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Abstract

Implementing linear algebra kernels on distributed memory parallel
computers raises the problem of data distribution of matrices and
vectors among the processors� Block�cyclic distribution seems to suit
well for most algorithms� But one has to choose a good compromise
for the size of the blocks �to achieve a good e�ciency and a good
load balancing�� This choice heavily depends on each operation�
so it is essential to be able to go from one distribution to another
very quickly� We present here the algorithms we implemented in the
ScaLAPACK library� A complexity study is then made that proves
the e�ciency of our solution� Timing results on a network of SUN
workstations and the Cray T�D using PVM corroborates the results�

Keywords� linear algebra� data redistribution� HPF� block scattered� block�
cyclic

R�esum�e

L�implantation de noyaux d�alg�ebre lin	eaire sur les machines paral�
l�eles �a m	emoire distribu	ee pose le probl�eme du choix de la distribu�
tion des donn	ees pour les matrices et les vecteurs sur les di
	erents
processeurs� Une distribution bloc�cyclique semble convenir pour la
plupart des algorithmes� mais un compromis est n	ecessaire dans le
choix de la taille des blocs �pour avoir �a la fois des calculs e�caces
et une bonne r	epartition de charge�� Le choix optimal est di
	erent
pour chaque algorithme� et il est donc essentiel de pouvoir passer
d�une distribution �a l�autre tr�es rapidement� Nous pr	esentons ici
les algorithmes de redistribution que nous avons implant	es dans la
biblioth�eque SCALAPACK� Une 	etude de complexit	e vient ensuite
prouver l�e�cacit	e des solutions choisies� Les performances obtenues
sur r	eseaux de stations et Cray T�D en utilisant PVM corroborent
nos r	esultats�

Mots�cl�es� alg�ebre lin	eaire� redistribution de donn	ees� HPF� bloc�cyclique



� Introduction

This paper describes the solution of the data redistribution problem arising when
implementing linear algebra in a distributed system� Although a bit specialized�
the problem and its solution contains points of general interest regarding data
communication patterns in data parallel languages�

We point out that the paper is not addressing the problem of how to deter�
mine a relevant data distribution� but how to implement a given redistribution�

The problem of data redistribution occurs as soon as you deal with arrays
on parallel distributed memory computer� from vectors to multi�dimensional
arrays� It applies both to data�parallel languages such as HPF and to SPMD
programs with message�passing� In the �rst case the redistribution is implicit
in array statements like A � B where A et B are two matrices with di
erent
distributions� In the second case a library function has to be called to do the
same operation or it can also be hidden at the beginning and end of an optimized
routine call�

We present here the algorithm and implementation of the redistribution rou�
tine that is used in SCALAPACK CDW��� DGW���� Our solution is a dynamic
approach in order to construct the communication sets and then e�ciently com�
municate them� Our algorithm uses several strategies depending on the amount
of data to be communicated and on the target architecture capabilities in order
to be very fast and runs for any number of processors� making available the
possibility of loading and down�loading from�to one processor to�from many
others�

Section � introduce the SCALAPACK data distribution models and nota�
tions used in this paper� Section � presents the algorithms that were used for the
redistribution of data and section � presents timing results obtained on di
erent
machines �namely the Cray T�D and a cluster of workstations��

� Related work

For a long time� redistribution was considered very di�cult in the general case�
and most implementations were restricting the possible distributions to block
or cyclic distributions CGL���� AL��� TCF��� ASS��� CP���� or in some im�
plementations all block�sizes had to be multiple of each others to ease some
memory access operations�

Some recent work shows that it can be done at compile time in the general
case HKMCS��� SOG��� or describes the access of array elements with di
erent
strides KK���� But all of these works addressed the compilation techniques for
re�distribution of arrays with a �xed number of processors�
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� Block cyclic data distribution and redistribu�

tion

The SCALAPACK library uses the block�cyclic data distribution on a virtual
grid of processors in order to reach good load�balance� good computation e��
ciency on arrays and an equal memory usage between processors� Arrays are
wrapped by block in all dimensions corresponding to the processor grid� The �g�
ure � illustrates the organization of the block�cyclic distribution of a �D arrays
on a �D grid of P processors�

The distribution of a matrix is de�ned by four main parameters� a block
width size� r� a block height size� s� the number of processor in a row� Prow � the
number of processors in a column� Pcol and few others to determine� when a
sub�matrix is used� which element of the global matrix is the the starting point
and which processor it belongs to�
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Figure �� The block cyclic data distribution of a �D array on a � � � grid of
processors�

In SCALAPACK� the e�ciency of redistribution is crucial as in any data
parallel approach because it should be negligible or at least small compared to
the computation it was done for� This is especially di�cult since the redistri�
bution operation has to be done dynamically� with no compile�time or static
information� This dynamic approach implies that we deal from the beginning
with the most general case of redistribution allowed by our constraints� namely
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cyclic with blocks of size �r� s� on a Prow�Pcol virtual grid to cyclic with blocks
of size �r�� s�� on a P

�

row � P
�

col virtual grid
��

Moreover� no latency hiding techniques or overlapping can be used between
the redistribution and the previous computation because these routines are in�
dependent �remark that it does not prevent the use of these techniques inside
the redistribution routine itself� as it is explained in section �����

� Redistribution algorithm

The whole problem of data redistribution is for each processor to �nd which
data stored locally has to be sent to the others and respectively how much
data it will receive from the others and where it will store it locally� Then the
communication problem itself occurs on the target computer�

��� Computation of data sets in one dimension

If we assume that the data are stored contiguously in a block cyclic fashion on
the processors� the problem is then to �nd which data items stored on processor
Pi will be send to processor Pj� These data items have to be packed in one
message before being sent to Pj in order to avoid start�up delays�

Our algorithm scans at the same time the matrix indices of the data blocks
stored on Pi and those that will be stored on Pj� More precisely� we keep two
counters� one corresponding to Pi�s data location in the global matrix and the
other to Pj�s one� We increment them progressively by block as in a merge sort
in order to determine the overlap areas �the comparison number is linear in the
number of blocks�� Then we pack the data items corresponding to the overlap
areas in one message to be sent to Pj�

��� General algorithm for the computation of data sets

The block scanning is done dimension by dimension and the overlapping indices
are the Cartesian product of the intervals computed in each dimension� �There
is no limitation in the number of dimension scanned and the complexity is linear
in the sum of the dimension sizes while the packing is obviously linear in the
size of the data��

This work is done in each processor in order to send data and respectively
to receive data and store them at the right place in local memory�

��� Optimizations

�Notice that this general case includes the loading and down�loading of data from a pro�
cessor to a multicomputer and also calls to parallel routines from a sequential code�
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Scanning � The obvious scanning strategy tests on each processor every in�
dices of the two data distributions that belongs to the processor and determine
if the corresponding data has to be communicated� But as we will see in propo�
sition �� the intersection of intervals in a block cyclic distribution is in fact
periodic of period lcm�rP�r�P��� So� instead a full block scanning� the scanning
algorithm stops as soon as it reaches the cyclic bound and moreover it also
reduces the bound on the storage necessary for the intersection patterns�

Synchronous communication � In order to avoid OS dead locks due to
bu
ers limitation an algorithm was designed using a blocking receive protocol�
Hence to minimize processor idle time exchanges are built� i�e� all receive func�
tion calls have the corresponding send function calls posted before or at the
same time�

This strategy� illustrated in Figure �� can be compared to a rolling caterpillar
of processors� at step d� each processor Pi� �� � i � P � exchanges its data with
processor P��P�i�d�modP � �

0 1 2 3
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Step 1 step 2
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7       3
  6 5 4
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0 1 2
      3
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  5 4 3

6 0 1 
      2
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....

Figure �� The caterpillar communication method is illustrated with an even ���
and an odd ��� number of processors� The communication occurs between the
vertical pairs of processors �a processor alone communicates with itself��

Asynchronous communication � In that case� the communication algo�
rithm is simpler� There is no supposition on the target computer ability to
receive messages �from any� � The sizes of the messages to be received are
computed �rst� Then� the asynchronous receives are posted followed by the
sends�

Communication pipelining � The pipeline method takes advantage of the
possibility of dividing work in small units� Instead of waiting for all the in�
formation from another processor� each processor Pi receives a small packet of
elements� and in the same time packs a small packet of elements to be sent and
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unpacks the elements it just received� This is an overlapping strategy close to
the work describe in DT����

The algorithm is implemented within the caterpillar method where for each
step there are several send�receive exchanges� This overlap between commu�
nication and computation improved the timings on machines with rather slow
communications��

� Complexity Study

We consider the redistribution of a multidimensional array of size M� �M� �
����MD� The data distributions are de�ned by data block sizes r�r� � � �rD and
a processor grid of size P��P�� � � ��PD as in section �� A prime will indicate
the parameters in the target distribution�

��� Scanning complexity

The block scanning is done for each processor in order to send the data and
respectively to receive the data and to stored them at the right place in local
memory��

The obvious scanning strategy is testing every indices of the global matrix�
An elementary operation is then the computation of the initial and �nal owners
of a given element� This required a modulo operation as the data distribution
is cyclic� But as we repeat it for adjacent items� this computation can be
decomposed and transformed in just a few additions an comparisons for all but
the �rst element� This strategy complexity is�

Proposition �

T �
scan � O�

Y
i����D

Mi�

The �rst improvement we can do is taking into account the block pattern of
the distribution for the indices progression� Then the complexity is�

Proposition �

T �
scan � O�

X

i����dim

Mi

riPi
�

Mi

r�iP
�

i

�

�i�e� LAN of workstations and �old� parallel computers
�At any time� the computation is done with global indices of the matrix but only local

indices �corresponding to the local part of the matrix� are necessary to access the data stored
in each processor�
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Proof The scanning is done block by block independently in each dimension
�cf� x����� There are Mi

riP
�

i

�resp� Mi

r�

i
P �

i

� blocks on the original �resp� �nal�

distribution for the source �resp� �nal� processor� These memory locations are
tested like in the �merge sort� algorithm� hence the complexity is equal to the
total number of blocks �

We describe in the following improvements that are done in our algorithm�
Let us have a look at the problem in one dimension� where block cyclic�r� means
a cyclic data distribution by blocks of size r�

Notation� E�s� l� b� � fxjx � s � kl � j� k � Z� j � ���b� ��g and C�s� l� �
E�s� l� ��� Then� in the one�dimensional case� the set of items owned by a pro�
cessor is a pattern E�s� rP� r��

Proposition � The intersection of two block cyclic�r� patterns is the union of
less than r � r� cyclic patterns of size ��

lemma Let a� a��m�m� be � integers�
If a� a� is a multiple of gcd�m�m��� then

�b� C�a�m� �C�a��m�� � C�b� lcm�m�m����

else
C�a�m� �C�a��m�� � ��

The proof is a simple application of Bezout theorem�

Proof Let E�s� rP� r� and E�s�� r�P �� r�� be two block�cyclic patterns�

E�s� rP� r� �
�

i����r��

C�s � i� rP �

then we have�

E�s� rP� r�
�

E�s�� r�P �� r�� �
�

�i�j������r������r���	

C�s � i� rP �� C�s� � j� r�P ��

By application of the lemma� each individual intersection is void or is a cyclic
pattern of period lcm�rP� r�P ��� so the intersection is an union of at most r� r�

cyclic patterns �

Proposition � The intersection of two block cyclic�r� patterns is periodic of
period lcm�rP� r�P �� �where P and P � are the number of processors in each
distribution��
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Proof This is derived from the proof of proposition �� An union of pattern
all periodic with the same period lcm�rp� r�P �� is also periodic with the same
period �

Hence we can use that property to speedup the computation and decrease
the memory needs�

Proposition � There will be at most r� r� items in an interval of length m of
the resulting pattern�

Proof We have seen in proof of proposition � that the resulting pattern is the
union of at most r � r� cyclic patterns� of identical period� In one period� we
have one representative of each component of the union �

In the following� let b be max�M� lcm�rP� r�P ��� Thanks to the previous
propositions� as described in ���� we can stop the scanning as soon as we reach
the global index b because the construction of the intersection patterns is com�
pleted� Moreover we have a bound of r� r� on the number of descriptors of the
intersection pattern �this will be important for the required storage��

In practice this optimization is only interesting when we have very small
block sizes or very large matrices� Although there are cases where it is more in�
teresting to analytically determine the pattern� especially for cyclic distributions
as in SOG���� generally for block of reasonable length the previous strategy is
better� For instance� see �gure � where the corresponding complexities are
plotted as a function of the average block size

p
rr��

Notice that with the preceding optimizations� the complexity is independent
of the matrix size �

Proposition � The �nal scanning complexity in one dimension is�

T �
scan � O�

b

rP
�

b

r�P �
�

Proof The scanning interval is reduced to b
rP

by the pre�computation of the
cyclic pattern intersections� �

Notice that the scanning duration is greatly reduced by our optimization
but the packing will remain the same�

Proposition 	 The scanning is
X
i

bi

riPi
�

bi

r�iP
�

i

where bi � max�Mi� lcm�riPi� r�iP
�
i ��

Proof Derived from proposition � by adding the cost in each dimension� �
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Figure �� Comparison of the two scanning strategies� The time �milliseconds�
is plotted against di
erent random block sizes �the abscissa axe represents the
square root of the initial distribution block size times the �nal distribution block
size�� Each value is obtained from the mean of one thousand iterations of the
same scanning on a workstation�

��� Packing and communication complexity

The packing consists of �move� operations to build a bu
er� the bu
er is then
sent� Following the classical linear transfer time model� we describe its com�
plexity�

For the sake of clarity� we consider here a �D�matrix� but the results can be
extended obviously to more than two dimensions�

The communication cost is �

Proposition 


Tcom �
Y

i����D

Mi

PiP
�

i

move and transfer operation for a pair of processors �and each processor will
exchange with all the others��
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Proof� All elements that are to be sent to a partner must be packed in one
bu
er to reduce startup overhead� The corresponding cost is proportional to
the number of elements� that is on average

Y
i����D

Mi

PiP
�

i

�

��� Comparison between scanning and packing�communication
complexities

In the general case�

Proposition � The ratio between the scanning and the copy is

O

�
�X i

P
Q
i 	� j

Pj
Mj

ri

�
A

where P �
Q
Pi is the total number of processors�

Proof� Just coming from the ratio of proposition � and �� �
If the �lcm� variant �cf� section ���� is applied� asymptotically� �and this

is true even for matrices of moderate size� say
Q
Mi ten times bigger than the

number of processors��� the redistribution cost is roughly equal to two memory
copies �one when we send and one when we receive� and the transfer time of
the items owned locally� The scanning is negligible�

Proposition �� When

Y
Mi 
��

X
i
P
Q
i 	� j

Pj
Mj

ri

 �

Proof� The ratio Pj
Mj


 � �

Proposition �� The total complexity is Tcomm � Tscan � Tcopy

� Timing results

The experiments corroborate very well our expectations� the computing of the
data sets is negligible compared to the communication and packing� and the
global routine execution time is very good�
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��� On a LAN of workstation using PVM

The PVM machine was composed of � workstations and the tests were ran
during a Saturday night �no fever�� We generate random tests in a range that

is reasonable for the target algorithm using a N � N matrix �� � r �

q
N

Prow

and � � s �
q

N
Pcol

�� and compare them to the LU decomposition on the same

matrix size in Figure ��

0.0 200.0 400.0 600.0 800.0 1000.0
0.0

50.0

redistribution time
LU decomposition time

0.0 200.0 400.0 600.0 800.0 1000.0
0.00

0.05

0.10

synchronous exchange
asynchronous exchange
asynchronous with native communications

Figure �� Timings of the redistribution tests in seconds as a function of the
matrix size� On the left the average of �� random data�distributions in seconds
compared to �the best� LU decomposition on a � nodes LAN of SUN Sparc�ELC�
On the right similar experiments with a �� nodes Cray T�D�

The LU decomposition is by far more costly than the redistributions� more�
over� the worst timing of LU decomposition is twice the one plotted while there
is no big di
erences between redistribution times�

��� On a Cray T�D parallel machine

The Cray T�D proposed a home�made version of PVM based on the Cray na�
tive primitives� We show on Figure � the two algorithms described before im�
plemented using this Cray PVM version and the asynchronous algorithm �best
one� implemented directly with the Cray native shared memory primitives�
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The results show the very good communication performances achieved by
this machine� especially with the shared memory communications�

The timings are very good indeed in comparison to classical computation
duration� for instance the benchmark of LU decomposition of a ���� � ����
matrix is ��� second on this machine
�

� Conclusion

In the general case� the redistribution of data is useful to improve the e�ciency
of parallel linear algebra routines� But to ensure a gain on the elapsed time� the
redistribution of data has to be very e�cient�

Our results shows that the redistribution of data can e�ciently perform in
practice with our algorithms �the redistribution timings are very small com�
pared to the computation timings corresponding to matrix operations like LU
decomposition��

Our algorithms are implemented within the SCALAPACK library� They
compute all redistributions and are not limited to a set of block�cyclic redistri�
butions� They are also usable when dealing with sub�matrices �but cannot take
into account strides that are not � nor the array leading dimension��

Our complexity analysis shows that the scanning is negligible for arrays
commonly used� Then with our optimizations� it is su�cient to know the dis�
tribution parameters only at runtime and there is no more constraints about
providing all distribution parameters at compile�time�

Our results are encouraging for the frequent use of this redistribution library
routines in explicit parallel programming� master�slave schemes or in codes
generated by HPF compilers�
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