C Lo

Bernard Prylli

Tourancheau

Block Cyclic Array Redistribution

Keywords: linear algebra, data redistribution, HPF, block scattered, blockcyclic R alg ebre lin eaire, redistribution de donn ees, HPF, bloc-cyclique

Implementing linear algebra kernels on distributed memory parallel computers raises the problem of data distribution of matrices and vectors among the processors. Block-cyclic distribution seems to suit well for most algorithms. But one has to choose a good compromise for the size of the blocks (to achieve a good e ciency and a good load balancing). This choice heavily depends on each operation, so it is essential to be able to go from one distribution to another very quickly. W e present here the algorithms we implemented in the ScaLAPACK library. A complexity study is then made that proves the e ciency of our solution. Timing results on a network of SUN workstations and the Cray T3D using PVM corroborates the results.

Introduction

This paper describes the solution of the data redistribution problem arising when implementing linear algebra in a distributed system. Although a bit specialized, the problem and its solution contains points of general interest regarding data communication patterns in data parallel languages.

We point out that the paper is not addressing the problem of how t o d e t e rmine a relevant data distribution, but how to implement a given redistribution.

The problem of data redistribution occurs as soon as you deal with arrays on parallel distributed memory computer, from vectors to multi-dimensional arrays. It applies both to data-parallel languages such as HPF and to SPMD programs with message-passing. In the rst case the redistribution is implicit in array statements like A = B where A et B are two matrices with di erent distributions. In the second case a library function has to be called to do the same operation or it can also be hidden at the beginning and end of an optimized routine call.

We present here the algorithm and implementation of the redistribution routine that is used in SCALAPACK CDW92, D G W 9 2]. Our solution is a dynamic approach in order to construct the communication sets and then e ciently communicate them. Our algorithm uses several strategies depending on the amount of data to be communicated and on the target architecture capabilities in order to be very fast and runs for any n umber of processors, making available the possibility of loading and down-loading from/to one processor to/from many others.

Section 3 introduce the SCALAPACK data distribution models and notations used in this paper. Section 4 presents the algorithms that were used for the redistribution of data and section 6 presents timing results obtained on di erent machines (namely the Cray T3D and a cluster of workstations).

Related work

For a long time, redistribution was considered very di cult in the general case, and most implementations were restricting the possible distributions to block or cyclic distributions CGL + 93, AL93, TCF94, ASS93, CP94], or in some implementations all block-sizes had to be multiple of each o t h e r s t o e a s e s o m e memory access operations. Some recent w ork shows that it can be done at compile time in the general case HKMCS95, SOG94] or describes the access of array elements with di erent strides KK95]. But all of these works addressed the compilation techniques for re-distribution of arrays with a xed number of processors.

3 Block cyclic data distribution and redistribution

The SCALAPACK library uses the block-cyclic data distribution on a virtual grid of processors in order to reach good load-balance, good computation eciency on arrays and an equal memory usage between processors. Arrays are wrapped by block in all dimensions corresponding to the processor grid. The gure 1 illustrates the organization of the block-cyclic distribution of a 2D arrays on a 2D grid of P processors. The distribution of a matrix is de ned by four main parameters: a block width size, r a block height size, s t h e n umber of processor in a row, P row the number of processors in a column, P col and few others to determine, when a sub-matrix is used, which e l e m e n t of the global matrix is the the starting point and which processor it belongs to.

(0,1) (0,2) (1,0) (2,0) (3,0) (0,4) (0,5) (0,3) (0,0) (2,3)

Blocks owned by the processors [0,0]

Grid of Processors [2,3]

Block -Matrix

0 1 2 1 0 (2,0) (1,0) (3,0) (3,3) (1,1) (3,1)
(1,4)

(3,4) (1,2) (1,5) (3,2) (3,5) (0,3) (2,3) (1,3)
(0,1) (0,4)

(2,1) (2,4) (0,2) (0,5) (2,2) (2,5) (0,0)
Figure 1: The block cyclic data distribution of a 2D array o n a 2 3 grid of processors.

