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École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
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Abstract

Table�based methods are frequently used to implement functions� We
examine some methods introduced in the literature� and we introduce a
generalization of the bipartite table method� named the multipartite

table method�

Keywords� Elementary functions� computer arithmetic� table�based methods

R�esum�e

Les m�ethodes 	a base de tables sont de plus en plus utilis�ees pour im�
planter des fonctions� Nous examinons quelques m�ethodes sugg�er�ees
ant�erieurement� puis nous proposons une g�en�eralisation de la m�ethode
des 
tables bipartites�� appel�ee m�ethode des 
tables multipartites��

Mots�cl�es� Fonctions �el�ementaires� arithm�etique des ordinateurs� m�ethodes 	a base de
tables�



Abstract

Table�based methods are frequently used to implement functions� We examine
some methods introduced in the literature� and we introduce a generalization of the
bipartite table method� named the multipartite table method�

� Introduction

Throughout the paper� f is the function to be evaluated� We assume n�bit� �xed�point
arguments� between ��� and � �that is� they are mantissas of �oating�point numbers��

Table�based methods have frequently been suggested and used to implement some
arithmetic �reciprocal� square root� and transcendental functions� One can distinguish
three di	erent classes of methods


� compute�bound methods� these methods use table�lookup in a small table
to �nd parameters used afterward for a polynomial or rational evaluation� The
main part of the evaluation of f consists in arithmetic computations�

� table�boundmethods� The main part of the evaluation of f consists in looking
up in a generally rather large table� The computational part of the function
evaluation is rather small �e�g�� a few additions��

� in�between methods� these methods use the combination of table lookup in a
medium�size table and a signi�cant yet reduced amount of computation �e�g� one
or two multiplications� or several �small multiplications that use rectangular �
fast and�or small � multipliers��

Many methods currently used on general�purpose systems belong to the �rst class
�e�g� Tang�s methods ��� �� �� ���� The third class of methods has been widely studied
since ���� ���� The use of small �e�g�� rectangular� multipliers to fasten the computa�
tional part of the evaluation has been suggested by several authors �see for instance
Wong and Goto�s algorithms for double precision calculations ����� or Ercegovac et
al��s methods �����

In this paper� we examine some table�bound methods� Of course� the straightfor�
ward method� consisting in building a table with n address bits� cannot be used unless
n is very small� The �rst useful table�bound methods have been introduced in the
last decade
 they have become implementable thanks to progress in VLSI technology�
Wong and Goto ���� have suggested the following method� We split the binary repre�
sentation of the input�number x into four k�bit numbers� where k � n��� That is� we
write�


� x� � x��
�k � x��

��k � x��
��k

where � � xi � �� ��k is a multiple of ��k�
Then f�x� is approximated by


f�x� � x���k�
��

�
��k

�
f�x� � x���k � x���k� � f�x� � x���k � x���k�

�
��

��
��k

�
f�x� � x���k � x���k�� f�x� � x���k � x���k�

�
����k

n
x�
�

� f ����x���
x�
�

� f ����x��
o

�To make the paper easier to read and more consistent� we do not use Wong and Goto�s notations here�

We use the same notations as in the sequel of this paper�

�



The approximation error due to the use of this approximation is about ���k�
The bipartite table method was �rst suggested by Das Sarma and Matula ���

for quickly computing reciprocals� A slight improvement� the symmetric bipartite
table method was introduced by Schulte and Stine ���� Due to the importance
of the bipartite table method �BTM�� we will present it in detail in the next section�
Compared to Wong and Goto�s method� it requires larger tables� And yet� the amount
of computation required by the BTM is reduced to one addition�

The problem of evaluating a function given by a converging series can be reduced to
the evaluation of a partial product array �PPA�� Schwarz ��� suggested to use multiplier
structures to sum up PPAs� Hassler and Takagi ��� use PPAs to evaluate functions by
table look�up and addition�

� Order�� methods

The methods described in this section use an order�� Taylor approximation of f � This
leads to very simple computations �mere additions�� but the size of the required tables
may be quite large�

��� The bipartite table method

This method was �rst suggested by DasSarma and Matula ��� for computing recipro�
cals� We split the binary representation of the input number x into � k�bit numbers�
where k � n��� That is� we write


