd−1

]
= −Nd

[
0 M0 · · · Md−1

]
T (M)−1. (4b)

If det T (M) �= 0 and detMd �= 0 then one can replace (4a) with

Nd = [−MdM
−1

d | Im ]. (4c)

3.2 Computation as matrix rational approximants

We show in Proposition 1 below that computing a minimal basis U of kerM reduces to computing
a suitable Padé approximant basis (called a σ-basis in [2, p. 809]) for the rows of M , a task
for which one may use the algorithm of [2, §6]. This follows the idea of [14, Chap. 4] and [19]
as applied in [3]. As we detail next, we recover a minimal basis from a minimal approximant
V ∈ K[x](2m)×(2m) such that

V (x)M(x) = O(xσ).

The approximation order σ we choose is sufficiently large — with respect to a degree bound for
the basis — to ensure that m rows of V form a minimal basis U for the kernel.

Let σ ∈ N and, writing M (i,j) for the (i, j) entry of M , let f = [ f (i) ]i ∈ K[x]2m where
f (i)(x) =

∑m
j=1 xj−1M (i,j)(xm). To define σ-bases with respect to the rows of M , we recall the

notion of order [2, p. 809] of a polynomial vector vT = [ v(i) ]i ∈ K[x]2m:

ord v = sup{τ ∈ N : v(xm)f(x) = O(xτ )}.

A σ-basis with respect to the rows of M is a matrix V ∈ K[x]2m×2m such that:

i) for 1 ≤ i ≤ 2m, ordV (i,∗) ≥ σ where V (i,∗) is the ith row of V ;
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ii) every polynomial vector v ∈ K[x]2m such that ord v ≥ σ admits a unique decomposition
vT =

∑2m
i=1 c(i)V (i,∗) where, for 1 ≤ i ≤ 2m, c(i) ∈ K[x] and deg c(i) + deg V (i,∗) ≤ deg v

(minimality of the approximant).

The definition and the existence of such a basis V for a given (σ, M) follow from [2]. By the
decomposition in ii), we see that V must be nonsingular.

The result below shows how to recover a minimal basis of kerM from a σ-basis when σ is large
enough. Although a general version that is not restricted to the full rank 2m × m case can be
found in [14, 19], we give a proof for the sake of completeness.

Property 1 Let V be a σ-basis with respect to the rows of M and let di be the ith minimal row
degree of kerM . If σ ≥ m(maxi di + d + 1) then the m rows of V with smallest degrees define a
minimal basis of kerM .

Proof. For 1 ≤ i ≤ 2m, one has V (i,∗)(xm)f(x) = O(xσ) where the left hand side is a
polynomial of degree at most

m(deg V (i,∗) + d + 1) − 1. (5)

It thus follows from (5) and from σ ≥ m(maxi di + d + 1) that a row of V whose degree is no
more than maxi di is a vector of kerM . Let us now show that V has m rows of respective degrees
d1, . . . , dm. By definition, a vector u1 of kerM of degree d1 can be written as u1 =

∑2m
h=1 c

(h)
1 V (h,∗)

with deg c
(h)
1 + deg V (h,∗) ≤ d1. Hence there exists h1 such that deg V (h1,∗) ≤ d1. Now assume

that V has i−1 rows V (h1,∗), . . . , V (hi−1,∗) of respective degrees d1, . . . , di−1 and let ui be a vector
of kerM that does not belong to the submodule generated by these i − 1 rows and such that
deg ui = di. As for i = 1, there exists hi �∈ {h1, . . . , hi−1} such that deg V (hi,∗) ≤ di. Therefore V
contains m distinct rows (indexed by h1, . . . , hm) such that the hi-th row belongs to kerM and
has degree at most di. These m rows are linearly independent in kerM and, since

∑m
i=1 di is

minimal for any such set of rows, they must form a minimal basis. Notice that the remaining m
rows of V cannot belong to kerM and therefore have degrees greater than maxi di. The choice of
the m rows with smallest degrees in the statement of the proposition is thus well-defined. �

When multiplying two polynomials of degree d costs O(M(d)), one can compute a σ-basis with
respect to the rows of M in O(m2M(σ) log σ) field operations [2, Theorem 6.2]. Lemma 1 and
Proposition 1 thus yield the corollary below.