In SCALAPACK, the e ciency of redistribution is crucial as in any d a t a parallel approach because it should be negligible or at least small compared to the computation it was done for. This is especially di cult since the redistribution operation has to be done dynamically, with no compile-time or static information. This dynamic approach implies that we deal from the beginning with the most general case of redistribution allowed by our constraints, namely cyclic with blocks of size (r s) o n a P row P col virtual grid to cyclic with blocks of size (r 0 s 0) o n a P 0 row P 0 col virtual grid1 . Moreover, no latency hiding techniques or overlapping can be used between the redistribution and the previous computation because these routines are independent (remark that it does not prevent the use of these techniques inside the redistribution routine itself, as it is explained in section 4.3).

Redistribution algorithm

The whole problem of data redistribution is for each processor to nd which data stored locally has to be sent to the others and respectively how m uch data it will receive from the others and where it will store it locally. T h e n t h e communication problem itself occurs on the target computer.

Computation of data sets in one dimension

If we assume that the data are stored contiguously in a block cyclic fashion on the processors, the problem is then to nd which data items stored on processor P i will be send to processor P j . These data items have to be packed in one message before being sent t o P j in order to avoid start-up delays.

Our algorithm scans at the same time the matrix indices of the data blocks stored on P i and those that will be stored on P j . More precisely, w e k eep two counters, one corresponding to P i 's data location in the global matrix and the other to P j 's one. We increment them progressively by block as in a merge sort in order to determine the overlap areas (the comparison number is linear in the numb e r o f b l o c ks). Then we p a c k the data items corresponding to the overlap areas in one message to be sent t o P j .

General algorithm for the computation of data sets

The block scanning is done dimension by dimension and the overlapping indices are the Cartesian product of the intervals computed in each dimension. (There is no limitation in the number of dimension scanned and the complexity is linear in the sum of the dimension sizes while the packing is obviously linear in the size of the data).

This wo r k i s d o n e i n e a c h processor in order to send data and respectively to receive data and store them at the right place in local memory.

Optimizations

Scanning : The obvious scanning strategy tests each processor every indices of the two data distributions that belongs to the processor and determine if the corresponding data has to be communicated. But as we will see in proposition 3, the intersection of intervals in a block cyclic distribution is in fact periodic of period lcm(rP,r'P'). So, instead a full block scanning, the scanning algorithm stops as soon as it reaches the cyclic bound and moreover it also reduces the bound on the storage necessary for the intersection patterns.

Synchronous communication : In order to avoid OS dead locks due to bu ers limitation an algorithm was designed using a blocking receive protocol. Hence to minimize processor idle time exchanges are built, i.e. all receive f u n ction calls have the corresponding send function calls posted before or at the same time.

This strategy, illustrated in Figure 2, can be compared to a rolling caterpillar of processors: at step d, e a c h processor P i , (0 i < P) e x c hanges its data with processor P ((P;i;d)modP) . Asynchronous communication : In that case, the communication algorithm is simpler. There is no supposition on the target computer ability t o receive messages \from any" . The sizes of the messages to be received are computed rst. Then, the asynchronous receives are posted followed by t h e sends.

Communication pipelining : The pipeline method takes advantage of the possibility of dividing work in small units. Instead of waiting for all the information from another processor, each processor P i receives a small packet of elements, and in the same time packs a small packet of elements to be sent and unpacks the elements it just received. This an overlapping strategy close to the work describe in DT94].

The algorithm is implemented within the caterpillar method where for each step there are several send/receive exchanges. This overlap between communication and computation improved the timings on machines with rather slow communications2 .

Complexity Study

We consider the redistribution of a multidimensional array of size M 1 M 2 ::: M D . The data distributions are de ned by d a t a b l o c k sizes r 1 r 2 r D and a processor grid of size P 1 P 2 P D as in section 3. A prime will indicate the parameters in the target distribution.

Scanning complexity

The block scanning is done for each processor in order to send the data and respectively to receive the data and to stored them at the right place in local memory 3 .

