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Abstract

X is an untyped language for describing circuits by composition of basic compo-
nents. This language is well suited to describe structures which we call “circuits” and
which are made of parts that are connected by wires. Moreover X gives an expressive
platform on which algebraic objects and many different (applicative) programming
paradigms can be mapped. In this paper we will present the syntax and reduction
rules for X and some its potential uses.
To demonstrate the expressive power of X , we will show how, even in an untyped
setting, elaborate calculi can be embedded, like the naturals, the λ-calculus, Bloe and
Rose’s calculus of explicit substitutions λx, Parigot’s λµ and Curien and Herbelin’s
λµµ̃.

Keywords: Language design, mobility, circuits, classical logic, Curry-Howard
correspondance

Résumé

X est un langage non typ é conçu pour d écrire les circuits par composition de
«briques» de base. Ce langage s’adapte parfaitement à la description des structures
que nous appelons «circuits» et qui sont faites de composants connect és par des fils.
De plus, X fournit une plate-forme expressive sur laquelle des objets alg ébriques et
de nombreux paradigmes de programmation (applicative) de toutes sortes peuvent être
appliqu és. Dans ce rapport, nous pr ésenterons la syntaxe de X , ses règles de r éduction
et certaines de ses utilisations potentielles.
Pour mettre en lumière le pouvoir expressif de X , nous montrerons comment, même
dans un cadre non typ é, on peut y plonger des calculs relativement sophistiqu és,
comme les entiers naturels, le λ-calcul, le calcul de substitutions explicites λx de Bloe
et Rose, le calcul λµ de Parigot et le calcul λµµ̃ de Curien et Herbelin.

Mots-clés: Conception de langage, mobilit é, circuits, logique classique,
correspondance de Curry-Howard



1 Introduction

In this paper we will present a language called X that describes circuits, and its reduc-
tion rules that couple (weld) circuits. Among others, we will show how X can be used
to describe the behaviour of functional programming languages at a very low level of
granularity.

X as a language for describing circuits

The basic pieces of X can be understood as components with entrance and exit wires
and ways to describe how to connect them to build larger circuits. Those component
will be quickly surveyed in the introduction and receive a more detailed treatment
in Section 2. We call “circuits” the structures we build, because they are made of
components connected by wires.

X as a syntax for the sequent calculus

Starting from the proof of Dragalin [13], Herbelin proposed in his PhD [17] a Curry-
Howard correspondence; this was more elaborated in [10] leading to the definition
of the language λµµ̃ (see Section 6). Among other approaches we need to men-
tion [16, 11, 12, 6]; more generally, this work has connections with linear logic [15].
The relation between call-by-name and call-by-value in the context of λµµ̃ is studied
in detail in [27].

The origins of the language X we propose in this paper lie in the notations for the
sequent calculus as presented first by Urban in his PhD thesis [25] and later studied in
relation with λµµ̃ [10] by Lengrand [19]. The study of the connections between X and
λµµ̃ as reported on in [10] was not fortuitous, and was taken as starting point for our
investigations; in this paper, we will show in detail the interplay between X and λµµ̃.

An interesting aspect of X is its role within the context of cut-elimination. For this,
X is naturally typed. One main step forward with respect to previous work is that we
went to an untyped language which serves as a expressive framework for representing
the untyped lambda calculus, the untyped calculus of explicit substitutions and the
untyped language λµµ̃.

Some of the contributions of this paper are to make the notation more intuitive
and readable by moving to an infix notation, and to insist on the computational aspect.
This is achieved by studying X in the context of the normal functional programming
languages paradigms, but, more importantly, to cut the link between X and Classical
Logic. We achieve this by studying our language without types; this way, we also
consider circuits that do not correspond to proofs. In particular, we consider also non-
termination circuits. In fact, we aim to study X outside the context of Classical Logic
in much the same way as the λ-calculus is studied outside the context of Intuitionistic
Logic.

X as a fine grained operational model of computation

When taking the λ-calculus as a model for programming languages, the operational
behaviour is provided by β-contraction. As is well known, β-contraction expresses
how to calculate the value of a function applied to a parameter. In this, the parameter
is used to instantiate occurrences of the bound variable in the body via the process of
substitution. This description is rather basic as it says nothing on the actual cost of the
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substitution, which is quite high at run-time. Usually, a calculus of explicit substitu-
tions [7, 1, 21, 20] is considered better suited for an accurate account of the substitution
process and its implementation. When we refer to the calculus of explicit substitution
we rather intend λx, the calculus of explicit substitution with explicit names, due to
Bloo and Rose [7]. λx gives a better account of substitution as it integrates substi-
tutions as first class citizens, decomposes the process of inserting a term into atomic
actions, and explains in detail how substitutions are distributed through terms to be
eventually evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit sub-
stitutions can in fact be lowered substantially. In X , we reach a ‘subatomic’ level by
decomposing explicit substitutions into smaller components. At this level, the calculus
X explains how substitutions and terms interact.

