
HAL Id: hal-02101965
https://hal-lara.archives-ouvertes.fr/hal-02101965v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum automata and algebraic groups.
Harm Derksen, Emmanuel Jeandel, Pascal Koiran

To cite this version:
Harm Derksen, Emmanuel Jeandel, Pascal Koiran. Quantum automata and algebraic groups.. [Re-
search Report] LIP RR-2003-39, Laboratoire de l’informatique du parallélisme. 2003, 2+15p. �hal-
02101965�

https://hal-lara.archives-ouvertes.fr/hal-02101965v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Par-
allélisme
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Abstract

We show that several problems which are known to be undecidable for
probabilistic automata become decidable for quantum finite automata.
Our main tool is an algebraic result of independent interest: we give an
algorithm which, given a finite number of invertible matrices, computes
the Zariski closure of the group generated by these matrices.

Keywords: quantum automata, probabilistic automata, undecidability,
algebraic groups, algebraic geometry

Résumé

Nous montrons ici que plusieurs problèmes indécidables pour des auto-
mates probabilistes sont décidables pour des automates quantiques.
Ce rsultat s’appuie sur un algorithme intéressant en soi, qui, étant donné
des matrices inversibles, calcule la cloture de Zariski du groupe engendré
par ses matrices.

Mots-clés: Automates quantiques, automates probabilistes,
indécidabilité, groupes algébriques, géométrie algébrique



QUANTUM AUTOMATA AND ALGEBRAIC GROUPS

HARM DERKSEN, EMMANUEL JEANDEL, AND PASCAL KOIRAN

Abstract. We show that several problems which are known to be unde-
cidable for probabilistic automata become decidable for quantum finite
automata. Our main tool is an algebraic result of independent interest:
we give an algorithm which, given a finite number of invertible matrices,
computes the Zariski closure of the group generated by these matrices.

1. Introduction

The development of the theory of computation has led to the study of var-
ious models of computation, e.g., finite automata, boolean circuits, Turing
machines, cellular automata. . . Due to the recent interest in quantum com-
putation, quantum counterparts of the main classical models of computation
(including the four models listed above) have been defined. It is especially
fruitful to compare these models to their probabilistic counterparts. The
best known result in this direction is Shor’s quantum factoring algorithm,
which runs in polynomial time despite the fact – or rather the belief – that
no classical algorithm, deterministic or probabilistic, can factor integers in
polynomial time.

In this paper we show that several problems which are known to be un-
decidable for probabilistic automata become decidable for quantum finite
automata. We work with the “measure once” model of quantum automata
of Moore and Crutchfield [20]. The main other model is the “measure many”
model of Kondacs and Watrous [17]. Further comparisons between proba-
bilistic and quantum automata can be found in [5]. The main focus of these
three papers is the study of the languages recognized by quantum finite au-
tomata. Our main tool is an algebraic result of independent interest: we
give an algorithm which, given a finite number of invertible matrices, com-
putes the Zariski closure of the group generated by these matrices. The
problem of finding the Zariski closure of matrix groups also appears natu-
rally in other areas. For example, it is well-known the the Zariski closure of
the monodromy group of a Fuchsian system of differential equations is the
differential Galois group (see [7] for an introduction to differential Galois
theory).

Harm Derksen is partially supported by NSF, grant DMS 0102193.
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2. Probabilistic and Quantum Automata

In this section we recall the definitions of probabilistic and quantum au-
tomata, and obtain our decidability results. The remainder of the paper is
devoted to our group-theoretic algorithm.

2.1. Probabilistic Automata. Formally, a probabilistic automaton is a
tuple A = (Q, q0, Qf ,Σ, (Xa)a∈Σ) where Q = {1, . . . , q} is a finite set of
states, q0 ∈ Q is the initial state, Qf ⊆ Q is the set of final states, and Σ
is a finite alphabet. Each matrix Xa is a q × q stochastic matrix: (Xa)ij is
the probability of going from state i to state j when a is the input letter.
For instance, if the rows of all Xa contain exactly one 1 (and q − 1 zeros)
we recover the familiar model of deterministic finite automata. Another
degenerate case is obtained when |Σ| = 1. In this case, our probabilistic
automaton is essentially a finite state Markov chain.