The obvious scanning strategy is testing every indices of the global matrix. An elementary operation is then the computation of the initial and nal owners of a given element. This required a modulo operation as the data distribution is cyclic. But as we repeat it for adjacent items, this computation can be decomposed and transformed in just a few additions an comparisons for all but the rst element. This strategy complexity is:

Proposition 1 T 1 scan = O(Y i=1::D M i)
The rst improvement w e can do is taking into account the block pattern of the distribution for the indices progression. Then the complexity is:

Proposition 2 T 2 scan = O(X i=1::dim M i r i P i + M i r 0 i P 0 i) Proof
The scanning is done block b y b l o c k independently each dimension (cf. x4.1). There are Mi riP 0 i (resp. Mi r 0 i P 0 i) blocks on the original (resp. nal) distribution for the source (resp. nal) processor. These memory locations are tested like in the \merge sort" algorithm, hence the complexity is equal to the total numb e r o f b l o c ks We describe in the following improvements that are done in our algorithm. Let us have a look at the problem in one dimension, where block cyclic(r) means a cyclic data distribution by blocks of size r.

Notation: E(s l b) = fxjx = s + kl + j k 2 Z j 2 0::b ; 1]g and C(s l) = E(s l 1). Then, in the one-dimensional case, the set of items owned by a processor is a pattern E(s rP r). The proof is a simple application of Bezout theorem.

Proof Let E(s rP r) a n d E(s 0 r 0 P 0 r 0) b e t wo block-cyclic patterns.

E(s rP r) = i=0::r;1

C(s + i rP)

then we h a ve: E(s rP r) \ E(s 0 r 0 P 0 r 0) = (i j)2 0::r;1 0::r 0 ;1] C(s + i rP) \ C(s 0 + j r 0 P 0) By application of the lemma, each individual intersection is void or is a cyclic pattern of period lcm(rP r 0 P 0), so the intersection is an union of at most r r 0 cyclic patterns Proposition 4 The intersection of two block cyclic(r) p atterns is periodic of period lcm(rP r 0 P 0) (where P and P 0 are the number of processors in each distribution).

Proof This is derived from the proof of 3. An union of pattern all periodic with the same period lcm(rp r 0 P 0) is also periodic with the same period Hence we can use that property to speedup the computation and decrease the memory needs.

Proposition 5 There will be a t m o s t r r 0 items in an interval of length m of the resulting pattern.

Proof We h a ve seen in proof of proposition 3 that the resulting pattern is the union of at most r r 0 cyclic patterns, of identical period. In one period, we have one representative of each component of the union

In the following, let b be max(M lcm(rP r 0 P 0). Thanks to the previous propositions, as described in 4.3, we can stop the scanning as soon as we reach the global index b because the construction of the intersection patterns is completed. Moreover we h a ve a bound of r r 0 on the number of descriptors of the intersection pattern (this will be important for the required storage).

In practice this optimization is only interesting when we h a ve v ery small block sizes or very large matrices. Although there are cases where it is more interesting to analytically determine the pattern, especially for cyclic distributions as in SOG94], generally for block of reasonable length the previous strategy is better. For instance, see gure 3 where the corresponding complexities are plotted as a function of the average block size p rr 0 . Notice that with the preceding optimizations, the complexity is independent of the matrix size : Proposition 6 The nal scanning complexity in one dimension is:

T 3 scan = O(b rP + b r 0 P 0)
Proof The scanning interval is reduced to b rP by the pre-computation of the cyclic pattern intersections.

Notice that the scanning duration is greatly reduced by our optimization but the packing will remain the same.

Proposition 7 The scanning is X i b i r i P i + b i r 0 i P 0 i where b i = max(M i lcm(r i P i r 0 i P 0 i))

Proof Derived from proposition 6 by adding the cost in each dimension.

Packing and communication complexity

The packing consists of \move" operations to build a bu er, the bu er is then sent. Following the classical linear transfer time model, we describe its complexity:

For the sake of clarity, w e consider here a 2D-matrix, but the results can be extended obviously to more than two dimensions.

The communication cost is :

Proposition 8

T com = Y i=1::D M i P i P 0 i move and transfer operation for a pair of processors (and each processor will exchange with all the others).

Proof: All elements that are to be sent to partner must be packed in one bu er to reduce startup overhead. The corresponding cost is proportional to the numb e r o f e l e m e n ts, that is on average Y i=1::D M i P i P 0 i .

