Mario Fiallos Aguilar

Jean Duprat

Some issues on CARESSE, a new heterogeneous ne grain parallel-pipelined architecture

Keywords: ne grain parallelism, heterogeneous processing, digit on-line computation R esum e

Here, we deal with a new ne grain parallel-pipelined architecture made up of heterogeneous digit on-line arithmetic units (AUs). We present some main issues of such a n architecture, including the model of computation, its digit-serial AUs, new scheduling heuristics and examples of linear algebra computations. Using parallel discrete-event s imulations and computation visualization on a massively parallel computer, we p r e s e n t some measures of its performance.

m allos@lip.ens-lyon.fr 1 Introduction

It is well known that in computations of arithmetic algorithms that deal with the approximation of real numbers by oating-point representations, inaccurate calculations and representations lead to completely wrong results. These errors are produced by cancellation and truncation of the oating-point n umbers. A computer that allows the size of operands and results to be large enough to compute according to the needs of accuracy potentially resolves these problems. However, as high accuracy is achieved using very-long precision arithmetic, the representation of numbers needs a lot of bits, typically thousands. It is more practical to carry all these bits serially than in parallel.

In digit on-line mode of computation 7], 6], the operands and the results ow through the arithmetic operators or units (AUs) serially, digit by digit, starting with the most signi cant, allowing a digit-level pipelining. This paper deals with some issues of an architecture made up of heterogeneous digit on-line arithmetic units, called CARESSE, the french abbreviation of Serial Redundant S c i e n ti c Computer. We present brie y the AUs used in the architecture and with some detail the divider. These AUs are suitables for VLSI implementation. Two di erent s c heduling heuristics allow the computation of numerical intensive applications with a limited numb e r o f A Us. In this paper we apply these heuristics to Gaussian elimination. To study the performance of CARESSE, we use parallel discrete-event simulations and computation visualization technics on MasPar MP-1.

Background

As stated above i n digit on-line computation, the operands and the results ow b e t ween arithmetic units serially, most signi cant digit rst (MSD). This ow needs the use of a redundant n umber system 1]. In such systems, addition is carry free and can be performed in parallel, or in any serial mode. The most usual arithmetic operations can be calculated in MSD mode too. Digit on-line arithmetic is the combination of MSD mode and redundant n umber system. An interesting implementation of a radix-2 carry-free redundant system is the Borrow S a ve notation, BS for short. In BS, t h e i th digit, x i , o f a n umber x is represented by t wo bits x + i and x ; i with x i = x + i ; x ; i . Then 0 has two representations, (0 0) and (1 1). The digit 1 is represented by (1 0)

and the digit 1 is represented by (0 1). Using the BS number system, the addition can be computed without carry propagation 9]. Figure 1 shows some elementary xed-point BS circuits. The digit on-line AUs are characterized by their delay, that is the number such t h a t p digits of the --+ + ---+ + -+ + + -z = x + 1 i f inc = 0 for all input z = x + 2 i f inc = 0 for all input digits but the last two.

digits but the last one. result are deduced from p + digits of the input operands. When successive digit on-line operations are performed in digit pipelined mode, the resulting delay will be the sum of the individual delays of operations and communications, and the computation of large numerical jobs can be executed in an e cient manner. We will assume that any c o m m unication has a delay of 1. See gure 2.

As we can see from gure 2, the computations in digit on-line mode can be described as a data A nodal operation can be executed only when the required information, a digit from all the input edges is received. Typically a nodal operation requires one or two operands and produces one result. Once that the node has been activated and the computations related to the input digits inside the arithmetic unit performed (i.e. the node has red), the output digit is sent to the destination nodes. This process is repeated until all nodes have been activated and the nal result obtained. Of course, more than one node can be red simultaneously.