Corollary 1 Let U be a minimal basis of kerM of given degree dU . We have an algorithm for
computing U in O(m2M(m(dU + d)) log(m(dU + d))) field operations. Thus if det T (M) �= 0 this
cost is O(m2M(md) log md).

4 Generic degrees of intermediate minimal bases

In this section we study the generic behaviour of Algorithm Inverse. More precisely, we prove the
degree bound 2i−1d for the intermediate matrices at step i. First, we define in Lemma 2 a rational
function ∆ in the entries of the algorithm input matrix. The existence of this rational function
implicitly yields an inversion straight-line program where minimal kernel bases are computed with
scheme (4). Second, we show in Proposition 2 that if ∆ is well-defined and nonzero for a given
input A then the degree bound 2i−1d holds for any choice of minimal basis.

Consider n2(d + 1) indeterminates αi,j,k for 1 ≤ i, j ≤ n, 0 ≤ k ≤ d, and let

A ∈ K[α1,1,0, . . . , αi,j,k, . . . , αn,n,d][x]n×n

5



have its (i, j) entry equal to
∑d

k=0 αi,j,kxk. Recall that n = 2p and let

νi = n/2i−1 and δi = 2i−1d for 1 ≤ i ≤ p.

Following Algorithm Inverse, we apply (4a-b) and (4b-c) formally and iteratively for i =
1, . . . , p with degree δi at step i. We show in Lemma 2 below that this construction actually leads
to a well-defined and nonzero rational funtion ∆ in the αi,j,k’s. This means that (4a-b) and (4b-c)
reflect the quantities computed by the algorithm in the generic case. For 1 ≤ i ≤ p, 1 ≤ j ≤ 2i−1,
let the matrices A

(j)
i , N

(j)
i ∈ K[x]νi×νi be of degree δi and such that: A

(1)
1 = A; N

(j)

i is the minimal
basis of kerA

(j)
i,R of the form (4a-b); N

(j)
i is the minimal basis of kerA

(j)
i,L of the form (4b-c); for

1 ≤ i ≤ p − 1, 1 ≤ j ≤ 2i−1,[
A

(2j−1)
i+1

A
(2j)
i+1

]
=

[
N

(j)

i

N
(j)
i

][
A

(j)
i,L A

(j)
i,R

]
. (6)

Writing L(j)
i for the leading matrix of A

(j)
i and using the notation of (3) for block-Toeplitz matrices,

define further ∆(j)
i,L = detL(j)

i,L det T (A(j)
i,L) and ∆(j)

i,R = detL(j)
i,R det T (A(j)

i,R). Then let

∆ =
p∏

i=1

2i−1∏
j=1

∆(j)
i,L∆(j)

i,R.

Lemma 2 For n ≥ 2, ∆ is a nonzero element of K(α1,1,0, . . . , αi,j,k, . . . , αn,n,d).

Proof. We prove the statement by recurrence on the ith stage of the construction. To prove
both the existence of ∆ — matrix inversions in (4a-b-c) — and the fact that ∆ �= 0, it suffices
to show that the successive determinants ∆(j)

i,L and ∆(j)
i,R are nonzero for a particular matrix over

K[x]. Define An,d, Nn,d ∈ K[x]n×n of degree d as

An,d =
[

xdIn/2 −Cn/2

−In/2 xdIn/2

]

Nn,d =
[

xdIn/2 Cn/2

In/2 xdIn/2

] where Cn/2 =




1
1

I2

I4

. . .

In/8

In/4




.

We show that the determinants used to define ∆ are nonzero by proving that construction (6)
yields

A
(j)
i = Aνi,δi and N

(j)
i = Nνi,δi . (7)

By definition A
(1)
1 = An,d. Hence L(1)

1,L = L(1)
1,R = In/2 and one can verify by inspection that

T (A(1)
1,L) and T (A(1)

1,R) are invertible, of determinant ±1; for example one has

T (A(1)
1,R) =




[
−Cn/2

O

] [
O

In/2

]
. . . . . .[

−Cn/2

O

] [
O

In/2

]


 ∈ Knd×nd.
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To obtain N
(1)
1 = Nn, notice further that T (A(1)

1,R)−1 is equal to the transpose of T ([−C−1
n/2 |xdIn/2]T ):

T (A(1)
1,R)−1 =




[
−C−1

n/2 O
]

. . . [
−C−1

n/2 O
]

[
O In/2

]
. . . [

O In/2

]



∈ Knd×nd.

