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Abstract

We show that it is impossible to compute (or even to approximate) the
topological entropy of a continuous piecewise affine function in dimen-
sion 4. The same result holds for saturated linear functions in unbounded
dimension. We ask whether the topological entropy of a piecewise affine
function is always a computable real number, and conversely whether
every non-negative computable real number can be obtained as the topo-
logical entropy of a piecewise affine function. It seems that these two
questions are also open for cellular automata.

Keywords: topological entropy, piecewise affine functions, saturated linear
functions, cellular automata, undecidability.

Résumé

Nous montrons qu’il est impossible de calculer (méme de maniére ap-
prochée) 'entropie topologique d’une fonction continue affine par mor-
ceaux en dimension 4. Le méme résultat est vrai pour les fonctions
linéaires saturées quand la dimension n’est pas bornée. Nous demandons
si '’entropie topologique d’une fonction continue affine par morceaux est
toujours un réel calculable, et réciproquement si tout réel calculable po-
sitif est égal & l'entropie d’une certaine fonction affine par morceaux. Il
semble que ces deux problemes soient également ouverts pour les auto-
mates cellulaires.

Mots-clés: entropie topologique, fonctions affines par morceaux, fonctions
linéaires saturées, automates cellulaires, indécidabilité.
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Abstract

We show that it is impossible to compute (or even to approximate) the
topological entropy of a continuous piecewise affine function in dimension
4. The same result holds for saturated linear functions in unbounded
dimension. We ask whether the topological entropy of a piecewise affine
function is always a computable real number, and conversely whether every
non-negative computable real number can be obtained as the topological
entropy of a piecewise affine function. It seems that these two questions
are also open for cellular automata.

Keywords: topological entropy, piecewise affine functions, saturated lin-
ear functions, cellular automata, undecidability.

1 Introduction

There is an active line of research in which dynamical systems are studied
from an effective point of view. Here one main goal is to clarify the boundary
between decidable and undecidable properties of dynamical systems. Cellu-
lar automata and iterated piecewise-affine maps are two classes of systems for
which this endeavour has been particularly successful. The present paper is
devoted to iterated piecewise-affine continuous maps. We show that it is un-
decidable whether the topological entropy of such a function defined on the
four-dimensional cube [—1,1]* is equal to zero (precise definitions are given in
section 2). A similar result was obtained several years ago for one-dimensional
cellular automata [2] by a reduction from the nilpotency problem, which was
proved undecidable in [3]. We also use a reduction from the nilpotency problem,
albeit of piecewise-affine maps instead of cellular automata. The undecidability
of this problem was only established recently in [1]. As in [2] it follows from the
proof that the topological entropy cannot be computed, even approximately.
We also give an undecidability result for saturated linear systems, which are a
restricted class of iterated piecewise-affine maps. These systems have been of
interest in control theory, see for instance [7]. Finally we show that there exists
a dimension n and nilpotent saturated linear maps f : R* — R” such that f*
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(the k-th iterate of f) is not identically zero, where k is an arbitrarily large
integer. This clarifies an observation of [1]. It is however still unknown whether
there exists n such that the nilpotency problem for saturated linear functions
in dimension n is undecidable.

We conclude this introduction with an open problem: is the topological en-
tropy of a piecewise-affine map always a computable real number? The concept
of computable real number is explained in many texts on recursive function the-
ory or recursive analysis, see e.g. [4, 9]. Here as elsewhere we assume that the
piecewise-affine map has only rational coefficients, see section 2.2. Our undecid-
ability result does not seem to provide an answer to this question. It is however
clear from the definition of topological entropy that this number is always in
the arithmetical hierarchy of real numbers studied in [10]. Conversely, one can
ask whether every computable real number can be obtained as the topological
entropy of an iterated piecewise-affine map. These two questions also make
sense for cellular automata, and it seems that they have not been addressed so
far.

2 Dynamical Systems

We consider dynamical systems defined by iteration of a map f : X — X.
A trajectory of such a system is a sequence (X;)icny of points of X such that
X1 = f(Xy) for all t € N. We are mainly interested in the case where f is
piecewise affine and X is the d-dimensional cube [—1,1]¢.