3 Floating-point n umber format and pseudo-normalization A BS oating-point n umber X with n digits of mantissa and p digits of exponent is represented by X = mx2 ex , where mx = P n i=1 mx i 2 ;i and ex = P p;1 i=0 ex i 2 i . In our system the exponents and the mantissas circulate in digit on-line mode, exponent rst (See gure 3). In classical binary circulation of digits ex p;1 ex 0 mx 1 mx n Fig. 3 -The BS oating-point format oating-point representation, a number is said normalized if its mantissa belongs to 1=2 1 or]1 1=2]. Normalization of numbers leads to more accurate representations and consequently better results. In BS representation, to check i f a n umber is normalized or not sometimes needs the examination of all its digits. For this reason, we adopt the concept of pseudo-normalized numbers. A number is said pseudo-normalized if its mantissa belongs to 1=4 1 or]1 1=4]. It is easier and faster to ensure that a number is pseudo-normalized: it su ces to forbid a mantissa beginning by 0 1 , 0 1, 11 o r 1 1. This pseudo-normalization is performed in two steps:

1. A four state automaton examines two consecutives digits and transforms the couples (1 1) and

(1 1) i n to (0 1) and (0 1) respectively and leaves the other couples unchanged. We call this operation an atomic pseudo-normalization. This automaton is shown in gure 4. 2. The second step consists in counting the zeroes generated by the previous computation and adding the same quantity to the exponent. The divider could have a smaller delay if the divisor is guaranteed to be pseudo-normalized. In this case the output of all arithmetic operators (adders, multipliers, dividers, etc), must be pseudonormalized.

But, as our main goal is to perform computations in digit-level pipelined mode, it is preferable to pseudo-normalize the inputs of the divider internally. Note that the rst solution makes the subtraction a variable delay operation. The second ones make the divider more complex, but allows the adders to have a x digit on-line delay. W e adopt this last solution. [START_REF] Duprat | On the simulation of pipelining of fully digit on-line oating-point adder networks on massively parallel computers[END_REF] The arithmetic units

The adder (delay 3) a n d t h e m ultiplier (delay 6) has been extensively discussed in 4]. We will present here only a new digit on-line oating-point divider. One important c haracteristic of these AUs is that the digit pair (1 1) is used to transmit a 0 and the pair (0 0) for a non signi cant transmission, so that the synchronization is insured automatically. In fact, an arithmetic unit must wait that its two rst inputs be di erents from (0 0) to begin its computation. This synchronization of the operands is performed by a n i n terconnection network.

The digit on-line division algorithm

We w ant to compute Q = X=Y with X = mx2 ex , Y = my2 ey , Q = mq2 eq and 1=4 my < 1 jmxj my

We will see how to deal with the cases of m x > m y and negative divisor mantissa in the next sections. The algorithm can be stated as follows:

Algorithm 1 (Digit on-line division algorithm) S t e p 1 (E x p onent computation)

Compute the subtraction of the exponents except the last two digits: eq p;1 e q 2 .

Step 2 (Mantissa shifting and exponent computation)

MY 0 0 = P 5 i=1 my i 2 ;i A 00 0 = P 5 i=1 mx i 2 ;i if MY 0 0 < 1=2 then MY 0 = 2 MY 0 0 else MY 0 = MY 0 0 if (jA 00 0 j + 1 =32 MY 0 ; 1=32) then A 0 0 = A 00 0 =2 else A 0 0 = A 00 0 if A 0 0 = A 00 0 =2 then increment eq and compute eq 1 if (jA 0 0 j + 1 =32 MY 0 ; 1=32) then A 0 = A 0 0 =2 else A 0 = A 0 0 if A 0 = A 0 0 =2 or MY 0 = 2 MY 0 0 then increment eq and compute eq 0

Step 3 (Mantissa computation) For j = 0 to n ; 1 do if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0 if MY 0 0 < 1=2 then MY j+1 = MY j + my j+6 2 ;j;5 A j+1 = 2 A j + mx j+6 2 ;5 ; mq j+1 MY j+1 ; Q j my j+6 2 ;4 else MY j+1 = MY j + my j+6 2 ;j;6 A j+1 = 2 A j + mx j+6 2 ;5 ; mq j+1 MY j+1 ; Q j my j+6 2 ;5 Q j+1 = Q j + mq j+1 2 ;j;1

Proof of correctness

It is obvious that the computation of the result exponent is correct. On the other hand, for the mantissas shifting and computation the situation is more complex. Let us explain this.