The calculus is actually symmetric [4] and, unlike λx where a substitution is ap-
plied to a term, a term in X can also be applied to a substitution. Their interaction
percolates subtly and gently through the term or substitution according to the direction
that has been chosen. We will see that the these two kinds of interaction have a di-
rect connection with call-by-value and call-by-name strategies, that both have a natural
description in X .

The ingredients of the syntax

It is important to note that X does not have variables1 –like λ-calculus or λµµ̃– as
possible places where terms might be inserted; instead, X has wires, also called con-
nectors, that can occur free or bound in a term. As for the λ-calculus, the binding of
a wire indicates that it is active in the computation; other than in the λ-calculus, how-
ever, the binding is not part of a term that is involved in the interaction, but is part of
the interaction itself.

There are two kinds of wires: sockets that are reminiscent of values and plugs
(corresponding to variables and covariables, respectively, in [27]) that are reminiscent
of continuations. Wires are not supposed to denote a location in a term like variables
in λ-calculus. Rather, wires are seen a bit like ropes that can be knotted or tightened
(like chemical bonds) with ropes of other components.

This, in fact, corresponds in a way to the practice of sailing. Sailors give a very
specific name to each rope (main sail halyard, port jib sheet, etc.), and on a modern
competition sailboat every rope has its own colour to be sure that one tightens (or
loosens) a rope to (or from) its appropriate place or with (or from) the appropriate rope;
loosening the wrong rope can be catastrophic. In X , those colours naturally become
types, and like a rope has a colour, a wire has a type.

One specificity of X is that syntactic constructors bind two wires, one of each kind.
In X , bound wires receive a hat, so to show that x is bound we write x̂ [28, 29]. That a
wire is bound in a term implies, naturally, that this wire is unknown outside that term,
but also that it ‘interacts’ with another ‘opposite’ wire that is bound into another term.
The interaction differs from one constructor to another, and is ruled by basic reductions
(see Section 2). In addition to bound wires an introduction rule exhibits a free wire,
that is exposed and connectable. Often –but not always– this exhibition corresponds to
the creation of the wire.

1We encourage the reader to not become confused by the use of names like x for the class of connectors
that are called plugs; these names are, in fact, inherited from λµµ̃.
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Contents of this paper

In this paper we will present the formal definitions for X , via syntax and reduction
rules, and will show that the system is well-behaved by stating a number of essential
properties. We will define a notion of simple type assignment for terms in X , in that we
will define a system of derivable judgements for which the terms of X are witnesses;
we will show a soundness result for this system by showing that a subject-reduction
result holds.

We will also compare X with a number of its predecessors. In fact, we will show
that a number of well-know calculi are easily, elegantly and surprisingly effectively
implementable in X . For anyone familiar with the problem of expressibility, in view of
the fact that X is substitution-free, these result are truly novel. With the exception of
the calculus λµµ̃, the converse is unobtainable. This can easily be understood from the
fact that the vast majority of calculi in our area is confluent (Church-Rosser), whereas
X is not.

2 The X -calculus

The circuits that are the objects of X are built with three kinds of building stones, or
constructors, called capsule, export and mediator.. In addition there is an operator
we call weld, which is handy for describing circuit construction, and which will be
eliminated eventually by rules. In addition we give congruence among circuits.

2.1 The operators

Circuits are connected through wires that are named. In our description wires are ori-
ented. This means we know in which direction the ‘ether running through our circuits’
moves, and can say when a wire provides an entrance to a circuit or when a wire pro-
vides an exit. Thus we make the distinction between exit wires which we call plugs
and enter wires which we call sockets. Plugs are named with Greek letters α, β, γ, δ, . . .
and sockets are named with Latin letters x, y, z, . . ..

When connecting two circuits P and Q by an operator, say �, we may suppose that
P has a plug α and Q has a socket x which we want to connect together to create a flow
from P to Q. After the link has been established, the wires have been plugged, and
the name of the plug and the name of the socket are forgotten. To be more precise, in
P x̂�α̂Q the name x is not reachable outside P and the name α is not reachable outside
Q. This reminds of construction like ∀x.P or λx.M in logic where the name x is not
known outside the expressions. Logicians say that those names are bound. Likewise, in
X , in a construction like P x̂ � α̂Q where α is a plug of P and x is a socket of Q, there
are two bound names namely α and x, that are bound in the interaction. We use the
“hat”-notation, keeping in line with the old tradition of Principia Mathematica [28],
writing x̂ to say that x is bound. For connecting P and Q through � we write P α̂�x̂Q.

Definition 2.1 (Syntax) The circuits of the X -calculus are defined by the following
grammar, where x, y, . . . range over the infinite set of sockets, and α, β over the infinite
set of plugs.

P, Q ::= 〈x.α〉 | ŷP β̂ ·α | P β̂ [y] x̂Q | P α̂ † x̂Q

Notice that, using the intuition sketched above, for example, the connector β is sup-
posed not to occur outside of P ; this is formalised below by Definition 2.2 and Baren-
dregt’s Convention (see also below).
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Assume that the terms of the left-hand sides of the rules introduce the socket x and
the plug α.