It then follows from (4a-b) that N
(1)

1 = Nn; with (4b-c), the fact that T (A(1)
1,L)−1 is equal to the

transpose of T ([xdIn/2 | − In/2]T ) yields N
(1)
1 = Nn. Hence N

(1)
1 = Nn and (7) holds for i = 1.

Now, assuming that (7) holds for i ∈ {1, . . . , p − 1}, let us show that this is still true for i + 1. It
follows from the block-diagonalization scheme (6) and from the recurrence formula

Nn,dAn,d =
[

An/2,2d

An/2,2d

]

that A
(j)
i+1 = Aνi+1,δi+1 for 1 ≤ j ≤ 2i. Hence L(j)

i+1,L = L(j)
i+1,R = Iνi+2 ; we further obtain

det T (A(j)
i+1,L) �= 0, det T (A(j)

i+1,R) �= 0 and N
(j)
i+1 = Nνi+1,δi+1 by using the same arguments as for

i = 1. �
Actually, with the construction of ∆ we have also shown that Algorithm Inverse, with each

call to MinimalKernelBasis replaced by (4a-b) or (4b-c), leads to a degree bound 2i−1d in the
generic case. The next proposition shows that the bound remains valid in the generic case for any
choice of minimal bases. This is clearly a consequence of the uniqueness of the minimal degrees.

Property 2 Let A ∈ K[x]n×n be nonsingular of degree d. If ∆(A) �= 0 then, for 1 ≤ i ≤ p, the
matrices B

(j)
i,L, B

(j)
i,R, U

(j)
i , U

(j)

i computed by Algorithm Inverse have degree δi.

Proof. Let B
(j)
i , U

(j)
i be the quantities computed by Inverse(A) and, since ∆(A) �= 0, consider

A
(j)
i , N

(j)
i as in (6). It then suffices to show that there exists invertible constant matrices C

(j)
i

such that B
(j)
i = C

(j)
i A

(j)
i , 1 ≤ j ≤ 2i−1, 1 ≤ i ≤ p. This indeed implies that det T (B(j)

i,L) �= 0

if and only if det T (A(j)
i,L) �= 0 (similarly for T (B(j)

i,R)) and conclusion follows from ∆(A) �= 0 and
from the “if” part of Lemma 1.

We now prove by recurrence on i that such C
(j)
i exist. This is true when i = 1, for B

(1)
1 =

A
(1)
1 = A. Now assuming that B

(j)
i = C

(j)
i A

(j)
i , let us show that B

(2j−1)
i+1 = C

(2j−1)
i+1 A

(2j−1)
i+1

for some constant invertible matrix C
(2j−1)
i+1 over K. It follows from Algorithm Inverse that

B
(2j−1)
i+1 = U

(j)

i B
(j)
i,L = U

(j)

i C
(j)
i A

(j)
i,L with U

(j)

i a minimal basis of kerC
(j)
i A

(j)
i,R. Hence U

(j)

i C
(j)
i is a

basis of kerA
(j)
i,R and is minimal since C

(j)
i having degree zero implies that U

(j)

i C
(j)
i has minimal

degree δi. Another basis of kerA
(j)
i,R being given by N

(j)

i , there exists a unimodular C
(2j−1)
i+1

such that U
(j)

i C
(j)
i = C

(2j−1)
i+1 N

(j)

i . It then follows from (6) that B
(2j−1)
i+1 = C

(2j−1)
i+1 A

(2j−1)
i+1 .

Additionally, uniqueness of the minimal row degrees and normalization (4a) of the leading matrix
of N

(j)

i imply that the degree of C
(2j−1)
i+1 must be equal to zero. This proves the existence of
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C
(2j−1)
i+1 as announced. Using similar arguments, one can verify that B

(2j)
i+1 = C

(2j)
i+1 A

(2j)
i+1 for some

invertible constant matrix C
(2j)
i+1 . �

The degree bound of Proposition 2 is achieved independently of the way minimal kernel bases
are computed. Also note that detA �= 0 and ∆(A) �= 0 are two distinct assumptions. As illustrated
by

A =
[

x x
1 + x 1 + x

]
,

∆(A) �= 0 does not imply that detA �= 0. Conversely, every 2n×2n nonsingular matrix polynomial
of the form A = diag(AL, AR) is such that ∆(A) = 0.