Comparison between scanning and packing/communication complexities

In the general case, Proposition 9 The ratio between the scanning and the copy is O 0 @ X i P Q i 6 = j Pj Mj r i 1 A

where P = Q P i is the total number of processors.

Proof: Just coming from the ratio of proposition 7 and 8.

If the \lcm" variant (cf. section 4.3) is applied, asymptotically, (and this is true even for matrices of moderate size, say Q M i ten times bigger than the number of processors.), the redistribution cost is roughly equal to two memory copies (one when we send and one when we receive) and the transfer time of the items owned locally. The scanning is negligible.

Proposition 10 When Y M i ! 1) X i P Q i 6 = j Pj Mj r i ! 0

Proof: The ratio Pj Mj ! 0 Proposition 11 The total complexity is T comm = T scan + T copy

Timing results

The experiments corroborate very well our expectations, the computing of the data sets is negligible compared to the communication a n d p a c king, and the global routine execution time is very good.

The results show t h e v ery good communication performances achieved by this machine, with the shared memory communications.

The timings are very good indeed in comparison to classical computation duration, for instance the benchmark of LU decomposition of a 1600 1600 matrix is 1:7 second on this machine4 .

Conclusion

In the general case, the redistribution of data is useful to improve the e ciency of parallel linear algebra routines. But to ensure a gain on the elapsed time, the redistribution of data has to be very e cient.

Our results shows that the redistribution of data can e ciently perform in practice with our algorithms (the redistribution timings are very small compared to the computation timings corresponding to matrix operations like L U decomposition).

Our algorithms are implemented within the SCALAPACK library. T h e y compute all redistributions and are not limited to a set of block-cyclic redistributions. They are also usable when dealing with sub-matrices (but cannot take into account strides that are not 1 nor the array leading dimension).

Our complexity analysis shows that the scanning is negligible for arrays commonly used. Then with our optimizations, it is su cient t o k n o w the distribution parameters only at runtime and there is no more constraints about providing all distribution parameters at compile-time.

Our results are encouraging for the frequent use of this redistribution library routines in explicit parallel programming, master/slave s c hemes or in codes generated by HPF compilers.

Figure 2 :

 2 Figure2: The caterpillar communication method is illustrated with an even (8) and an odd (7) number of processors. The communication occurs between the vertical pairs of processors (a processor alone communicates with itself).

Proposition 3

 3 The intersection of two block cyclic(r) p atterns is the union of less than r r 0 cyclic patterns of size 1. lemma Let a a 0 m m 0 be 4 integers. If a ; a 0 is a multiple of gcd(m m 0), then 9b C(a m) \ C(a 0 m 0) = C(b lcm(m m 0)) else C(a m) \ C(a 0 m 0) = :

Figure 3 :

 3 Figure3: of the two scanning strategies. The time (milliseconds) is plotted against di erent random block sizes (the abscissa axe represents the square root of the initial distribution block size times the nal distribution block size). Each v alue is obtained from the mean of one thousand iterations of the same scanning on a workstation.

Notice that this general case includes the loading and down-loading of data from a processor to a multicomputer and also calls to parallel routines from a sequential code.

i.e. LAN of workstations and \old" parallel computers

At a n y time, the computation is done with global indices of the matrix but only local indices (corresponding to the local part of the matrix) are necessary to access the data stored in each processor.

(from the LINPACK benchmark database)

On a LAN of workstation using PVM

The PVM machine was composed 4 workstations and the tests were ran during a Saturday night (no fever). We generate random tests in a range that is reasonable for the target algorithm using a N N matrix (1 r < q N Prow and 1 s < q N Pcol), and compare them to the LU decomposition on the same matrix size in Figure 4. The LU decomposition is by far more costly than the redistributions, moreover, the worst timing of LU decomposition is twice the one plotted while there is no big di erences between redistribution times.

On a Cray T3D parallel machine

The Cray T3D proposed a home-made version of PVM based on the Cray native primitives. We s h o w o n F i g u r e 4 t h e t wo algorithms described before implemented using this Cray PVM version and the asynchronous algorithm (best one) implemented directly with the Cray native shared memory primitives.