(cap-cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉

(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ

(med) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-med) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷP β̂ † ẑR

-
y α- -

α x -x β- → -
y β-

-
y

P -β -
α

-
α x -x γ

- → -
y

P -β -
γ

-
y α- -

α x Q -β [x] z- P-
x → Q -β [y] z- P-

y

-
y

P -β -
α

-
α x Q -

γ [x] z- R-
x → Q -

γ y
P -

β z R

Figure 1: The logical rules and their diagrammatical representation

We could justify the constructions of X through the example of the “translations”
in a huge international organisation2. The arguments below will be better established
and formalised in Section 5 when we will speak about types which are the correct
framework. But of course X is basically an untyped language.

Suppose wires carry words in a language like Estonian, or Portuguese, etc, but
also translators from language to language like “French to Dutch.” A capsule 〈x.α〉
connects inside the socket x with the plug α. Everything entering the capsule on x in
one language will leave it in the same language on α. An export (ŷP α̂·β) can be seen
as follows: P provides a device that transforms words in a language received on y to
words in a(nother) language returned on β, therefore (ŷP β̂ ·α) is a translator that is
returned on a specific wire α which can be connected later on. An export can also be
seen as T-diagrams like those used in compiling technology for bootstrapping (see [2]
Section 11.2). A mediator (P α̂ [y] x̂Q) is required when one tries to connect two wires
α and x to carry words from different languages. To be able to achieve that task, one
needs to receive a translator to be connected to the wire y, a socket.

The operator † is called a weld and a term of the form (P α̂ † x̂Q) is called a welt
term, and corresponds to an operation on the switch board. A weld is specific, it just
connects (more precisely, it welds) two circuits, connecting the socket x of Q to the
plug α of P ; this assumes that the language expected on x agrees with the language
delivered by α. The weld expresses the need for a rewiring of the switch board: a
language is on offer on a plug, and demanded on a socket, and “dealing” with the weld,
which expresses the need for the connection to be established, will cause the weld to
be eventually eliminated.

The calculus, defined by the reduction rules (Section 2.2) explains in detail how
welds are distributed through circuits to be eventually erased at the level of capsules.

2see http://europa.eu.int/comm/translation/index_en.htm)
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Diagrammatically, we represent the basic circuits as:

-x α- -
y

P -
α -β

P -
α [y] x- Q-

y
P -

α x Q

We spoke above about bound names; we will introduce now formally those notions
with that of free sockets and plugs into X .

Definition 2.2 The free sockets and free plugs in a circuit are:

fs(〈x.α〉) = {x}

fs(x̂P β̂ ·α) = fs(P ) \ {x}

fs(P α̂ [y] x̂Q) = fs(P ) ∪{y} ∪(fs(Q) \ {x})

fs(P α̂ † x̂Q) = fs(P ) ∪(fs(Q) \ {x})

fp(〈x.α〉) = {α}

fp(x̂P β̂ ·α) = (fp(P ) \ {β}) ∪{α}

fp(P α̂ [y] x̂Q) = (fp(P ) \ {α}) ∪ fp(Q)

fp(P α̂ † x̂Q) = (fp(P ) \ {α}) ∪ fp(Q)

A socket x or plug α which is not free is called bound, written x ∈ bs(P ) and α ∈
bp(P ). We will write x 6∈ fs(P, Q) for x 6∈ fs(P ) ∧ x 6∈ fs(Q).

We will normally adopt Barendregt’s convention (called convention on variables by
Barendregt, but here it will be a convention on names). An exception to that convention
is the definition of natural numbers in Section 3.

Convention on names. In a term or in a statement, a name is never both bound and
free in the same context.

As the main concept is that of a name, we define only renaming, i.e., substitution
of a name by another name as it makes no sense to define the substitution of a name
by a term. The definition of renaming relies on Barendregt’s convention on names; if
a binding, say x̂P of x in P violates Barendregt’s convention, one can get it back by
renaming, i. e., ŷP [y/x] and this renaming can be internalise (see Section 2.5).

Definition 2.3 (Renaming of sockets and plugs)

〈x.α〉[y/x] = 〈y.α〉

〈u.α〉[y/x] = 〈u.α〉, x 6= u

(ẑP β̂ ·α)[y/x] = ẑ(P [y/x])β̂ ·α

(P α̂ [x] ẑQ)[y/x] = (P [y/x])α̂ [y] ẑ(Q[y/x])

(P α̂ [u] ẑQ)[y/x] = (P [y/x])α̂ [u] ẑ(Q[y/x]), x 6= u

(P α̂ † ẑQ)[y/x] = (P [y/x])α̂ † ẑ(Q[y/x])

〈x.α〉[β/α] = 〈x.β〉

〈x.γ〉[β/α] = 〈x.γ〉, α 6= γ

(ẑP δ̂ ·α)[β/α] = ẑ(P [β/α])δ̂ ·β

(ẑP δ̂ ·γ)[β/α] = ẑ(P [β/α])δ̂ ·γ, α 6= γ

(P δ̂ [x] ẑQ)[β/α] = (P [β/α])δ̂ [y] ẑ(Q[β/α])