In order to define the language accepted by a probabilistic automaton,
we need to fix a threshold λ ∈ [0, 1]. A word w = w1 . . . wn ∈ Σ∗ is accepted
if the probability of ending up in Qf upon reading w is at least λ. This
condition can be conveniently expressed in a matrix formalism. Let π be
the column vector of size q such that πi = 1 if i = q0 and πi = 0 otherwise.
Let η be the column vector of size q such that ηi = 1 if i ∈ Qf and ηi = 0
otherwise. Finally, let ACCw = πT Xwη where Xw = Xw1 · · ·Xwn . The
word w is accepted if ACCw > λ. Note that the row vector πT Xw can be
interpreted as a probability distribution over Q.

It turns out that one cannot decide whether the set of accepted words is
empty, even if λ and the entries of the Xa are rational numbers. In fact, the
following problems are all undecidable [8, 22].

(1) Is there w ∈ Σ∗ such that ACCw ≥ λ ?
(2) Is there w ∈ Σ∗ such that ACCw ≤ λ ?
(3) Is there w ∈ Σ∗ such that ACCw = λ ?
(4) Is there w ∈ Σ∗ such that ACCw > λ ?
(5) Is there w ∈ Σ∗ such that ACCw < λ ?

A threshold λ is said to be isolated if there exists ε > 0 such that

|ACCw − λ| ≥ ε

for every w ∈ Σ∗. This definition is motivated in particular by the fact
that probabilistic automata with isolated thresholds accept exactly the same
languages as deterministic finite automata [23]. Unfortunately, the following
two basic problems are undecidable [4, 6, 8].

(6) Given A and λ, decide whether λ is isolated.
(7) Given A, decide whether there exists a threshold λ which is isolated.

2.2. Quantum Automata. After reading a word w, a probabilistic au-
tomaton is in a probability distribution of the form

∑
i∈Q αiei where

(e1, . . . , en) is the canonical basis of Rq. In quantum automata this proba-
bility distribution is replaced by a superposition

∑
i∈Q αiei of unit �2 norm.
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Instead of stochastic matrices we must therefore work with matrices Xa

which conserve the norm, i.e., with orthogonal matrices. More generally, one
could allow matrices with complex coefficients (i.e., unitary matrices) but
we shall stick to orthogonal matrices throughout the paper. The definition
of ACCw is changed accordingly: in a quantum automaton the probability
of accepting a word w is ACCw = ||πT XwP ||2 where P is the matrix of
orthogonal projection on the subspace spanned by the final states (hence
Pii = 1 if i ∈ Qf , and the other entries of P are null). The other definitions
are unchanged.

Problems 1 through 7 clearly make sense for quantum automata. The
first three problems remain undecidable [13]. As far as quantum automata
are concerned, the main result of this paper is that the last four problems
become decidable.

Theorem 1. Problems (4) through (7) are decidable for quantum automata.

For this theorem to make sense, one must explain how the entries of
the matrices Xa are finitely represented. One may for instance assume
that they are algebraic numbers, which can be represented by their minimal
polynomial and an isolating interval. More general solutions are possible:
see Remark 1 at the end of this section.

Note also that there is nothing quantum about our decision algorithms:
they are classical algorithms about a quantum model of computation. The
decidability of problems (4) and (5) has also been obtained in [13] by a
slightly different method. It is known that problems (1) through (5) are
undecidable for the measure-many model [13], but the status of problems
(6) and (7) is unknown.

Let 〈Xa〉a∈Σ be the group generated by the matrices Xa, and let G(A) be
the closure (for the Euclidean topology on Rq2

) of this group. Thus G(A)
is a compact group of orthogonal matrices. This group plays a crucial role
in our proofs. We now illustrate this point on problem 6. First, we need an
easy lemma.

Lemma 1. The group G(A) is equal to the closure of the monoid generated
by the matrices Xa.

Proof. The inclusion from right to left is obvious. For the converse, note
that there exists (by compactness) for each matrix Xa a sequence (nk)k≥1

such that Xnk
a converges to the identity matrix as k → +∞.

Hence X−1
a = limk→+∞ Xnk−1

a and the result follows. �

Proposition 1. The two following properties are equivalent.