2.1 The Topological Entropy

Let (X,d) be a compact metric space and f : X — X an arbitrary (possibly
discontinuous) map. From d and f we can construct a family (d,,) of distance
functions as follows: dp(z,y) = maxo<i<n d(f*(2), f(y)). We say that a subset
F of X is an e-spanning set for (X, d,) if for all x € X there exists y € F such
that d,(z,y) < e. There is a dual notion of e-separated set: this is a subset
F of X such d,(z,y) > € for any distinct points z and y of F. We denote by
rn(€) the smallest cardinality of any e-spanning set of (X, d,,), and by s,(€) the
largest cardinality of any e-separated set. We also write 7, (e, f) and s,(€, f)
when f is not clear from the context. It follows from the compactness of X
that r,(e) and s, (€) are always finite.

One can show that the two limits lim. ,¢limsup,_ . Inr,(e)/n and
lim,_,0 limsup,,_,. Ins,(€)/n exist and are equal (they may be infinite). This
common limit is called the topological entropy of f, and is denoted A(f). For
more details we refer the reader to [5] and [8] (the latter reference defines the
topological entropy only for uniformly continuous maps).

Consider for instance the case where f is a nilpotent map. This means that
there exists an integer m such that f™(X) = {0}, where 0 is a distinguished
point of X. Then h(f) = 0 since r,(€) is bounded independently from n by
T (€).

As a second example, consider the “tent map” ¢ : [0,1] — [0, 1] defined by:
¢(z) = 2z for x € [0,1/2] and ¢(z) = 2(1 — z) for z € [1/2,1]. The n-th iterate



of ¢ is made of 2" “laps” (monotone pieces). This implies that h(¢) = In2 [6]
(this can also be checked directly from the definition of topological entropy).
Here as in the remainder of the paper, the topological entropy is computed with
respect to the Euclidean distance. The example of the tent map will be used
later. In fact we will only need to know that the topological entropy of ¢ is
nonzero.

2.2 Piecewise-affine maps

A function f : RP — R? is piecewise affine if its graph is a semilinear subset
of RP x R? (i.e., a boolean combination of halfspaces). We will assume that
the corresponding halfspaces are defined by affine inequalities with rational
coefficients only. Also we will work only with continuous piecewise affine maps.

Let o : R — R be the piecewise affine map such that o(z) = z for z € [-1, 1],
o(x) = 1for z > 1, and o(z) = —1 for x < —1. A saturated linear map is
a piecewise affine function f : RP — R? of the form f(z) = o(Az). Here o is
applied componentwise. Naturally, we say that A is the matrix associated to f.

Theorem 3, our undecidability result for saturated linear maps, is obtained
by a reduction from the problem of Theorem 2: deciding whether the entropy
of a continuous piecewise affine map is equal to zero. In order to obtain this
reduction, we find it convenient to prove Theorem 2 for a restricted class of
continuous piecewise affine maps: the so-called oj-functions. We recall from [1]
that a oj-function of depth d is a composition of d saturated linear functions.
Note that f : RP — R? is a oj-function iff each of its ¢ components is a o;-
function (for the if part, note that we may assume that the ¢ components have
the same depth since o(g) = g for any oj-function g : R — R).

3 Undecidable Properties

Our undecidability results are based on reductions from the “hyperplane prob-
lem” [1].

Theorem 1 (Theorem 7 of [1]) The following decision problem is undecid-
able.

o Instance: three og-functions f,g,Z : R3 — R.

e Question: does there exist a trajectory of the system (Tiy1,Ypr1) =
(f(xh Yt, 1)7 g(xta Yt, 1)) which S(ltiSﬁ@S Z(*/Eh Yt, 1) =0 fO’F all t?

Let us recall some constructions from [1]. Sel : R? — R is a o}-function
which is zero in a neighbourhood of 0, and satisfies

1. Sel(l,e) =e
2. Sel(0,¢) = 0

for all e € [—1,1].
In the same paper we constructed a og-function Stab : R? — R which is zero
in a neighbourhood of 0, and satisfies the following property. For all zyg € R



and for all functions e : N — R, the sequence z;;1 = Stab(z,e;) falls into one
of the following three mutually exclusive cases:

1. The sequence z;, t > 1 is constant, always equal to 1. This case happens
only when o(zp) = 1 and when e; = 0 for all ¢.

2. The sequence z;, t > 1 is constant, always equal to —1. This case happens
only when o(zp) = —1 and when e; = 0 for all ¢.

3. The sequence z; is eventually null: there exists tg with z; = 0 for all £ > ;.

It is shown in [1] that one may take Sel(z,e) = o(2h(3z/4 + e/4) — h(z))
where h denotes the function h(z) = 0(20(x) — o(2z)). For Stab one may take
Stab(z,e) = h(o(o(z)) — Abs(z,€e)/2), where Abs(z,e) = o(o(e—2)—o(e+2z)+
20(2)).

Theorem 2 It is undecidable whether the topological entropy of a given of-
function F : [—1,1]* — [~1,1]* is equal to zero.

This problem remains unsolvable even if we are promised that F satisfies
the following condition: if h(F) = 0 then F' is nilpotent.

Proof. We reduce the problem of Theorem 1 to this problem. let f,g, 72
R?® — R be three oj-functions. Consider the following four-dimensional system
Xt+1 = F(Xt)

Wity = Sel(z, 1 (w, 2t))

Tip1 = Sel(zt, f(zt, yt, 2t))

Yer1 = Sel(z, 9(@e, Y, 2t))

zi41 = Stab(zt, Z(xt, yr, 2t))
Here 1 is the o-function ¢(w, z) = o((o(dw—z2)+0(3z—4w))/2). For w € [0, 1],
note that ¢(w, 1) is equal to ¢(w), the tent map from section 2.1. Note also

that F' is a oj-function since its four components are o-functions.
We claim that the four following properties are equivalent.

(i) No trajectory of the system (z¢11,y1+1) = (f (21, yt, 1), 9(z1, yt, 1)) satisfies
Z(xz¢,yp, 1) = 0 for all ¢.

(ii) F is mortal.
(iii) F is nilpotent.
(iv) The topological entropy of F' is equal to zero.

Theorem 2 then follows immediately from Theorem 1 and the equivalence of
(i), (iii) and (iv).

Assume first that (i) holds. To show that F' is mortal, we only need to
consider trajectories with z; € [0, 1] since F' is an odd function. If z; is always
constant and equal to 1 then by construction of Sel and Stab, (xy,y:) is a
trajectory of the system (z¢11,yi+1) = (f (%4, 94, 1), 9(2¢, Y1, 1)) which satisfies
Z(z¢,yi, 1) = 0 for all ¢£. This is impossible by hypothesis. By construction of



Stab, z; must therefore be eventually null. By construction of Sel, this implies
that w;, z; and y; are also eventually null: the system’s trajectory is indeed
mortal.

Since Sel and Stab are zero in a neighbourhood of zero, the same is true
of F: there exists an open neighbourhood U of 0 such that F(U) = {0}. The
implication from mortality to nilpotency then follows by compactness: if F' is
mortal then [—1,1]* = |, -, F "(U). Hence there is a finite cover of the form
[—1,1]* = UY_, F™(U), which implies FN*1([-1,1]*) = {0}.

As pointed out in section 2.1, (iii) implies (iv). Finally, in order to show that
(iv) implies (i) we show that — ( ) implies = (iv). Consider a trajectory of the
system (241, Y1) = (f (x4, y¢, 1), g(2¢, Y1, 1)) which satisfies Z (x4, y4, 1) = 0 for
all . For any initial value wg € [0, 1] we obtain a trajectory of F' which satisfies
w1 = ¢(wy) and z; = 1 for all ¢. This implies that s.(e, F') > si(e, ¢) for all
t,e > 0, so that h(F) > h(¢) >0. O

Note that the piecewise-affine function F' constructed in this proof either sat-
isfies h(F) = 0 or h(F) > In2. This implies that for € < In2 no algorithm can
approximate the topological entropy of a piecewise-affine with an absolute error
bounded by e. A variation on this construction would show just as in [2] that
the topological entropy cannot be approximated up to €, no matter how large
€ is.