(P δ̂ † ẑQ)[β/α] = (P [β/α])δ̂ † ẑ(Q[β/α])
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Left propagation

(dL) : 〈y.α〉α̂† x̂P → 〈y.α〉α̂ † x̂P

(† cap) : 〈y.β〉α̂† x̂P → 〈y.β〉, β 6= α

(† exp1) : (ŷQβ̂ ·α)α̂† x̂P → (ŷ(Qα̂† x̂P )β̂ ·γ)γ̂ † x̂P , γ fresh

(† exp2) : (ŷQβ̂ ·γ)α̂† x̂P → ŷ(Qα̂† x̂P )β̂ ·γ, γ 6= α

(† med) : (Qβ̂ [z] ŷR)α̂† x̂P → (Qα̂† x̂P )β̂ [z] ŷ(Rα̂† x̂P )

(† weld) : (Qβ̂ † ŷR)α̂† x̂P → (Qα̂† x̂P )β̂ † ŷ(Rα̂† x̂P )

Right propagation

(dR) : P α̂ †x̂〈x.β〉 → P α̂ † x̂〈x.β〉

( †cap) : P α̂ †x̂〈y.β〉 → 〈y.β〉, y 6= x

( †exp) : P α̂ †x̂(ŷQβ̂ ·γ) → ŷ(P α̂ †x̂Q)β̂ ·γ

( †med1) : P α̂ †x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ †x̂Q)β̂ [z] ŷ(P α̂ †x̂R)), z fresh

( †med2) : P α̂ †x̂(Qβ̂ [z] ŷR) → (P α̂ †x̂Q)β̂ [z] ŷ(P α̂ †x̂R), z 6= x

( †weld) : P α̂ †x̂(Qβ̂ † ŷR) → (P α̂ †x̂Q)β̂ † ŷ(P α̂ †x̂R)

Figure 2: The propagation rules.

Renaming will play an important part in dealing with α-conversion, a problem we
will discuss in Subsection 2.5.

2.2 The rules

It is important to know when a socket or a plug is introduced, i.e. is connectable, i.e.
is exposed and unique. Indeed circuits that introduce sockets and plugs will play an
important role in the reduction rules. Informally, a circuit P introduces a socket x if P
is constructed from subcircuits which do not contain x as free socket, so x only occurs
at the “top level.” This means that P is either a mediator with a middle connector [x]
or a capsule with left part x. Similarly, a circuit introduces a plug α if it is an export
that “creates” α or a capsule with right part α. We say now formally what it means
for a terms to introduce a socket or a plug (Urban [25] uses the terminology “freshly
introduce”).

Definition 2.4 (Introduction)

P introduces x: P = 〈x.β〉 or P = Rα̂ [x] ŷQ, with x 6∈ fs(R, Q).

P introduces α: P = 〈y.α〉 or P = x̂Qβ̂ ·α with α 6∈ fp(Q).

We first present a simple family of reduction rules. They say how to reduce a circuit
that welds subcircuits that introduce connectors. They are naturally divided in four
categories whenever a capsule is welt with a capsule, an export with a capsule, a capsule
with a mediator or an export with a mediator. There is no other pattern in which a plug
is introduced on the left of a † and a socket is introduced on the right.

Definition 2.5 (Logical Reduction) The logical rules and their diagrammatical rep-
resentation are given in Figure 1.
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Notice that, in rule (exp-med), in addition to the conditions for introduction of the
connectors that are active in the weld (α 6∈ fp(P ) and x 6∈ fs(Q, R)) we can also state
that β 6∈ fp(Q)\{γ}, as well as that y 6∈ fs(R)\{z}, due to Barendregt’s convention.

Still in rule (exp-med) the reader may have noticed that we did not put parenthesis
in the expression Qγ̂ † ŷP β̂ † ẑR, which therefore is officially not a circuit. Instead, we
should have given both the circuits (Qγ̂ † ŷP )β̂ † ẑR and Qγ̂ † ŷ(P β̂ † ẑR) as result of
the rewriting. However there is, in fact, a kind of associativity at play which means that
we can omit the parenthesis; this will be made more clear in the next section.

We now need to define how to reduce a welt circuit in case when one of its sub-
circuits does not introduce a socket or a plug. This requires to extend the syntax with
two new operators that we call bent welds:

P ::= . . . | P α̂† x̂Q | P α̂ †x̂Q

Circuits where welds are not bent are called pure (the diagrammatical representation
of bent welds is the same as that for straightened out (i.e. not bent) welds). Bent welds
are propagated through the terms.

Definition 2.6 (Bending the welds)

(bend-L) : P α̂ † x̂Q → P α̂† x̂Q, if P does not introduce α

(bend-R) : P α̂ † x̂Q → P α̂ †x̂Q, if N does not introduce x

Notice that both side-conditions can be valid simultaneously, thereby validating both
rewrite rules at the same moment. This gives, in fact, a critical pair or superposition
for our notion of reduction, and is the cause for the loss of confluence.