When identifying the matrix set {A ∈ K[x]n×n : deg A ≤ d} with Kn2(d+1), the subset
{A ∈ K[x]n×n : deg A ≤ d and (∆(A) is undefined or ∆(A) = 0)} can be identified with the
(strict) subvariety of Kn2(d+1) defined by the zeros of the denominator and the numerator of ∆.

Corollary 2 Except for a certain subvariety of Kn2(d+1), every nonsingular A ∈ K[x]n×n of degree
d is such that, for 1 ≤ i ≤ p, the matrices B

(j)
i,L, B

(j)
i,R, U

(j)
i , U

(j)

i computed by Algorithm Inverse
have degree δi.

As already mentioned at the beginning of the section, replacing in Algorithm Inverse the
calls to MinimalKernelBasis by the explicit constructions (4a-b) and (4b-c) yields an algebraic
straight-line program for inversion.

5 Complexity analysis

We now deduce from Corollaries 1 and 2 the straight-line complexity of Algorithm Inverse. When
∆(A) �= 0, the 2i minimal bases of step i can be computed by

2i × O(ν2
i M(νiδi) log(νiδi)) = O(2−in2M(nd) log(nd)) (8a)

field operations. The update of B consists in multiplying two block-diagonal matrices, each of
them having 2i−1 diagonal blocks of order νi and degree δi. This costs 2i−1 × O(νω

i M(δi)) where
ω is the exponent for square matrix multiplication. To update the dense matrix U , we update
each of its 2i−1 block-rows with 2i−1 matrix products of order νi and degree δi. This costs
2i−1 × O(2i−1νω

i M(δi)). The total cost of matrix updates at step i is therefore bounded by

2i−1 × O(2i−1νω
i M(δi)) = O(2(2−ω)(i−1)nωM(2i−1d)). (8b)

Using
∑p

i=1 2−i ≤ 1, the total cost induced by (8a) is in O(n2M(nd) log(nd)). With standard
matrix multiplication (ω = 3) and using M(2id) ≤ M(2i)M(d), the total cost induced by (8b) is
in O(n3M(d)). It follows that stage (2) of Algorithm Inverse has complexity bounded by

O(n2M(nd) log(nd))

when ∆(A) �= 0. Stage (3) then consists in computing B−1U with deg U = nd− d and B diagonal
such that deg B ≤ nd. This costs

O(n2M(nd)).

Theorem 1 If A ∈ K[x]n×n is nonsingular of degree d and ∆(A) �= 0 then Algorithm Inverse
computes A−1 in O(n2M(nd) log(nd)) field operations.
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When using the “slow” version of the algorithm in [2] — that is, without Fast Fourier Trans-
form — for computing a minimal basis as in Corollary 1, one would end up with complexity
O(n3d2 log n) instead of O(n2M(nd) log(nd)).

The corollary below follows from Theorem 1 by taking M(d) = d log d log log d.

Corollary 3 Except for a subvariety of Kn2(d+1), Algorithm Inverse computes the inverse of a
nonsingular A ∈ K[x]n×n of degree d in O (̃n3d) field operations.

When ignoring logarithmic factors, we see that (8a) and (8b) respectively read O (̃f(i)) and
O (̃gω(i)) where f(i) = 2−in3d and gω(i) = 2(3−ω)inωd for 1 ≤ i ≤ p. For i ranging from 1 to p,
the cost for computing minimal kernel bases therefore decreases from O (̃n3d) to O (̃n2d); simulta-
neously, the cost of matrix updates increases from O (̃nωd) to O (̃n3d). Hence basis computations
dominate at early stages of the algorithm whereas matrix updates dominate at the end.

We have presented an algorithm for inverting matrix polynomials whose straight-line complex-
ity matches the size of the output up to logarithmic factors. We may note that in a work in
progress we show that as a side-effect, our algorithm yields a straight-line program for comput-
ing the determinant in O (̃nωd) operations. To our knowledge, Storjohann’s algorithm [18] is the
only method that gives this estimate for the determinant problem; this solution is superior to our
method since it runs on a random access machine.

A task remaining is to obtain the same complexity estimate for matrix polynomial inversion
on a random access machine.
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