Mantissa shifting

We show w h y i t m a y be necessary to shift A 00 0 and A 0 0 one time each.

According to the algorithm it must be guaranteed that jm x j m y . Then, as the shift must be performed with only 5 digits of each m a n tissa, we m a y h a ve either of the following situations:

If MY 0 0 1=2, jA 00 0 j MY0 = 0:11111 0:10000 and, mx my may be equal to 0:11111 1 0:100001 1 . A shift is necessary. But as jA 0 0 j MY0 = 0:01111 0:10000 another shift is necessary and then, jA0j MY0 = 0:00111 0:10000 . With this, it is guaranteed that jm x j m y .

If MY 0 0 < 1=2 then, MY 0 0 is shifted of one position. The worst case is: jA 00 0 j MY0 = 0:11111 1:0111 . Then, it is enough to shift A 0 one position to guarantee that jm x j m y . With this MY= 2 15=64, where, MYis the mantissa of the divider.

Then, the exponent m ust be incremented by 0 , 1 o r 2 .

Mantissa computation

To perform the division correctly, t h e v alues of mq j+1 chosen in step 2 of the algorithm must be compatible with the Robertson's conditions 13]. They are:

1. if MX j < ;MY= 2 then mq j+1 = 1. 2. if ;MY= 2 MX j < 0 t h e n mq j+1 = 1 o r mq j+1 = 0 .

3. if MX j = 0 then mq j+1 = 1 o r mq j+1 = 0 o r mq j+1 = 1 . 4. if 0 < M X j MY= 2 t h e n mq j+1 = 0 o r mq j+1 = 1 . 5. if MX j > M Y = 2 t h e n mq j+1 = 1 .

The two following equations may be easily proved by induction. If MY 0 0 1=2:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i j+5 X i=1 my i 2 ;i 9 > > > > (1)
else if MY 0 0 < 1=2:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i j+5 X i=1 my i 2 ;i+1 9 > > > > (2)
A j can be expressed also as:

A j = 2 j 8 > > > > : j+5 X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i MY j 9 > > > > (3
)
MY j is the shifted mantissa of the divisor at step j. We de ne a sequence as:

MX 0 = mx MX j+1 = 2 MX j ; mq j+1 MY (4)
We nd that:

MX j = 2 j 8 > > > > : n X i=1 mx i 2 ;i ; j X i=1 mq i 2 ;i MY 9 > > > > (5) MX j ; A j = 2 j 8 > > > > : n X i=j+6 mx i 2 ;i ; j X i=1 mq i 2 ;i MY; MY j 9 > > > > (6)
As:

MY j = P j+5 i=1 my i 2 ;i if MY 0 0 1=2 P j+5 i=1 my i 2 ;i+1 if MY 0 0 < 1=2 (7)
We h a ve:

jMX j ; A j j 2 j 8 > > > > : n X i=j+6 2 ;i + j X i=1 2 ;i jMY; MY j j 9 > > > > (8)
As:

jMY; MY j j 2 ;j =32 ifMY 0 0 1=2 2 ;j =16 ifMY 0 0 < 1=2

Then:

jMX j ; A j j 1=32 + 1=16 = 3=32 (10) According to step 3 of the algorithm: if mq j+1 = 1 then, A j 1=8. From equation 10 we nd that if A j 1=8 then MX j 1=32. Robertson's conditions 4 and 5 are satis ed. Similarly, i f mq j+1 = 1 t h e n A j 1=8. Then, MX j 1=32. Robertson's conditions 1 and 2 are satis ed. if mq j+1 = 0 , t h e n , 4=32 < A j < 4=32. From equation 10, we nd that 7=32 < M X j < 7=32 and as jMYj=2 15=64, Roberson's conditions 2, 3 and 4 are satis ed.

Hence, the algorithm computes the division correctly. However, the algorithm can be improved. The sequence of tests:

Test 1 (Test of A j) if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0 needs the examination of all the digits of A j (i.e., j + 5). This examination involves a needless loss of time (the arithmetic operations on step 3 of the algorithm may be performed in parallel, without carry propagation, using the BS number system). Therefore, this sequence of tests is the most timeconsuming part of the algorithm. In order to avoid this drawback, we examine all the digits of A j between the most signi cant one and the digit which h a s p o wer 2 ;5 . N a m e l y , A j = P 5 i=0 2 ;i a j i 1 .