We will now define how to propagate a bent weld through sub-circuits. The direc-
tion of the bending shows in which direction the weld should be propagated, hence the
two sets of reduction rules.

Definition 2.7 (Propagation Reduction) The rules of propagation are given in Fig-
ure 2.

We imagine the diffusion of bents like the diffusion of a protein at the level of
molecular interaction (picture taken from [18]):
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(†-assoc) (P α̂ † x̂Q)β̂ † ŷR
X

P α̂ † x̂(Qβ̂ † ŷR) if β 6∈ fp(P ) ∧ x 6∈ fs(R)

(left-comm) P α̂ † x̂(Qβ̂ † ŷR)
X

Qβ̂ † ŷ(P α̂ † x̂R) if x 6∈ fs(Q) ∧ y 6∈ fs(P )

(right-comm) (P α̂ † x̂Q)β̂ † ŷR
X

(P β̂ † ŷR)α̂ † x̂Q if α 6∈ fp(R) ∧ β 6∈ fp(Q)

Figure 3: The structural congruences for †

(med-assoc) P α̂ [z] x̂(Qβ̂ [u] ŷR)
X

(P α̂ [z] x̂Q)β̂ [u] ŷR if β 6∈ fp(P )\{α} ∧ x 6∈ fs(R)\{y}

Figure 4: Structural congruence for the mediators

We will subscript the arrow that represents our reduction to indicate certain sub-
systems, defined by a reduction strategy: for example, we will write →A for the reduc-
tion that uses only rules in Left propagation or Right propagation. In fact, →A is the
reduction that pushes † and † inward.

The rules († exp1) and ( †med1) deserve some attention. For instance, in the
left-hand side of († exp1), α is not introduced, hence α occurs more than once in
ŷQβ̂ ·α, that is once after the dot and again in Q. The occurrence after the dot is
dealt with separately by creating a new name namely γ. Note that the weld associ-
ated with that γ is then unbent; this is because, after the bent welt has been pushed
through ŷ(Qα̂† x̂P )β̂ ·γ (so leaves a circuit with no bent weld), the resulting term
(ŷRβ̂ ·γ)γ̂ † x̂P needs to be considered in its entirety: although we now that now γ is
introduced, we know not if x is. So, in any case, it would be wrong to active the weld
before the result of Qα̂† x̂P (i.e. R) is known.

The same thing happens with x in ( †med1) and a new name z is created and the
external weld is unbent.

2.3 Structural congruences

One describes the simplification theory of Abelian groups with two reduction rules,
namely

x + 0 → x

x + (−x) → 0

and two congruences namely

x + (y + z) = (x + y) + z

x + y = y + x.

The same kind of division in presentation appears in the π-calculus [22] under the name
of structural congruences. Rewriting modulo a set of equations is the basis of rewriting
logic [8, 9].

We observe the same in X . We define two congruences for † that look like associa-
tivity and commutativity. (Actually, purists would say left commutativity x + (y + z) = y + (x + z)
and right commutativity (x + y) + z = (x + z) + y.)
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Definition 2.8 The structural congruences are given in Figure 3.

Rule (†-assoc) allows us to write P α̂ † x̂Qβ̂ † ŷR (provided the side-condition is
fulfilled) since the order of the applications of † is irrelevant. Notice that the side-
condition for this rule is the one we have indicated for (exp-med), and comes from the
variable convention. This is consistent with the parenthesis-free notation we have used
for the right-hand side of (exp-med). Notice that now writing P α̂ † x̂Qα̂ † x̂R is licit.
The second rule is left-commutativity and the third rule is right-commutativity.

There is another rule asserting the associativity of the mediators given in Figure 4.
One may see that the side-condition is the same as for the weld, which is not surprising.
We will freely write P α̂ [z] x̂Qβ̂ [u] ŷR.

2.4 Call-by-name and call-by-value

In this section we will define two sub-systems of reduction, that correspond to call-
by-name (CBN) and call-by-value (CBV) reduction. Notice that this is essentially dif-
ferent from the approach of [27], where, as in λµµ̃, only one notion of reduction is
defined; the CBN-CBV result there was obtained via different interpretation functions
from CBN/CBV calculi (see also Section 8).

As mentioned above, when P does not introduce α and Q does not introduce x,
P α̂ † x̂Q is a superposition, meaning that two rules, namely (bend-L) and (bend-R),
can both be fired.

The critical pair 〈P α̂† x̂Q, P α̂ †x̂Q〉. may lead to different irreducible terms.
This is to say that the reduction relation → is not confluent. Non-determinism is a a
key feature of both classical logic and rewriting logic.

We introduce two strategies which explicitly favour one kind of bending whenever
the above critical pair occurs:

Definition 2.9

• The CBV strategy only bends a weld via (bend-L) when it could be bent in two
ways; we write P →V Q in that case.

• The CBN strategy only bends such a weld via (bend-R); like above, we write
P →N Q.

We will now show some basic properties, which essentially show that the calculus
is well-behaved.