(i) the threshold λ is isolated.
(ii) There exists ε > 0 such that | ||πT gP ||2−λ | ≥ ε for every g ∈ G(A).

Proof. By Lemma 1, the set {||πT gP ||2; g ∈ G(A)} ⊆ [0, 1] is the closure of
{ACC(w); w ∈ Σ∗}. �
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Instead of checking property (i) directly, we may therefore check prop-
erty (ii). It is not immediately clear how this can be done algorithmically.
Here, two miracles happen. The first miracle is that the group G(A) is
algebraic (in other words, the Euclidean closure of 〈Xa〉a∈Σ is equal to its
Zariski closure). This follows from the general fact that a compact group
of real matrices is algebraic [21]. The second miracle is that there is an
algorithm – presented in the next section – which from the matrices Xa

computes a system of polynomial equations defining the Zariski closure of
〈Xa〉a∈Σ. Checking (ii) then amounts to deciding whether a first-order sen-
tence of the language of ordered fields is true in the field of real numbers.
It has been known since Tarski that this can be done algorithmically (more
efficient algorithms and further references can be found in [2] or [24]).

The algorithms for problems 4, 5 and 7 are almost identical. We leave it
to the reader to write down the corresponding first-order sentences.

Remark 1. As mentioned above, Theorem 1 applies to matrices Xa with
entries in a field K ⊂ R bigger than the field of real algebraic numbers. For
instance we may give a (finite) transcendence basis B of K, and represent the
entries of Xa as algebraic numbers over B. This purely algebraic information
is sufficient to compute the group G(A). Once the group is computed we have
to decide a first-order sentence of the field of real numbers, and we therefore
have to compute the sign of polynomial functions of the elements of B. In
order to do this we only need to assume that we have access to an algorithm
which for any element x of B and any ε > 0 computes a rational number
q such that |x − q| < ε. We use the algebraic information to determine
whether a polynomial takes the value zero, and if not we use approximations
to determine its sign.

3. Algebraic Groups

Let K be a field and let K be its algebraic closure. Suppose that
{X1,X2, . . . ,Xk} ⊂ Mn(K) is a finite set of invertible n × n matri-
ces. Let G = 〈X1,X2, . . . ,Xk〉 be the subgroup of GLn(K) generated by
X1,X2, . . . ,Xk. In this section we will present an algorithm to compute G,
the Zariski closure of G in GLn(K). For the applications to quantum au-
tomata we may assume that X1, . . . ,Xk are unitary. It is therefore possible
for a reader interested primarily in quantum automata to skip cases 1 of
section 3.2 and the case of unipotent matrices in section 3.3. If the entries
of the matrices X1, . . . ,Xk are algebraic numbers, one may also skip case 3
of section 3.2.

The ring of polynomial functions on GLn(K) is generated by the coor-
dinate functions xi,j, 1 ≤ i, j ≤ n and the function x0 = 1/det(xi,j). The
coordinate ring of GLn(K) can therefore be identified with

RK = K[x1,1, x1,2, . . . , xn,n, x0]/(det(xi,j)x0 − 1).
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To compute the Zariski closure of G means that we have to find generators
of the ideal

IK = {f ∈ RK | f(X) = 0 for all X ∈ G}.
Since G is a subgroup of GLn(K) ⊂ GLn(K), IK is generated by polynomials
in

RK = K[x1,1, x1,2, . . . , xn,n, x0]/(det(xi,j)x0 − 1).
If we define

IK = {f ∈ RK | f(X) = 0 for all X ∈ G}
then IK will be just the ideal in RK generated by IK . We will discuss an
algorithm that produces a finite number of generators f1, f2, . . . , fr of the
ideal IK . If X ∈ GLn(K) then it is easy to check whether X ∈ G, namely

X ∈ G ⇔ f1(X) = f2(X) = · · · = fr(X) = 0.

Without loss of generality we may assume that the field K is finitely gen-
erated as a field over Q or over a finite field. In fact, we may take K as
the smallest field that contains all entries of all matrices in {Xa}a∈Σ. After
some preparation, we will first discuss the case where G is generated by only
one matrix. This then will be used to describe an algorithm for the Zariski
closure of a matrix group with an arbitrary (finite) number of generators.