� x� � x��
�k � x��

��k

where � � xi � �� ��k is a multiple of ��k�

x � x� x� x�

We then write the order�� Taylor expansion of f at x� � x���k� This gives


f�x� � f�x� � x��
�k� � x��

��kf ��x� � x��
�k� � �� ���

with �� �
�
�x

�
��

��kf ������� where �� � �x��x���k� x�� Now� we approximate the value
f ��x� � x���k� by its order�� Taylor expansion at x� �that is� by f ��x��� This gives


f�x� � f�x� � x��
�k� � x��

��kf ��x�� � �� � �� ���

with �� � x�x��
��kf ������� where �� � �x�� x� � x��

�k�� This gives the bipartite
formula


f�x� � ��x�� x�� � ��x�� x�� � � ���

where ��
�

��x�� x�� � f�x� � x��
�k�

��x�� x�� � x��
��kf ��x��

� �
�
�
��

��k � ���k
�
maxf �� � ���kmaxf ��
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Final addition

f�x�

Figure � The bipartite table method

Hence� f�x� can be approximated� with approximately n bits of accuracy �by this�
we mean �with error � ��n� by the sum of two terms �� and �� that can be looked�up
in �n���address bit tables� as illustrated by Figure ��

The BTM still leads to large tables in single precision� and this� It is far from being
implementable in double precision� And yet� this leads to another idea
 we should try
to generalize the bipartite method� by splitting the input word into more than three
parts� Let us �rst try a splitting into �ve parts� we will after that generalize to an
arbitrary odd number of parts�

��� The tripartite table method

Now� we split the input n�bit �xed�point number x into �ve k�bit parts x�� x�� � � � �
x�� That is� we write


� x� � x��
�k � x��

��k � x��
��k � x��

��k

where � � xi � �� ��k is a multiple of ��k�

x � x� x� x� x� x�

We use the order�� Taylor expansion of f at � x� � x���k � x����k


f�x� � f�x� � x���k � x����k�
�
�
x����k � x����k

�
f ��x� � x���k � x����k�

��� � ��

���

with �� � �
�

�
x����k � x����k

��
f ������� with �� � �x� � x���k � x����k� x�� which

gives �� �
�
��

��kmaxf ���
In ���� we expand the term

�
x��

��k � x��
��k

�
f ��x��x��

�k�x��
��k� as follows
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Carry�save addition
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TABLE � TABLE � TABLE �
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Figure � The tripartite table method

� x����kf ��x� � x���k � x����k� is replaced by x����kf ��x� � x���k�� The error
committed is �� � x�x����kf ������� where �� � �x��x���k� x��x���k�x����k��
We easily get �� � ���kmaxf ���

� x����kf ��x��x���k�x����k� is replaced by x����kf ��x��� The error committed
is �� �

�
x���k � x����k

�
x����kf ������� where �� � �x�� x� � x���k � x����k��

We get �� � ���kmaxf ���

This gives the tripartite formula


f�x� � ��x�� x�� x�� � ��x�� x�� x�� � ��x�� x�� � � ���

where

��x�� x�� x�� � f�x� � x���k � x����k�
��x�� x�� x�� � x����kf ��x� � x���k�
��x�� x�� � x����kf ��x��
� �

�
�
��

��k � �� ���k
�
maxf �� � ���k	�maxf ��

Hence� f�x� can be obtained by adding three terms� each of them being looked�up in
a table with �at most� �n�� address bits� This is illustrated by Figure ��

��� Generalization� the multipartite table method

The previous approach is straightforwardly generalized� We now assume that the n�bit
input number x is split into �p� � k�bit values x�� x�� � � �x�p	�� That is�

x �

�p	�X
i
�

xi�
�i���k

�



where the xi�s are multiples of ��k and satisfy � � xi 	 �� As in the previous sections�
we use the order�� Taylor expansion


f�x� � f
�
x� � x���k � 
 
 
� xp	���pk

�
�

�
xp	����p���k � 
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�
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�
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� xp	���pk

�
� �p	�
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�
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���p	��kmaxf ��� We expand the term

�
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�
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�k � 
 
 
� xp	��
�pk

�
�

and perform Taylor approximations to f �
�
x� � x��

�k � 
 
 
� xp	��
�pk

�
� We then

get


f�x� � f
�
x� � x��

�k � 
 
 
� xp	��
�pk

�
� �p	�

� xp	����p���kf �
�
x� � x���k � 
 
 
� xp���p	��k

�
� �p	�

� xp	����p���kf �
�
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� xp�����p	��k

�
� �p	�

� xp	����p���kf �
�
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�
� �p	�


 
 

� x�p	����pkf � �x�� � ��p	�

where �p	�� �p	�� 
 
 
 ��p	� are less than ����p���kmaxf ���
This gives the multipartite �or �p � ���partite� formula


f�x� � ���x�� x�� 
 
 
 � xp	��
� ���x�� x�� 
 
 
 � xp��� xp	��
� ���x�� x�� 
 
 
 � xp��� xp	��
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� �

���
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�
x� � x��

�k � 
 
 
� xp	��
�pk

�
�i�x�� 
 
 
 � xp�i	�� xp	i� � xp	i��p�i	�f �

�
x� � x���k � 
 
 
� xp�i	����p	i���k

�
� �

�
�
��

���p���k � p����p���k
�
maxf ��

� p����p���kmaxf ��

Too large values of p are unrealistic
 performing many additions to avoid a few
multiplications is not reasonable�

� Higher�order methods

In the previous section� we have used order�� Taylor expansions only� Now� let us give
an example of the use of an order�� expansion� As in section ���� we split the input
n�bit �xed�point number x into �ve k�bit parts x�� x�� � � � � x�� That is� we write


� x� � x��
�k � x��

��k � x��
��k � x��

��k

�



�p� � n nb bytes nb of address bits

bipartite �� ������ ��

bipartite �larger n� �� ������� ��

tripartite �� ������ ��

tripartite �larger n� �� ������� ��

�p� � � � �� ������ ��

�p� � � � �larger n� �� ������� ��

Table � Table sizes for various order�� methods

where � � xi � �� ��k is a multiple of ��k�

���x�� x�� � f�x� � x���k� � �f�x�� �
�
� ��

��k � ���k�x��f
���x��

���x�� x�� � f�x� � x����k��
�
��

��kx��f
���x���

�
��

��kx��f
����x��

���x�� x�� � f�x� � x����k��
�
��

��kx��f
���x��

u � x� � x�
v � x� � x�
���u� x�� � �

���
��ku�f ����x��

���v� x�� � � �
���

��kv�f ����x��

���

Then

f�x� � ���x�� x�� � ���x�� x�� � ���x�� x�� � ���u� x�� � ���v� x��

Hence� with this method� we can use tables with �n�� address bits� Two additions
are used to generate u and v� and after the table�lookups� two carry�save additions
and one carry�propagate addition su�ce to get the �nal result� This method requires
around ��Kbytes of table for single�precision�

Conclusion

Various table�based methods have been suggested during the last decade� When single�
precision implementation is at stake� table�bound methods seem to be agood candidate
for implementing fast functions� Unless there is a technology breakthrough� these
methods are not suitable for double precision�

References

��� M�D� Ercegovac� T� Lang� J�M� Muller� and A� Tisserand� Reciprocation� square
root� inverse square root� and some elementary functions using small multipliers�
Technical Report RR������ LIP� �Ecole Normale Sup�erieure de Lyon� Novem�
ber ����� available at ftp
��ftp�lip�ens�lyon�fr�pub�Rapports�RR�RR���RR���
���ps�Z�

��� P� M� Farmwald� High bandwidth evaluation of elementary functions� In In K� S�
Trivedi and D� E� Atkins� editors� Proceedings of the �th IEEE Symposium on

Computer Arithmetic� IEEE Computer Society Press� Los Alamitos� CA� �����

�



��� H� Hassler and N� Takagi� Function evaluation by table look�up and addition� In
S� Knowles and W� McAllister� editors� Proceedings of the ��th IEEE Symposium

on Computer Arithmetic� Bath� UK� July ����� IEEE Computer Society Press�
Los Alamitos� CA�

��� D� Das Sarma and D� W� Matula� Faithful bipartite rom reciprocal tables� In
S� Knowles and W� H� McAllister� editors� Proceedings of the ��th IEEE Sym�

posium on Computer Arithmetic� pages ������ Bath� UK� ����� IEEE Computer
Society Press� Los Alamitos� CA�

��� M� Schulte and J� Stine� Symmetric bipartite tables for accurate function approx�
imation� In In T� Lang� J�M� Muller� and N� Takagi� editors� Proceedings of the
��th IEEE Symposium on Computer Arithmetic� IEEE Computer Society Press�
Los Alamitos� CA� �����

��� E� Schwarz� High�Radix Algorithms for High�Order Arithmetic Operations� PhD
thesis� Dept� of Electrical Engineering� Stanford University� �����

��� P� T� P� Tang� Table�driven implementation of the exponential function in
IEEE �oating�point arithmetic� ACM Transactions on Mathematical Software�
�����
�������� June �����

��� P� T� P� Tang� Table�driven implementation of the logarithm function in
IEEE �oating�point arithmetic� ACM Transactions on Mathematical Software�
�����
�������� December �����

��� P� T� P� Tang� Table lookup algorithms for elementary functions and their error
analysis� In P� Kornerup and D� W� Matula� editors� Proceedings of the ��th

IEEE Symposium on Computer Arithmetic� pages �������� Grenoble� France�
June ����� IEEE Computer Society Press� Los Alamitos� CA�

���� P� T� P� Tang� Table�driven implementation of the expm� function in
IEEE �oating�point arithmetic� ACM Transactions on Mathematical Software�
�����
�������� June �����

���� W� F�Wong and E� Goto� Fast hardware�based algorithms for elementary function
computations using rectangular multipliers� IEEE Transactions on Computers�
�����
�������� March �����

���� W� F� Wong and E� Goto� Fast evaluation of the elementary functions in single
precision� IEEE Transactions on Computers� �����
�������� March �����

�


