Jean-Michel Muller

A few results on table-based methods

Keywords: Elementary functions, computer arithmetic, table-based methods ementaires, arithm etique des ordinateurs, m ethodes a base de tables

Table-based methods are frequently used to implement functions. We examine some methods introduced in the literature, and we i n troduce a generalization of the bipartite table method, named the multipartite table method.

Introduction

Throughout the paper, f is the function to be evaluated. We assume n-bit, xed-point arguments, between 1=2 and 1 (that is, they are mantissas of oating-point n umbers).

Table-based methods have frequently been suggested and used to implement some arithmetic (reciprocal, square root) and transcendental functions. One can distinguish three di erent classes of methods: compute-bound methods: these methods use table-lookup in a small table to nd parameters used afterward for a polynomial or rational evaluation. The main part of the evaluation of f consists in arithmetic computations table-bound methods: The main part of the evaluation of f consists in looking up in a generally rather large table. The computational part of the function evaluation is rather small (e.g., a few additions) in-between methods: these methods use the combination of table lookup in a medium-size table and a signi cant y et reduced amount of computation (e.g. one or two m ultiplications, or several \small multiplications" that use rectangular { fast and/or small { multipliers). Many methods currently used on general-purpose systems belong to the rst class (e.g. Tang's methods 7, 8, 9, 10]. The third class of methods has been widely studied since 1981 2]. The use of small (e.g., rectangular) multipliers to fasten the computational part of the evaluation has been suggested by s e v eral authors (see for instance Wong and Goto's algorithms for double precision calculations 11], or Ercegovac et al.'s methods 1]).

In this paper, we examine some table-bound methods. Of course, the straightforward method, consisting in building a table with n address bits, cannot be used unless n is very small. The rst useful table-bound methods have been introduced in the last decade: they have become implementable thanks to progress in VLSI technology. Wong and Goto 12] h a ve suggested the following method. We split the binary representation of the input-number x into four k-bit numbers, where k = n=4. That is, we write 1 : = x 1 + x 2 2 ;k + x 3 2 ;2k + x 4 2 ;3k where 0 x i 1 ; 2 ;k is a multiple of 2 ;k . Then f(x) i s a p p r o ximated by: f(x 1 + x 2 2 ;k) + 1 2 2 ;k f(x 1 + x 2 2 ;k + x 3 2 ;k) ; f(x 1 + x 2 2 ;k ; x 3 2 ;k) + 1 2 2 ;2k f(x 1 + x 2 2 ;k + x 4 2 ;k) ; f(x 1 + x 2 2 ;k ; x 4 2 ;k) +2 ;4k

n x 2 3 2 f (2) (x 1) ; x 3 3 6 f (3) (x 1) o 1
To m a k e the paper easier to read and more consistent, we do not use Wong and Goto's notations here. We use the same notations as in the sequel of this paper.

1

The approximation error due to the use of this approximation is about 2 ;5k .

The bipartite table method was rst suggested by Das Sarma and Matula 4]

for quickly computing reciprocals. A slight i m p r o vement, the symmetric bipartite table method was introduced by S c hulte and Stine 5]. Due to the importance of the bipartite table method (BTM), we will present it in detail in the next section. Compared to Wong and Goto's method, it requires larger tables. And yet, the amount of computation required by the BTM is reduced to one addition.

The problem of evaluating a function given by a converging series can be reduced to the evaluation of a partial product array (PPA). Schwarz 6] suggested to use multiplier structures to sum up PPAs. Hassler and Takagi 3] use PPAs to evaluate functions by table look-up and addition.

2 Order-1 methods

The methods described in this section use an order-1 Taylor approximation of f. This leads to very simple computations (mere additions), but the size of the required tables may be quite large.

The bipartite table method

This method was rst suggested by DasSarma and Matula 4] for computing reciprocals. We split the binary representation of the input number x into 3 k-bit numbers, where k = n=3. That is, we write: = x 1 + x 2 2 ;k + x 3 2 ;2k where 0 x i 1 ; 2 ;k is a multiple of 2 ;k .

x = x 1 x 2 x 3
We then write the order-1 Taylor expansion of f at x 1 + x 2 2 ;k . This gives:

f(x) = f(x 1 + x 2 2 ;k) + x 3 2 ;2k f 0 (x 1 + x 2 2 ;k) + 1 (1) with 1 = 1 2 x 2 3 2 ;4k f 00 (1), where 1 2 x 1 + x 2 2 ;k x]. Now, we approximate the value f 0 (x 1 + x 2 2 ;k) b y its order-0 Taylor expansion at x 1 (that is, by f 0 (x1). This gives: f(x) = f(x 1 + x 2 2 ;k) + x 3 2 ;2k f 0 (x 1) + 1 + 2