3.1. Gröbner bases techniques. We briefly summarize the main results
we will need from Gröbner bases theory. We assume that the field K is
finitely generated (as a field) over Fp for some prime number or over Q.

Suppose that A and B are affine varieties over a field K, and ψ : A → B
is a morphism of affine varieties. If H ⊂ A is a Zariski closed subset, then
one can compute ψ(H), the Zariski closure of the image, using Gröbner
basis elimination techniques. The morphism ψ : A → B corresponds to a
ring homomorphism ψ� : K[B] → K[A] of the coordinate rings. Given the
generators of the vanishing ideal h ⊂ K[A] of H, one can compute generators
of the ideal (ψ�)−1(h) which is the vanishing ideal of ψ(H).

One situation where we will apply this is the following. Suppose that A
and B are Zariski closed subsets of GLn(K). Let A · B be the Zariski closure
of

A · B = {XY | X ∈ A,Y ∈ B}.
Since the multiplication map m : GLn(K) × GLn(K) → GLn(K) is a mor-
phism of affine varieties, we will be able to compute

A · B = m(A × B).

If S is a ring of finite type over K, and a is an ideal in S given by its
generators, then generators of the radical ideal

√
a can be computed. The

first radical ideal algorithms assumed characteristic 0. However, in recent
publications algorithms have been suggested that compute radical ideals
over base fields which are finitely generated over a finite field or over Q

(see [11, 16, 19]).
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This can be applied to compute the integral closure of S if S is a domain
using De Jong’s algorithm (see [14, 9]). Following Becker and Weispfen-
ning, one can also compute the primary decomposition of an ideal a of S
(see [3]). We emphasize that these algorithms (using the radical ideal al-
gorithms mentioned before) will work over any field K as general as our
assumptions.

If a and b are ideals in a ring S of finite type over K, then the colon ideal

(a : b) = {f ∈ S | fb ⊆ a}
can also be computed with Gröbner basis techniques (see for example [9,
1.2.4]).

3.2. Finding multiplicative relations. Let K be a field that is finitely
generated over the rational numbers or over a finite field. Suppose that
λ1, λ2, . . . , λn ∈ K�. Consider the group homomorphism ϕ : Zn → K�

defined by
ϕ(a1, a2, . . . , an) = λa1

1 λa2
2 · · ·λan

n .

We will discuss an algorithm that finds generators of the kernel of ϕ. We
distinguish three cases.

case 1: K is a finite field. The field K� is then a finite cyclic group. It is
elementary to compute the kernel of a homomorphism between two finitely
generated abelian groups.

case 2: K is a number field, a finite algebraic extension of Q of degree
d. For a = (a1, a2, . . . , an) ∈ Zn, we define

|a| = max{|a1|, |a2|, . . . , |an|}.
Recall that an absolute value |.|ν is said to be normalized if:

• |x|ν = x if x ∈ Q, x > 0 and |.|ν is archimedean.
• |p|ν = 1/p if |.|ν is p-adic.

The other absolute values are obtained by multiplication by a constant.
In the following we only consider normalized absolute values (for all these
matters we refer the reader to [29]). The height h(λ) of λ is defined by

h(λ) =
1
d

∑
v

max{log |λ|v , 0},

where the sum extends over all normalized absolute values on K. For λ ∈ K
we have h(λ) = 0 if and only if λ is a root of unity.

One approach to find the kernel of ϕ is to observe that

λa1
1 λa2

2 · · ·λan
n

is a root of unity if and only if

a1 log |λ1|v + a2 log |λ2|v + · · · + an log |λn|v = 0

for all absolute values. We will not work out the details here. Instead we
will give an explicit bound by Masser. From this bound it is clear that the
generators of the kernel of ϕ can be found constructively.
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We define η to be the infimum of h(λ) over all λ ∈ K that are not roots
of unity. We also define ω to be the largest integer d such that K contains
a d-th root of unity. We also define

h = max{h(λ1), h(λ2), . . . , h(λn), η}.
Theorem 2 (Masser, [18]). The kernel of ϕ is generated by elements a ∈ Zn

with
|a| ≤ nn−1ω(h/η)n−1.

We still have to show that all the constants in the inequality can be
effectively computed. If K contains an ω-th root of unity then the degree
of the extension K : Q must be at least φ(ω) where φ is Euler’s function.
From this follows that one can easily bound ω in terms of the degree of the
extension d.

Estimating η is more difficult. If α is not an algebraic integer, then
h(α) ≥ (log 2)/d because |α|v ≥ 2 for some valuation v. Lower bounds on
the height of algebraic integers are not so easily obtained, and several bounds
have been proposed in the literature ([29], section 3.6). For our purpose any
effective bound will do, for instance the recent bound

h(α) ≥ 1
4d

(
log log d

log d

)3

due to Voutier [26].
case 3: K has transcendental elements. The field K contains a field F

where F = Q or F is the finite field Fp for some prime number p. Note that
F is a perfect field. Let t be an indeterminate and consider the ring

S = F [λ1t, λ2t, . . . , λnt, t] ⊆ K[t].

The reason that we consider this ring S is that the quotient field of S
contains the elements λ1, λ2, . . . , λn and that the only invertible elements
of S are constant functions (as we will prove below). This allows us then
to think geometrically. We would like to view λ1, . . . , λn as divisors on
the affine variety corresponding to S. In order to do so, we need S to be
integrally closed. With De Jong’s algorithm we can compute the integral
closure S̃ of S (see [14]). This algorithm works for any domain of finite type
over a perfect field (see [9, §1.6, §1.5]). Since K[t] is integrally closed, S̃ is
contained in K[t]. Let L be the integral closure of F within S. It follows
from [28, Theorem 6.7.3] that the intersection of S̃ and K is equal to L. Now
L is again a field, and L is a finite algebraic extension of F . This means
that L is a number field, or L is a finite field. We have that S̃�, the set of
invertible elements in S̃ is equal to L�.

Divisors on Spec(S̃) correspond to height 1 prime ideals in S̃. For every p
we denote its zero set (which is a divisor) by Dp. Whenever p is a height one
prime ideal, the localization S̃p is a discrete valuation ring (see [10, Theorem
11.5]). We have a valuation vp on the quotient field of S̃ such vp(f) ≥ 0
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if and only if f ∈ Sp. The valuation vp is normalized such that vp reaches
exactly all values in Z. For any f in the quotient field of S̃, we define its
Weil divisor as the formal sum

div(f) =
∑

p

vp(f)[Dp],

where p runs over all height one prime ideals. Let Div(S̃) be the group of
Weil divisors on S̃. For any rational function f , div(f) = 0 if and only if
f ∈ S̃� = L� (because S̃ is the intersection of all localizations of height 1
prime ideals, see [10, Corollary 11.4]).

We have a natural homomorphism of abelian groups

ϕ̃ : Zn → Div(S̃)

defined by

(b1, . . . , bn) �→ b1div(λ1t)+b2div(λ2t)+· · ·+bndiv(λnt)−(b1+b2+· · ·+bn)div(t).

We have that

ϕ̃(b1, . . . , bn) = 0 ⇔ λb1
1 · · · λbn

n ∈ S̃� = L�

Generators of the kernel of ϕ̃ can be computed as follows. Let p1, . . . , pr

be all the height 1 prime ideals corresponding to the divisors appearing in
div(λ1t), . . . ,div(λnt),div(t). These prime ideals can be found by computing
the primary decompositions of the ideals (λ1t), . . . , (λnt), (t). We will write
vi instead of vpi . If f ∈ S̃, then vi(f) can be computed because

vi(f) ≥ r ⇔ pr
i S̃pi ⊆ fS̃pi

⇔ gpr
i ⊆ (f) for some g ∈ S̃ \ pi

⇔ ((f) : pr
i ) ⊆ pi.

In particular, we can compute all vi(λjt) and all vi(t) for all i and j.
Note that vi(λj) = vi(λjt) − vi(t). Now ϕ̃(a1, a2, . . . , an) = 0 if and only

if
a1vi(λ1) + a2vi(λ2) + · · · + anvi(λn) = 0

for i = 1, 2, . . . , r. We can solve these equations and we find generators of
ker(ϕ̃). Let a(1), a(2), . . . , a(s) be generators of ker(ϕ̃). The kernel of ϕ is
contained in the kernel of ϕ̃. To find generators of ker(ϕ) we proceed as
follows. Let µi = ϕ(a(i)) ∈ L�, i = 1, 2, . . . , s. Then

(1) ϕ(b1a
(1) + · · · + bsa

(s)) = µb1
1 · · ·µbs

s .