Then, the test will be performed on A j instead of A j as following:

Test 2 (Test of A j) if A j 1=8 then mq j+1 = 1 else if A j ; 1=8 then mq j+1 = ;1 else mq j+1 = 0

The proof of the improved algorithm is similar to the previous one: We obtain the obvious relation: jA j ; A j j 1=32 [START_REF] Kla | Calcul Parall ele et En-Ligne des Fonctions Arithm etiques[END_REF] Then, according to the modi ed Step 3 of the algorithm: if mq j+1 = 1 then A j 1=8. From equation 11 we nd that if A j 1=8 then A j 3=32 and from 10 we n d t h a t MX j 0. Similarly, i f mq j+1 = 1 t h e n A j 1=8. Then A j 3=32 and MX j 0. if mq j+1 = 0, then 1=8 < A j < 1=8. As A j is a multiple of 1=32, we h a ve: 3=32 A j 3=32. From equation 11 we n d : 4=32 A j 4=32 and, from equation 10, we nd that 7=32 MX j 7=32.

Pseudo-normalization

If the inputs to the oating-point divider are pseudo-normalized then its output is also pseudonormalized. Let us prove that:

If MY 0 0 1=2 then, the worst case is: jXj Y = 0:101 1 0:1 1 = 1 4 and the quotient is pseudonormalized. If MY 0 0 < 1=2 then the worst case is: jXj Y = 0:101 1 1:00011 1 = 1 4 and the quotient is pseudonormalized.

Architecture of the divider

The oating-point divider consists of several blocks (gure 5):

A serial circuit to compute the di erence between the exponents. A serial incrementer to increase the exponent b y 0 , 1 o r 2 . A serial automaton that computes the absolute value of Y . A serial over ow detector. A pseudo-normalizer, which ensures that 1=4 Y < 1. A serial shifter/synchronizer for the mantissas. A serial divider for the mantissas. The rst two computations are performed with the circuits of gure 1. The automaton that computes the absolute value of Y is shown in gure 6. The sign inverter changes the sign of the mantissa of the result if the state of the maximum value automaton is 1.

The detection of the over ow is done at the output of the incrementer. A small automaton tries to nd a representation of the exponent so that the carry digit is equal to 0 (in order to keep the p-digit exponent of the format). Figure 7 shows this automaton. The shifter/synchronizer guarantees that if shifts have been performed, then the exponent is augmented and otherwise the exponent remains unchanged. We will explain with more detail the pseudonormalizer, the shifter/synchronizer and the serial divider.

1: by n o w let us assume that A j can be represented as a 6 digits expression.

Pseudo-normalizer

The pseudo-normalizer is shown in gure 8. The automaton is shown in gure 4. A binary counter stores the number by which the exponent m ust be decreased. A zero tester is used to avoid the delay of the serial circuit when the subtraction of the exponents is not performed. The over ow detector is similar to the one shown in gure 7. The delay of the pseudo-normalizer (pno) i s v ariable and depends on the degree of pseudo-normalization of the operands. If le is the number of digits of the exponent a n d lbs the number of digits to represent the oating-point n umber, then:

le+ 1 pno lbs+ 1 (12)
The delay of the normalizer may be, in the worst case, as great as the length of the number representation plus 1. On the other hand, if the input operand is already pseudo-normalized, pno has its minimum value. Figure 9 shows an example.

If the zero tester is not used a simpli ed design is obtained, but the minimum value of the delay will be incremented by 1. The serial subtraction can also be replaced by its parallel version.

Shifting the mantissas

The circuit performs the comparisons of the mantissas. The comparison on MY 0 0 with 1=2 is performed before the comparison with A 00 0 . A second comparison delays mx for 1 or 2 cycles if necessary. The digits of mx are not losts, but are delayed. It is assumed that these operations can be performed in one cycle.