(2) with 2 = x 2 x 3 2 ;3k f 00 (2), where 2 2 x 1 x 1 + x 2 2 ;k]. This gives the bipartite formula:

f(x) = (x 1 x 2) + (x 1 x 3) + (3)
where 8 < : (x 1 x 2) = f(x 1 + x 2 2 ;k) (x 1 x 3) = x 3 2 ;2k f 0 (x 1) ; 1 2 2 ;4k + 2 ;3k maxf 00 2 ;3k maxf 00 2 Hence, f(x) can be approximated, with approximately n bits of accuracy (by this, we mean \with error 2 ;n ") by t h e s u m o f t wo terms (and) that can be looked-up in 2n=3-address bit tables, as illustrated by Figure 1.

The BTM still leads to large tables in single precision, and this. It is far from being implementable in double precision. And yet, this leads to another idea: we should try to generalize the bipartite method, by splitting the input word into more than three parts. Let us rst try a splitting into ve parts, we will after that generalize to an arbitrary odd number of parts.

The tripartite table method

Now, we s p l i t t h e i n p u t n-bit xed-point n umber x into ve k-bit parts x 1 , x 2 ,.. . , x 5 . That is, we write: = x 1 + x 2 2 ;k + x 3 2 ;2k + x 4 2 ;3k + x 5 2 ;4k where 0 x i 1 ; 2 ;k is a multiple of 2 ;k .

x = x 1 x 2 x 3 x 4 x 5
We use the order-1 Taylor expansion of f at = x 1 + x 2 2 ;k + x 3 2 ;2k : f(x) = f(x 1 + x 2 2 ;k + x 3 2 ;2k) + ; x 4 2 ;3k + x 5 2 ;4k f 0 (x 1 + x 2 2 ;k + x 3 2 ;2k) + 3 + 1 (4) with 3 = 1 2 ;

x 4 2 ;3k + x 5 2 ;4k 2 f 00 (3), with 3 2 x 1 + x 2 2 ;k + x 3 2 ;2k x], which gives 3 1 2 2 ;6k maxf 00 . In (4), we expand the term ; x 4 2 ;3k + x 5 2 ;4k f 0 (x 1 + x 2 2 ;k + x 3 2 ;2k) as follows:

3 x3 x4 x1 x2 x5
Carry-save addition Final addition

TABLE 1 TABLE 2 TABLE 3 () () () f(x)
Figure 2: The tripartite table method x 4 2 ;3k f 0 (x 1 + x 2 2 ;k + x 3 2 ;2k) is replaced by x 4 2 ;3k f 0 (x 1 + x 2 2 ;k). The error committed is 4 = x 3 x 4 2 ;5k f 00 (4), where 4 2 x 1 +x 2 2 ;k x 1 +x 2 2 ;k +x 3 2 ;2k]. We e a s i l y g e t 4 2 ;5k maxf 00 .

x 5 2 ;4k f 0 (x 1 +x 2 2 ;k +x 3 2 ;2k) is replaced by x 5 2 ;4k f 0 (x 1). The error committed is 5 = ;

x 2 2 ;k + x 3 2 ;2k x 5 2 ;4k f 00 (5), where 5 2 x 1 x 1 + x 2 2 ;k + x 3 2 ;2k]. We g e t 5 2 ;5k maxf 00 . This gives the tripartite f o r m ula: f(x) = (x 1 x 2 x 3) + (x 1 x 2 x 4) + (x 1 x 5) +

(5) where (x 1 x 2 x 3) = f(x 1 + x 2 2 ;k + x 3 2 ;2k) (x 1 x 2 x 4) = x 4 2 ;3k f 0 (x 1 + x 2 2 ;k) (x 1 x 5) = x 5 2 ;4k f 0 (x 1)

; 1 2 2 ;6k + 2 2 ;5k maxf 00 2 ;5k+1 maxf 00 Hence, f(x) can be obtained by adding three terms, each of them being looked-up in a table with (at most) 3n=5 address bits. This is illustrated by Figure 2.