We already have seen how to compute generators of the module of all
(b1, b2, . . . , bs) ∈ Zs such that the righthandside of (1) is equal to 1. This
then gives us explicit generators of the kernel of ϕ.
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3.3. Zariski closure of cyclic groups. We will now discuss how one can
compute the Zariski closure of a group generated by a single invertible matrix
X ∈ Mn(K). Using linear algebra, one can find a matrix Y ∈ GLn(K) such
that Y XY −1 is in Jordan normal form. (We may have to replace K by
an finite algebraic extension of itself.) Without loss of generality we may
assume that X is in Jordan normal form. We can effectively write down the
multiplicative Jordan decomposition

X = XsXu

where Xs is semisimple and Xu is unipotent. In fact Xs is just the diagonal
part of X, and Xn is equal to X−1

s X. Since Xs and Xu commute, we have
that

〈X〉 = 〈Xs〉 · 〈Xn〉.
Because of the previous section, this reduces the problem to computing the
Zariski closure of 〈X〉 where X is either semisimple or unipotent.

Suppose now that X is a unipotent matrix. If the characteristic of the
field K is positive, then X will have finite order. In that case 〈X〉 is equal
to its Zariski closure and it easily can be computed. Let us assume for a
moment that the characteristic of K is equal to 0. Define Z by

Z = log(X) =
∞∑
i=1

(−1)i−1 (X − I)i

i
.

Note that the infinite sum actually only runs up to i = n − 1 since X is
unipotent. The matrix Z is nilpotent. Define ϕ : K → GLn(K) by

t �→ exp(tZ) =
∞∑
i=0

tiZi

i!
=

n−1∑
i=0

tiZi

i!
.

For any integer k we have ϕ(k) = Xk. Since the integers are Zariski dense in
K, we see that the Zariski closure of 〈X〉 is the Zariski closure of the image
of ϕ. Again the Zariski closure of the image of ϕ can be computed using a
Gröbner basis elimination.

Assume that X is diagonal, say

X =




λ1

λ2

. . .
λn




(and K can again be of arbitrary characteristic). The group of diagonal
matrices is isomorphic to T = (K�)n. The coordinate ring of T (over K) is
isomorphic to the ring of Laurent polynomials

U = K[x1, . . . , xn, x−1
1 , . . . , x−1

n ].

The ideal I of the Zariski closure of 〈X〉 is generated by all f ∈ L such that

f(λk
1 , λ

k
2 , . . . , λ

k
n) = 0
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for all k ∈ Z. Define (as in the previous subsection) a group homomorphism
ϕ : Zn → K� by

ϕ(a1, a2, . . . , an) = λa1
1 λa2

2 · · ·λan
n .

Let J be the ideal of all
xa1

1 xa2
2 · · · xan

n − 1

with (a1, a2, . . . , an) ∈ ker(ϕ). If (a1, . . . , an), (b1, . . . , bn) ∈ Zn, then we
have

xa1+b1
1 xa2+b2

2 · · · xan+bn
n = xb1

1 xb2
2 · · · xbn

n (xa1
1 xa2

2 · · · xan
n −1)+(xb1

1 xb2
2 · · · xbn

n −1) ∈

(xa1
1 xa2

2 · · · xan
n − 1, xb1

1 xb2
2 · · · xbn

n − 1).

From this it is easy to see that if S is a set of generators of ker(ϕ), then
then the ideal J is generated by all

xa1
1 xa2

2 · · · xan
n − 1

with (a1, a2, . . . , an) ∈ S. In the previous subsection we have seen how to
find a set of generators of the kernel of ϕ. This gives us a way to find
generators of the ideal J . With the lemma below, we obtain in this way a
set of generators of the ideal I, the vanishing ideal of the Zariski closure of
〈X〉.
Lemma 2. We have J = I.