Lemma 2.10 (Cancellation)

1. P α̂† x̂Q →A P if α 6∈ fp(P ) and P is pure.

2. P α̂ † x̂Q→V P if α 6∈ fp(P ) and P is pure.

3. P α̂ †x̂Q →A Q if x 6∈ fs(Q) and Q is pure.

4. P α̂ † x̂Q→N Q if x 6∈ fs(Q) and Q is pure.

We will now show that a weld with a capsule leads to renaming. First we show this,
with the capsule on the right, for left welds in part 1, and generalise this to unlabelled
welds in part 2. Similarly, we show this for right welds with the capsule on the left in
part 3, and for unlabelled welds in part 4.

Lemma 2.11 (Renaming)

9



1. P δ̂† ẑ〈z.α〉 →A P [α/δ], if P is pure.

2. P δ̂ † ẑ〈z.α〉 → P [α/δ], if P is pure.

3. 〈z.α〉α̂ †x̂P →A P [z/x], if P is pure.

4. 〈z.α〉α̂ † x̂P → P [z/x], if P is pure.

These results motivate the extension (in both strategies) of the reduction rules, formu-
lating new rules in the shape of the above results.

2.5 α-conversion

Normally, renaming is an essential part of α-conversion, the process of renaming bound
objects in a language to avoid clashes during computation. The most familiar context
in which this occurs is of course the λ-calculus, where, when reducing a term like
(λxy.xy)(λxy.xy), α-conversion is essential. We will now discuss briefly the solution
of [26], that deals accurately with this problem in X .

Example 2.12 Take the following reduction:

(ŷ〈y.ρ〉ρ̂·γ)γ̂ † x̂(〈x.δ〉δ̂ [x] ŵ〈w.α〉) →

(bend-R), ( †med1), (dR), (exp)

(ŷ〈y.ρ〉ρ̂·γ)γ̂ † ẑ((ŷ〈y.ρ〉ρ̂·δ)δ̂ [z] ŵ〈w.α〉) → (exp-med)
(ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉ρ̂ † ŵ〈w.α〉

If we now re-introduce the omitted brackets, it is clear that we are in breach with
Barendregt’s convention: ρ is both free and bound in (ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉. If we were
to continue the reduction, we obtain:

((ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉)ρ̂ † ŵ〈w.α〉 → (exp)

(ŷ〈y.ρ〉ρ̂·ρ)ρ̂ † ŵ〈w.α〉

Notice that ρ is not introduced in ŷ〈y.ρ〉ρ̂·ρ, since ρ ∈ fp(〈y.ρ〉). So the weld is
propagated, and we obtain:

→ (bend-L), († exp1), (dL)

(ŷ(〈y.ρ〉ρ̂ † ŵ〈w.α〉)ρ̂·ρ)ρ̂ † ŵ〈w.α〉 → (cap-cap), (exp)

ŷ〈y.α〉ρ̂·α.

This is not correct; by α-conversion, (ŷ〈y.ρ〉ρ̂·ρ)ρ̂ † ŵ〈w.α〉 is actually (ŷ〈y.σ〉σ̂ ·ρ)ρ̂ † ŵ〈w.α〉,
where the ρ is introduced, and we should have obtained ŷ〈y.ρ〉ρ̂·α.

It is clear from this example that α-conversion is needed to some extent in any
implementation of X . The solution to this problem as proposed in [26] is to avoid
nested binding by changing, for example, the rule (exp-med):

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷP β̂ † ẑR

Remember that the side-condition we need to be able to drop the parenthesis is β 6∈ fp(Q)\{γ},
as well as that y 6∈ fs(R)\{z}. But, to avoid an α-conflict, this is not enough. In fact,
the α-conversion problem is generated in this rule (and here alone) by the fact that
perhaps β = γ or y = z, or β occurs bound in Q, or y in R. If so, these connectors
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need to be renamed; one of the great plus points of X is that this can be done within
the language itself, unlike for the λ-calculus. In fact, using Lemma 2.11, we can give
an α-conflict free version of X .

In contrast, notice that this is not possible for the λ-calculus. There the only reduc-
tion rule is (λx.M)N → M [N/x], where the substitution is supposed to be immediate.
In particular, it is impossible to predict (or even prevent) α-conflicts that typically de-
pend on bindings occurring inside M and N .

To consider the substitution as a separate syntactic structure implies moving from
the λ-calculus to λx. There the situation is slightly different, in that we can now say
that

(λy.M)〈x = N〉 → λz.(M 〈y = z〉〈x =N〉),

thereby preventing a conflict on a possibly bound y in N . This is expensive though,
as it is performed on all substitutions on abstractions, and does not actually detect the
conflict, but just prevents it.