Generalization: the multipartite table method

The previous approach is straightforwardly generalized. We n o w assume that the n-bit input number x is split into 2p + 1 k-bit values x 1 , x 2 , . . . x 2p+1 . That is, x = 2p+1 X i=1 x i 2 (i;1)k where the x i 's are multiples of 2 ;k and satisfy 0 x i < 1. As in the previous sections, we use the order-1 Taylor expansion: f(x) = f ;

x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk + ; x p+2 2 (;p;1)k + : : : + x 2p+1 2 ;2pk f 0 ;

x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk + p+1 with p+1 1 2 2 ;2(p+1)k maxf 00 . W e expand the term x p+2 2 (;p;1)k + : : : + x 2p+1 2 ;2pk f 0 ;

x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk and perform Taylor approximations to f 0 ;

x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk . We then get:

f(x) = f ;
x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk + p+1 + x p+2 2 (;p;1)k f 0 ;

x 1 + x 2 2 ;k + : : : + x p 2 (;p+1)k + p+2 + x p+3 2 (;p;2)k f 0 ;

x 1 + x 2 2 ;k + : : : + x p;1 2 (;p+2)k + p+3 + x p+4 2 (;p;3)k f 0 ;

x 1 + x 2 2 ;k + : : : + x p;2 2 (;p+3)k + p+4 : : : + x 2p+1 2 ;2pk f 0 (x 1) + 2p+1 where p+2 p+3 : : : 2p+1 are less than 2 (;2p;1)k maxf 00 .

This gives the multipartite (or (p + 1) -partite) formula:

f(x) = 1 (x 1 x 2 : : : x p+1) + 2 (x 1 x 2 : : : x p;1 x p+3) + 3 (x 1 x 2 : : : x p;2 x p+4) + 4 (x 1 x 2 : : : x p;3 x p+5)

: : :

+ p+1 (x 1 x 2p+1) + (6)
where 8 > > < > > :

1 (x 1 : : : x p+1) = f ;

x 1 + x 2 2 ;k + : : : + x p+1 2 ;pk i (x 1 : : : x p;i+2 x p+i) = x p+i 2 ;p;i+1 f 0 ;

x 1 + x 2 2 ;k + : : : + x p;i+2 2 (;p+i;1)k ; 1 2 2 (;2p;2)k + p2 (;2p;1)k maxf 00 p2 (;2p;1)k maxf 00 Too large values of p are unrealistic: performing many additions to avoid a few multiplications is not reasonable.

Higher-order methods

In the previous section, we h a ve used order-1 Taylor expansions only. N o w, let us give an example of the use of an order-2 expansion. As in section 2.2, we split the input n-bit xed-point n umber x into ve k-bit parts x 1 , x 2 , . . . , x 5 . That is, we write: = x 1 + x 2 2 ;k + x 3 2 ;2k + x 4 2 ;3k + x 5 2 ;4k where 0 x i 1 ; 2 ;k is a multiple of 2 ;k . 1 (x 1 x 2) = f(x 1 + x 2 2 ;k) ; 3f(x 1) ; 1 2 (2 ;3k + 2 ;4k)x 2 2 f 00 (x 1) 2 (x 1 x 3) = f(x 1 + x 3 2 ;2k) ; 1 2 2 ;3k x 2 3 f 00 (x 1) ; 1 6 2 ;4k x 3 3 f 000 (x 1) 3 (x 1 x 4) = f(x 1 + x 4 2 ;3k) ; 1 2 2 ;4k x 2 4 f 00 (x 1) u = x 2 + x 3 v = x 2 ; x 3 1 (u x 1) = 1 12 2 ;4k u 3 f 000 (x 1) 2 (v x 1) = ; 1 12 2 ;4k v 3 f 000 (x 1)

1 (x 1 x 2) + 2 (x 1 x 3) + 3 (x 1 x 4) + 1 (u x 1) + 2 (v x 1) Hence, with this method, we can use tables with 2n=5 address bits. Two additions are used to generate u and v, and after the table-lookups, two carry-save additions and one carry-propagate addition su ce to get the nal result. This method requires around 15Kbytes of table for single-precision.

Conclusion

Various table-based methods have been suggested during the last decade. When singleprecision implementation is at stake, table-bound methods seem to be agood candidate for implementing fast functions. Unless there is a technology breakthrough, these methods are not suitable for double precision.

TABLE (

 (

	x 1	x 2	x 3
		function)	

TABLE (

 (

	function)
	Final addition
	f(x)

Figure 1: The bipartite table method

Table 1 :

 1 Table sizes for various order-1 methods

	2p + 1	n nb b ytes nb of address bits
	bipartite bipartite (larger n) 27 1179648 18 24 262144 16 tripartite 25 143360 15 tripartite (larger n) 30 1376256 18 2p + 1 = 7 28 327680 16 2p + 1 = 7 (larger n) 35 6553600 20