Proof. Clearly J ⊆ I. If J = I then one can choose f ∈ I \ J such that

f =
r∑

i=1

bimi

with b1, b2, . . . , br ∈ K and m1, . . . ,mr Laurent monomials. Choose f such
that r is minimal. Let µi = mi(λ1, . . . , λn). Note that µi = µj for i = j,
because otherwise mim

−1
j − 1 ∈ J and f − bimj(mim

−1
j − 1) ∈ I \ J would

have fewer terms than f . Now

0 = f(λk
1, . . . , λ

k
n) =

r∑
i=1

biµ
k
i

for all k. Since the vectors


1
µ1

µ2
1
...

µr−1
1


 ,




1
µ2

µ2
2
...

µr−1
2


 , . . . ,




1
µr

µ2
r
...

µr−1
r




are linearly independent, it follows that b1 = b2 = · · · = br = 0 which leads
to a contradiction. �
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3.4. An algorithm for the Zariski closure of matrix groups. We are
now able to present the algorithm which computes the Zariski closure of the
group generated by given n × n invertible matrices X1,X2, . . . ,Xk.

Algorithm 1.

1. input: matrices X1,X2, . . . ,Xk ∈ GLn(K).
2. H := {I}
3. S := {I,X1,X2, . . . ,Xk}
4. repeat
5. H ′ := H
6. S′ := S
7. for Y in S do

8. H := H · 〈Y 〉0
9. H := H · Y HY −1

10. G = S · H
11. for Z in S do
12. if Y Z ∈ G then S := S ∪ {Y Z}
13. until H ′ = H and S′ = S
14. output: G

Throughout the algorithm G and H are Zariski closed subsets of GLn(K),
and S is a finite subset of GLn(K). The reader should be aware that G and
H are represented by an ideal in the coordinate ring of GLn(K) throughout
the algorithm. We clarify some of the steps.

line 8: Here we compute the Zariski closure 〈B〉 of the group 〈Y 〉 gen-
erated by the matrix Y as discussed in section 3.3. Using an algorithm for
primary decomposition, we can find the connected component of the iden-
tity in 〈Y 〉. This component is denoted by 〈Y 〉0. We compute the Zariski
closure of the product of H and 〈Y 〉0 and assign it to H.

line 9: We conjugate H with Y . Conjugation with Y induces an au-
tomorphism of GLn and also an automorphism of the coordinate ring of
GLn. If we apply conjugation with Y −1 to the vanishing ideal of H, then
we get the vanishing ideal of Y HY −1. We compute the Zariski closure of
the product of H and Y HY −1 and assign it to H.

line 10: G is a finite union of cosets of H. For each coset of H we
can compute the vanishing ideal since left multiplication in GLn induces an
automorphism of the coordinate ring of GLn. Then the vanishing ideal of G
is the intersection of the vanishing ideals of all cosets. This can be computed
using Gröbner basis techniques.

Let G̃ be the Zariski closure of the group generated by X1,X2, . . . ,Xk.
Our goal is to prove that the algorithm terminates and that the output is
G̃. In order to do this, we first give various invariants.
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Lemma 3. Throughout the algorithm we have
(a) H is an irreducible variety containing the identity I.
(b) S · H contains I,X1,X2, . . . ,Xk.
(c) S · H is contained in the Zariski closure G̃ of 〈X1,X2, . . . ,Xk〉.

Proof. (a) If A and B are irreducible, then so is A · B (since it is the
Zariski closure of the image of an irreducible variety under a mor-
phism). Note that if B ∈ GLn then 〈B〉 is an algebraic group and
〈B〉0 is a connected algebraic group. Any connected algebraic group
is always irreducible. At the beginning in line 2, H is irreducible.
Throughout the algorithm H remains irreducible, since it remains
irreducible in lines 8 and 9.

(b) After execution of line 3 we have that S · H contains
I,X1,X2, . . . ,Xk. Throughout the algorithm S and H never get
smaller.

(c) This is certainly true after execution of line 3. It is easy to check
that after execution of line 8, 9 or 12, S ·H remains to be contained
in the Zariski closure of 〈X1,X2, . . . ,Xk〉.

�

Lemma 4. In each iteration of the repeat-until loop just before the exe-
cution of line 13, the following statements are true:

(a) For every Y,Z ∈ H ′ we have Y Z ∈ H.
(b) For every Y,Z ∈ S′ we have Y Z ∈ S · H.
(c) For every Y ∈ S′ we have Y H ′Y −1 ⊆ H.
(d) For every Y ∈ S′, some positive power of Y lies in H.

Proof. (a) From the for statement with Y = I we see that H contains
H ′ · H ′ because of line 5 and 9.

(b) This is clearly true after the execution of lines 11 and 12.
(c) This is clearly true after execution of line 5 and 9.
(d) Some positive power of Y lies in the connected component of 〈Y 〉,

because 〈Y 〉 is an algebraic group. Now (d) follows from line 5 and
8.

�

Theorem 3. The algorithm terminates and the output is G̃, the Zariski
closure of 〈X1,X2, . . . ,Xk〉.
Proof. Let Hi and Si be the values of H and S respectively at the end of the
repeat-until loop, just before line 13. We have that Hi is an irreducible
Zariski closed subset of GLn by Lemma 3(a) and that

H1 ⊆ H2 ⊆ H3 ⊆ · · ·
Hence we must have

Hl = Hl+1 = Hl+2 = · · ·
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for some l because GLn has finite dimension. We write H̃ = Hl. We claim
that H̃ is a normal subgroup of G̃. It suffices to show that H̃ is closed under
conjugation by X1,X2, . . . ,Xk. For every i we have XiH̃X−1

i = XiHlX
−1
i ⊆

Hl+1 = H̃ by Lemma 4(c). Since H̃ is a normal subgroup of G̃ we can form
the quotient group G̃/H̃ which is again a linear algebraic group. Consider
the sequence

Sl/H̃ ⊂ Sl+1/H̃ ⊂ Sl+2/H̃ ⊂ · · ·
Note that every inclusion is a strict inclusion. For any i, Si/H̃ consists of
elements of finite order in G̃/H̃ by Lemma 4(d). Let S̃ be the union of
all Sl, Sl+1, . . .. The quotient S̃/H̃ is a group since it is stable by multipli-
cation (this follows from Lemma 4(b)) and stable by inverse (this follows
from Lemma 4(d)). This group must be finite by Theorem 4, and the loop
therefore terminates.

After termination it is clear that G = S · H is closed under multiplica-
tion by Lemma 4(a),(b),(c). Now G is a Zariski closed subgroup of GLn

by Lemma 5 below. Also G is contained in G̃. The group G contains
I,X1,X2, . . . ,Xk, so this implies that G contains G̃. We conclude that
G = G̃. �

Lemma 5. Let H be a nonempty Zariski closed subset of GLn such that
H · H is contained in H. Then H is an algebraic subgroup of GLn.

Proof. We have to show that H contains the identity I and that H is closed
under inverse. Let g ∈ H. For every i we have that gi+1H is a Zariski closed
subset of giH. We get

H ⊇ gH ⊇ g2H ⊇ g3H ⊇ · · ·
By the Noetherian property, giH = gi+1H for some i. But then we get also
g−1H = H. Since g ∈ H we have I = g−1g ∈ H. Because I ∈ H we have
g−1I = g−1 ∈ H. �

Theorem 4. Suppose that K is a field and G ⊂ GLn(K) is a subgroup. If
every element of G has finite order, then G must be finite.

A periodic group is a group for which every element has finite order. The
general Burnside problem asks whether every finitely generated periodic
group is necessarily finite. Although there are counterexamples now, Schur
proved that the general Burnside problem is true for subgroups of GLn(C)
(see [27]). Kaplansky generalized Schur’s result to subgroups of GLn(K)
where K can be an arbitrary field (see [15]).

Remark 2. We did not attempt to optimalize the running time of the al-
gorithm for the Zariski closure of matrix groups. Instead, we described an
algorithm that will work in the most general setting. In characteristic 0, one
might replace H by its tangent space at the identity. The algorithm should
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then be modified accordingly. This way one may avoid Gröbner basis com-
putations in the algorithm and one may end up with an algorithm that is
actually practical.

Remark 3. A related easier problem is to decide whether a given finitely
generated matrix group is finite. Some efficient algorithms for this are
known, see [1], [25] and [12].
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