In X , not only is the α-conflict solved, but also detected, all within the reduction
system of X itself, by essentially expressing

(λy.M)〈x = N〉 → λz.(M 〈y = z〉〈x =N〉), if y bound in N

As shown in [26], to accurately deal with α-conversion the rule (exp-med) needs
to be replaced by:

(ŷRβ̂ ·α)α̂ † x̂(Qγ̂ [x] ẑP ) → Qγ̂ † ŷ(Rβ̂ † ẑP )

α, x int., y 6= z, y 6∈ bs(P )

(ŷRβ̂ ·α)α̂ † x̂(Qγ̂ [x] ẑP ) → Qγ̂ † v̂((〈v.δ〉δ̂ †ŷR)β̂ † ẑP )

α, x int., (y = z ∨ y ∈ bs(P )), v, δ fresh

(ŷRβ̂ ·α)α̂ † x̂(Qγ̂ [x] ẑP ) → (Qγ̂ † ŷR)β̂ † ẑP

α, x int., γ 6= β 6∈ bp(Q)

(ŷRβ̂ ·α)α̂ † x̂(Qγ̂ [x] ẑP ) → (Qγ̂ † ŷ(Rβ̂ † v̂〈v.δ〉))δ̂ † ẑP

α, x int., (β = γ ∨ β ∈ bp(Q)), v, δ fresh

It is even possible to check if y or β occur free in P , and to, if not, skip the renam-
ing. Of course, other rules need dealing with as well. This modified reduction system
preserves Barendregt’s convention.

0 : 〈x.α〉 -x α-

1 : 〈x.α〉α̂ [f ] x̂〈x.α〉 -x α- [f ] -x α-

2 : 〈x.α〉α̂ [f ] x̂〈x.α〉α̂ [f ] x̂〈x.α〉 -x α- [f ] -x α- [f ] -x α-

3 : 〈x.α〉α̂ [f ] x̂〈x.α〉α̂ [f ] x̂〈x.α〉α̂ [f ] x̂〈x.α〉 -x α- [f ] -x α- [f ] -x α- [f ] -x α-

Figure 5: The first natural numbers in X

3 The natural numbers into X

The example of expressing natural numbers into X that we will give in this section is
extremely interesting in two respects. Firstly, it shows how a basic structure can be
embedded in X . Secondly, it shows many features and among them alpha-conversion.
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A natural number is represented in X by a sequence of capsules connected by
mediating sockets, i.e., with the same used names. The first natural numbers are given
in Figure 5.

We assume that natural numbers have two free sockets x and f and one free plug
α, with x as an entering socket, α as an exiting plug and f as a mediating socket. We
define 0 as 〈x.α〉 and succ(N) as Nα̂ [f ] x̂〈x.α〉 where N itself is a natural number
(which violates Barendregt’s convention and should be removed in actual use). Clearly
x and α have both a unique occurrence in each natural number. This is true for 0 and
comes by induction for succ(N).

Lemma 3.1 If N is a natural number,

Nα̂ [f ] x̂〈x.α〉 = 〈x.α〉α̂ [f ] x̂N.

Lemma 3.2 If N1 and N2 are natural numbers,

1. (N1α̂ [f ] x̂〈x.α〉)α̂ † x̂N2 →V N1α̂ [f ] x̂N2

2. (N1α̂ [f ] x̂〈x.α〉)α̂ † x̂N2 →N N1α̂ [f ] x̂N2

3. N1α̂ † x̂(N2α̂ [f ] x̂〈x.α〉) →V N1α̂ [f ] x̂N2

4. N1α̂ † x̂(N2α̂ [f ] x̂〈x.α〉) →N N1α̂ [f ] x̂N2.

Proof. In a first step, we rename bound variables to avoid confusion and capture. =α

is the alpha conversion. Let us prove 1.

(N1α̂ [f ] x̂〈x.α〉)α̂ † x̂N2

=α (N1[β/α]β̂ [f ] ŷ〈y.γ〉)γ̂ † x̂N2

→V (N1[β/α]β̂ [f ] ŷ〈y.γ〉)γ̂ † x̂N2

→V (N1[β/α]γ̂ † x̂N2)β̂ [f ] ŷ(〈y.γ〉γ̂ † x̂N2)

→V N1[β/α]β̂ [f ] ŷ(〈y.γ〉γ̂ † x̂N2)

→V N1[β/α]β̂ [f ] ŷN2[x/y]

=α N1α̂ [f ] x̂N2

Now we prove 4.

N1α̂ † x̂(N2α̂ [f ] x̂〈x.α〉)

(3.1) = N1α̂ † x̂(〈x.α〉α̂ [f ] x̂N2)

=α N1[β/α]β̂ † ŷ(〈y.α〉α̂ [f ] x̂N2)

→N N1[β/α]β̂ †ŷ(〈y.α〉α̂ [f ] x̂N2)

→N (N1[β/α]β̂ †ŷ〈y.α〉)α̂ [f ] x̂(N1[β/α]β̂ †ŷN2)

→N N1α̂ [f ] x̂(N1[β/α]β̂ †ŷN2)

→N N1α̂ [f ] x̂N2

Part 2 and 3 come by induction using 1 and 4 and (med-assoc). �

We define now

Definition 3.3 (Addition and multiplication)

add(N1, N2) = N1α̂ † x̂N2

times(N1, N2) = (x̂N1α̂·β)β̂ † f̂N2
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Using this definition, we can show that the normal properties for addition hold.