The serial divider

The serial divider is shown in gure 11. The upper part computes the term mq j+1 MY j+1 while, the lower part computes Q j m j+6 . T h e BS four-input parallel adder computes the term A j . T h e four-input parallel adder is made from three 2-input BS parallel adders. A 2-input parallel adder is proposed in 9]. The format control is very simple and requires only the test of the digit with power 2 1 . If the value of this digit is di erent from zero, then the digit with power 2 0 is inverted (remember, jA j j 3=8). This technique was originally proposed by Kla 10]:

Let Z = z n z 1 z 0 :z ;1 z ;k = Nz 1 z 0 :K such that jZj 1. if z 1 = 0) Z = z 0 :K else Z = z 0 :K

Internal synchronization of the oating-point divider

As we can see from gure 12, the decision whether to increment the exponent c a n b e t a k en when the last two digits go through the incrementer. As the last two digits of the exponent are emerging, the rst ve digits of the mantissas are available, and it is then possible to subtract 0, 1, or 2 from the exponent of the result. Using gures 9 and 12 we obtain the interval values of the digit on-line delay of the oating-point divider (div): le+ 7 div lbs+ 7 [START_REF] Misra | Distributed discrete-event simulation[END_REF] Note that if the inputs were guaranteed to be pseudo-normalized, the delay of the divider will be 6.

A m ultipipeline network of heterogeneous AUs

Using the AUs described above (adder, multiplier, divider and opposers) we can perform parallelpipelined numerical intensive computations. We suppose that there are two di erent t ypes of AUs, namely the constant-delay ones (multipliers, adders, opposers, etc ...) and the variable delay ones (dividers, square rooters, etc ...). Of course, these operators may h a ve di erent d e l a ys and their number is limited. These operators are interconnected between them to allow the transmission of only one BS digit and not all the digits. All the operators are synchronized with the one with the larger period of computation. In fact, this period will be used as the unit time. We will suppose also that the communication cost is unitary.

An AU m a y be reused when its last computation has ended. That means that the interconnection network must be recon gurable during the computation. The parallelism is allied to the multipipelining when several operators begin to compute simultaneously. As the AUS have di erent digit on-line delays, it is necessary to synchronize the digits of their input operands, in a such w ay that the digits inputting the operators have the same power. In 2 ;n 2 ;4 2 ;1 2 ;2 2 ;3 2 0 2 ;6 2 ;5 . . . 2 1 2 0 2 ;1 2 ;2 2 ;3 2 ;4 2 ;5 2 ;6 . . . A 0 ("from shifting") Fig. 11 -The serial divider our network this is achieved using variable length registers as stated in section 4. Then, some important c haracteristic of such a n a r c hitecture are: It is possible to multipipeline the AUs and at the same time to compute in parallel. The AUs work in digit-serial mode and are heterogeneous in the type of computation that they perform, in their delay and time of computation. The operators are synchronized to the slowest one. Such m a c hine is shown in gure 13. For this type of architecture we a n s w er the following questions:

How to perform the scheduling in this type of machine to compute with the minimum delay of evaluation? How can AUs be reused? What are the delay, speed-up and e ciency in such m a c hine? How to generate traces to learn more about such architecture? What are the di erences in behavior between some scheduling strategies? eq p;1 eq 1 eq 0 mq 1 mq 2 eq p;1 eq 1 eq 0 mq 1 Augmenter mantissas shifting) incrementation We apply the scheduling heuristics to some numerical intensive computations such as Gaussian elimination.

The scheduling problem in the machine

As the numb e r o f A Us is xed and the number of nodes may be relatively large, reusing the AUs is unavoidable. A scheduling strategy 2], 5] m ust be adopted.