Theorem 3 [t is undecidable whether the topological entropy of a given satu-
rated linear function is equal to zero.

This problem remains unsolvable even if we are promised that the saturated
linear function is nilpotent if its topological entropy is equal to zero.

Proof. We reduce the problem of Theorem 2 to this problem. Let F': [-1,1]* —
[—1,1]* be a of-function. To this function we can associate a saturated linear
function F' as in [1]. This is done as follows. Assume that F' is of the form
fro fr—10---o fi for some op-functions fj(x) = o(A;x), where f; : R%i-1 — R%
with do,d;,...,d; € N, and dy = d;, = 4.

Let d = dy + dy + --- + di, and consider the saturated linear function
F':RY — R? defined by F'(x) = o(Ax) where

0 0 0 Ay,
A 0 ... 0 0
A= 0 Ay ... 0 0 ) (1)
S 0 0
0 0 . A 0
As pointed out in [1], it is clear that if F™ = 0 for some integer m then

F'"™ =0, so that h(F') = 0. Conversely, consider a trajectory X;1 = F(X)
of F, and a trajectory Xj ; = F'(X]) such that the first dy components of X
are equal to Xy. The first dy components of X;, are then equal to X; for all
t > 0. This implies that sy (e, F') > si(€, F') so that h(F') > h(F)/k.

We can now conclude. Assume that we are promised that F' is nilpotent if
h(F) = 0. We have shown that:



(i) if A(F) =0 then h(F') =0 and F' is nilpotent.
(ii) if h(F) > 0 then A(F") > 0.

The problem of Theorem 3 is therefore undecidable. O

4 Nilpotent Systems in Fixed Dimension

It was pointed out in [1] that our undecidability results have “purely mathemat-
ical” consequences. For instance, there is no recursive function s(n) such that
all saturated linear maps f : R* — R" satisfy f*(") = 0. Note in contrast that
the bound s(n) = n is valid for nilpotent linear maps. The existence of such
a bound for saturated linear maps would imply the decidability of their nilpo-
tency problem, but this problem is undecidable [1]. This observation leaves us
with the following alternative:

(i) either there is for all n a finite bound s(n) such that all saturated linear
maps f : R* — R satisfy f5") =0 (and in this case s must be a very
fast growing function).

(ii) or for some integer n no finite bound exists.
We now show that the second branch of the alternative is the correct one.

Proposition 1 There exists an integer n such that for any integer k there
exists a nilpotent saturated linear map f : R* — R™ with f¥ # 0.

This follows from Lemma 1 below (note again the contrast with the case of
linear maps).

Lemma 1 Let Nil, be the set of matrices of nilpotent saturated linear maps
in dimension n. There exists an integer n such that Nil, is not a closed subset
of R,

Proof. Consider the one dimensional system 2,11 = F(z;), where F, is the
oj-function z; — Stab(z;,€z;). Here € is a real parameter. For ¢ = 0 the system
is not nilpotent since 1 is a fixed point. For € # 0 the system is mortal by the
third property of Stab. Since F¢ is identically zero in a neighborhood of zero,
this implies by compactness (as in the proof of Theorem 3) that F; is in fact
nilpotent.

Consider now as in (1) the matrix A, of the saturated linear map F! which
is associated to F,. This oj-function is nilpotent if and only if F! is nilpotent,
and as a consequence A¢ is in Nil, if and only if e 2 0. O

Proof of Theorem 1. Let Nil, ;. be the set of matrices of saturated linear maps
f: R = R" such that f*¥ = 0. By continuity each Nily, ) is a closed subset of

R”2, but we have just seen that Nil = Ug>1Nil, is not closed. We conclude
that Nil, \ Nil,,; # 0 for all k. O

It follows from the explicit formula for Stab given before Theorem 2 that one
may take n =9 in Lemma 1 and Proposition 1.
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