The main problem to scheduling tasks in a such m a c hine is due to the fact that incomplete results can be used as operands for successive operations. The level-based algorithms are not well adapted, because the level does not represent a n y more the precedence constraints of the threads of the machine: the precedence nodes can deliver some digits of their outputs before ending their computation and not allthese digits as in parallel arithmetic architectures. A s c heduling strategy for this architecture must consider the digit on-line delay, the synchronization, the numb e r o f A Us, and the number of digits used to code the numb e r s . S t a t i c s c heduling strategies are limited because they can be used only when the delays of the AUs are xed. As we consider variable-delay AUs, we use dynamic scheduling. Let us introduce some graph notation:

We represent the task graph as a DFG or DAG called G, where, G = (N A), and N = f 1 n g is the set of nodes(n > 0) and A is the set of directed arcs. Each node represents an arithmetic operation and the arcs are used to represent the dependencies. In particular, an arc a ij 2 A indicates that the operation corresponding to node j uses the results of the operation corresponding to node i . W e s a y that node i is a predecessor of node j and this last is successor of the former. We de ne S(i) as the set of all the successors of i . T h e in-degree o f a n o d e i is de ned as the number of predecessors of that node. The out-degree of node i is de ned as the number of its successors. Nodes with in-degree of zero are called input-nodes and those with out-degree zero are called output-nodes. W e de ne I as the set of input-nodes: I = fi 0 i p;1 g and O as the set of output-nodes: O = fo 0 o t;1 g, where both p t > 0. A path P = P(i j) is a sequence of nodes (0 m;1), where 0 = i and m;1 = j . The level of i is denoted as l(i) and is de ned as: max(lS(i)) + 1, where lS(i) is the set of the levels of the successors of i and l(o) = 0 for all output nodes. W e de ne also D as the higher level of G.

DP(i o k) = (o k) + C(m;2 o k) + (m;2) + (14) C(m;3 m;2) + (m;3) + + + (1) + C(1 i) + (i)
Of course, several DPs m a y exist for the same node. Let us de ne SDP(i) a s t h e s e t o f delay-paths of node i and MPas the maximum value of these DPs:

MP(i) = max(SDP(i)) (15)
If we denote SMP(G) = fMP(1) M P (n)g and MMP(G) = max(SMP(G)), then to compute with the lowest delay, the beginning time of computation of task i , (tb i) i s :

tb i = MMP(G) ; MP(i) (16)
Easily, w e nd the ending time of computation of all node: tf i = tb i + (i) + lbs;1. The number of cycles to compute with the minimum delay i s t h e n max(Stf(G)), where Stf is the set of the ending times of the graph. The following algorithm computes tb i and tf i for all nodes on a level-by-level basis beginning at the level of the outputs. Let us present the algorithm:

Algorithm 2 (Lowest delay of computation algorithm) G) ; MP(i) tf i = tb i + (i) + lbs ; 1 g Where, lbs is the number of digits used to code the numbers. Of course, the delays of computation of the variable delay AUs are unknown before the computation and it is practically impossible to know them in all cases and hence the computation with the minimal delay is impossible. However, values of these delays can be given by t h e user from the task graph and his experience in the problem. Closer are the values of this user-hint delays, lower will be the delay of computation. Then, in a rst instance, our purpose is to let the user to use his experience to initialize the values of the delays. But, we consider also the case where default-values must be assumed. In our case, the default value is the lowest delay of operation of the AU (s e e t h e v alues of the divider in equation 13 for example). The beginning time of computation of each node can be used as the priority for each operation. Lowest is the tb i associated to a node higher its priority is (The maximum of the delay-paths can be used also as the priorities of the nodes, avoiding one step of the algorithm 2). Let us use these issues to present t wo s c heduling heuristics. One of these heuristics is adaptable to the delay c hanges of the AUs, in the sense that the priorities are changed dynamically according to delay c hanges. Let us present the adaptive ones rst. This strategy executes the algorithm 2 as many times as delay c hanges occur. The nonadaptive computes only 1 time the algorithm 2. Let us see the strategies: If two predecessors of a node have produced valid digits 2 , t h e n w e will say that the node is ready. We de ne CLas the number of iterations of the algorithm. The adaptive heuristic can be stated as follows:

1. for (k = 0 k D) for each i with l(i) = = k do MP(i) = max(SDP(i)) 2. MMP(G) = max(SMP(G)) 3. for (k = 1 k n) f tb i = MMP(
Heuristic 1 (Adaptive delay c hanges scheduling heuristic)

1. for all the nodes representing variable-length operations, set their delay according to the userhints if desired, else set these delays to their minimum value.

2. compute all the tb i s a c cording to algorithm 2. 3. assigns priorities to the nodes according to their tb i .

4. as long as there a r e n o des to be scheduled, do the following: (a) for each type of task determine the number of ready nodes 3 . Schedule the maximum number of ready tasks according to the number of available operators of the type and their priorities. (b) wait computations of the cycle to be p erformed. (c) return to the group of available AUs, those, whose interval of computation have expired.

(d) increment CL.

(e) if there a r e tasks that have a delay di erent from the ones in step 1, set these delays to their \real" values and go to step 2.

Deleting item e of the heuristic 1, we obtain the nonadaptive ones.

2: rst output of each operator di erents from 0 3: moreover, to be considered ready an input-node must satis ed tb i CLtoo.

We present here one mode of computation of gaussian elimination that uses \intensively" divisions.

Our purpose with this was to study the behaviour of the machine biased by t h i s t ype of AU. In order to simplify our approach no pivot is used. We u s e d t h e w ell-known method to solve linear systems. Let denote the system as AX = b. Figure 14 shows the conventions used in the task graphs. The resulting task graphs for 2, 3 and 4-variable systems are shown in gures 15, 16 and 17. Each operation will be performed by the three AUs introduced above. Additionally, an opposer is easy to design: it su ces to exchange the mantissa bit + by b i t ;. Because the delays' dependences on the data, an analytical method cannot predict the performances of the heuristics. We use parallel discrete-event s i m ulation. We present the main ideas of our simulation in the following section. We use synchronous discrete-event parallel simulation 12], 8], 15] to study some issues of CA-RESSE. In our case the events are the input and output of digits of the heterogeneous AUs. MasPar MP-1, the host computer of the simulation is a SIMD massively parallel computer 14], 11]. The key idea to simulate several AUs on MP-1 is to map to several PEs, several processes. It is possible to map several AUs of the same or di erent t ypes to each PE, but all the processors would simultaneously simulate the same type of operator, since MP-1 is a SIMD computer. The simulation can be viewed as a nite succession of two d i e r e n t steps: computation and communication. In fact, due to the data-parallel programming model of MasPar, problems of synchronization between the di erent arithmetic units are easily solved. The computations are performed in one type of operator at a time. Some important features of the simulation are:

The event list is partitioned or distributed on the PEs. In fact, each P E h a s a v ariable called (priority) that contains its priority relatively to the other tasks of the same type. There are a global counter. for counting the number of cycles used to perform the computations and local counters to describe the state of the operator. The local counters are used to control the computational progress on the node they belong to. The global and local counters always progress forward.

The time is advanced according to the production of the next event. After one step of computation and communication, the time is incremented in one unit.

Using the data-parallel paradigm in a SIMD computer it is guaranteed that the simulated computation time of each n o d e (a n A U) that produces output digit, is less than the virtual or simulated receive time of the node that consumes the output digit.

Each n o d e o f t h e s i m ulated DFG performs its discrete-event simulation by repeatedly processing the inputs, performing some computation and outputting its results. In our simulation a BS digit is represented by t wo bits. The oating-point BS format chosen may h a ve from 54 to 1014 digits for the mantissa and from 10 to 16 digits for the exponent. Control of the AUS process is assumed by a status variable. The process works like a global automaton which controls local ones (maximum, over ow detector and pseudo-normalizer, etc) and circuits (serial adder and incrementer, etc) 3].

9 Studying the performance of CARESSE Understanding and explaining the computation of numerical algorithms on CARESSE is a complex task. Graphical visualizations are useful and interesting tools. Our simulator allows to measure the following parameters of performance:

1. Number of cycles to perform the computations.

2. The speed-up of computation with n operators of each t ype, de ned as the ratio of the number of necessary cycles to compute with 1 operator of each t ype and the number of necessary cycles to compute with n operators of each t ype. 3. E ciency de ned as the ratio of the speed-up and the number of AUs used.

Moreover, statistics or traces show h o w the utilizations of the di erent A Us along the time are. The following traces have been generated by the simulator to show t h e b e h a viour of CARESSE for 3 and 4-variable systems. In order to test the di erences between the two strategies, a great number of delay c hanges have been introduced. This study is part of a project called CARESSE. The goal of this project is to investigate the feasibility o f a m ultiprocessor machine working in digit on-line mode. Such a machine will be heterogeneous, that is it will be make up of di erent t ypes of modules. Each arithmetic operation is performed by a specialized AU. A VLSI prototype of the multiplier have been designed and tested. We h a ve presented a new step in the simulation of CARESSE, a machine well tted to the computations with high precision. The division module presented above, carries new di culties for the scheduling problem. We h a ve i n troduced the concept of delay-path to perform the scheduling in a such a r c hitecture. The original aspect of the scheduling problem here is that the variable delay of computation of the division, makes the time of execution not foreseeable. Using this concept we h a ve compared two di erent scheduling heuristics for CARESSE. The nonadaptive heuristic uses static priorities de ned before the computation. On the other hand, the adaptive heuristic uses dynamic priorities. The main risk is the \starvation", that is the blocking of certain tasks by the higher priority ones, resulting in higher delays of computation. Moreover, it is well known that the list algorithms may not generate the optimal solution. The simulations show also the well known problem of the stability o f s u c h methods, that is, it is not guaranteed that the augmentation of available resources will result in a proportional diminution in the computation time. A comparison of the two heuristics have been performed for a \divisionintensive" Gaussian elimination. The di erent results we h a ve shown prove t h a t t h e c hoice between the two strategies is always an open problem. The performances of these two heuristics in others numerical intensive computations are under study.

Fig. 1 -

 1 Fig. 1 -Some elementary xed-point BS circuits

6 Fig. 2 -

 62 Fig. 2 -Digit-level pipelining in digit on-line arithmetic

Fig. 4 -

 4 Fig. 4 -The automaton of the pseudo-normalizer

Fig. 5 -Fig. 6 -

 56 Fig. 5 -The on-line oating-point divider

Fig. 7 -

 7 Fig. 7 -The over ow detector automaton

Fig. 9 -

 9 Fig. 8 -The pseudo-normalizer

Fig. 10 -

 10 Fig. 10 -The circuit for shifting the mantissas

Fig. 12 -

 12 Fig. 12 -The internal synchronization on the on-line oating-point divider

Fig. 14 -Fig. 15 -Fig. 16 -

 141516 Fig. 14 -Conventions used in the task graphs

Fig. 18 -Fig. 19 -

 1819 Fig. 18 -The number of cylces of two 3-variable systems

 Some issues on CARESSE, a new heterogeneous ne grain parallel-pipelined architecture Mario Fiallos Aguilar y and Jean Duprat Laboratoire de l'Informatique du Parall elisme (LIP) Ecole Normale Sup erieure de Lyon 46 All ee d'Italie, 69364 Lyon Cedex 07, France.

 The lowest delay of computationLet us show h o w it is possible to compute with the lowest delay. W e assume that the number of AUs is unlimited. We de ne the delay-path of a node i , represented by DP(i o k), as the sum of all the delays of computation and communication in the path beginning with i and ending with o

	serial	interconnection			Serial
	inputs	. . .	network	Outputs
		AU				variable delay registers
	Fig. 13 -An h e t e r ogeneous ne grain parallel-pipelined network
	6.2					

k . Then, if we call C = C(k l) the communication delay of path P(k l):

Dans ce rapport, nous nous interessons aux architectures parall eles pipeline a grain n form ees d'unit es arithm etiques h et erog enes. Nous pr esentons quelques r esultats importants pour de telles architectures dont l e m o d ele de calcul, les unit es arithm etiques calculant en s erie au niveau du chi re, de nouvelles heuristiques d'ordonnancement et des exemples de calcul tir es de l'alg ebre lin eaire. En utilisant la simulations par ev enements discrets parall eles et la visualisation de la trace du calcul e ectu e sur une machine massivement parall ele, nous pr esentons quelques mesures de performance de ces architectures Mots-cl es: parall elisme a g a n ularit e ne, calcul h et erog ene, calcul en-ligne.

This work is part of a project called CARESSE which is partially supported by the \PRC A r c hitectures Nouvelles de Machines" of the French Minist ere de la Recherche et de la Technologie and the Centre National de a, Brazil. 1