Lemma 3.4 (Properties of add)

add(〈x.α〉, N) →A N

add(N, 〈x.α〉) →A N

add(N1α̂ [f ] x̂〈x.α〉, N2) →A add(N1, N2)α̂ [f ] x̂〈x.α〉

add(N1, N2α̂ [f ] x̂〈x.α〉) →A add(N1, N2)α̂ [f ] x̂〈x.α〉

From Lemma 3.4 we get, by induction:

add(0, N) = N

add(N, 0) = N

add(succ(N1), N2) = succ(add(N1, N2)

add(succ(N1), N2) = succ(add(N1, N2).

From them we can prove

add(N1, N2) = add(N2, N1)

add(N1, add(N2, N3)) = add(add(N1, N2), N3).

Lemma 3.5 (Properties of times)

times(N, 0) →A 0

times(N1, succ(N2)) →A add(times(N1, N2), N1)

Proof. The first reduction is a consequences of Lemma 2.10. Let us prove the second
reduction (in what follows N ′

1 stands for N1[y/x][γ/α]).
times(N1, succ(N2)) =

times(N1, N2α̂ [f ] x̂〈x.α〉) =

(x̂N1α̂·β)β̂ † f̂(N2α̂ [f ] x̂〈x.α〉) =α

(ŷN ′

1
γ̂ ·β)β̂ † f̂(N2α̂ [f ] x̂〈x.α〉) →N

(ŷN ′

1
γ̂ ·β)β̂ †f̂(N2α̂ [f ] x̂〈x.α〉) →N

(ŷN ′

1
γ̂ ·β)β̂ † ĝ(((ŷN ′

1
γ̂ ·β)β̂ †f̂N2)α̂ [g] x̂((ŷN ′

1
γ̂ ·β)β̂ †f̂〈x.α〉))

→N

(ŷN ′

1
γ̂ ·β)β̂ † ĝ(((ŷN ′

1
γ̂ ·β)β̂ †f̂N2)α̂ [g] x̂〈x.α〉) →N

((ŷN ′

1γ̂ ·β)β̂ †f̂N2)α̂ † ŷN ′

1γ̂ † x̂〈x.α〉 →A

((ŷN ′

1γ̂ ·β)β̂ †f̂N2)α̂ † ŷN ′

1[α/γ] =α

((x̂N1α̂·β)β̂ †f̂N2)α̂ † x̂N1 =

(times(N1, N2))α̂ † x̂N1 =

add(times(N1, N2), N1) �

4 Interpreting λx

After natural numbers, a good candidate is the λ-calculus. Actually, instead of λ-
calculus, we directly interpret a calculus of explicit substitutions, namely λx.
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λx is a calculus of explicit substitutions introduced by Bloo and Rose [7], where any
β-reduction of λ-calculus can be split into several more atomic steps of computation.
In this section we show that X has a lower level of atomicity as it simulates each
reduction step by describing how the explicit substitutions interact with terms.

We briefly recall here the calculus λx. Its syntax is an extension of that of λ-
calculus:

M ::= x | λx.M | M1M2 | M 〈x = N〉

Definition 4.1 (λx) The reduction relation is defined by the following rules

(λx.M)P → M 〈x = P 〉 (B)

(MN)〈x = P 〉 → M 〈x = P 〉N 〈x = P 〉 (App)

(λy.M)〈x = P 〉 → λy.(M 〈x = P 〉) (Abs)

x〈x = P 〉 → P (VarI)

y 〈x =P 〉 → y (VarK)

M 〈x = P 〉 → M, if x 6∈ fv(M) (gc)

The notion of reduction λx is obtained by deleting rule (gc), and the notion of
reduction λxgc is obtained by deleting rule (VarK). The rule (gc) is called ‘garbage
collection’, as it removes useless substitutions.

Definition 4.2 (Interpretation of λx in X )

ddxccX
α = 〈x.α〉

ddλx.MccX
α = x̂ddMccX

β β̂ ·α

ddMNccX
α = ddMccX

γ γ̂ † x̂(ddNccXβ β̂ [x] ŷ〈y.α〉)

ddM 〈x = N〉ccX
α = ddNccXβ β̂ †x̂ddMccXα.

The interpretation of the λ-calculus is just made of the first three rules.
Now we show that the reductions can be simulated, preserving the evaluation strate-

gies. But what is the CBV-λx? Our notion is naturally inspired by that of the λ-calculus:
in a CBV-β-reduction, the argument must be a value, so that means that when it is sim-
ulated by the CBV-λx, all the substitutions created are of the form M 〈x = N〉 where
N is a value, that is, either a variable or an abstraction, just as in λ-calculus. Hence,
we build the CBV-λx by a syntactic restriction:

M ::= x | λx.M | M1M2 | M 〈x = λx.N 〉 | M 〈x = y〉

Now notice that, again, N is a value if and only if ddNccXα introduces α.

Theorem 4.3 CBN: dd(λx.M)NccX
α →N ddM 〈x = N〉ccX

α

CBV: dd(λx.M)NccXα →V ddM 〈x = N〉ccXα iff N is a value (that is, if and only if (λx.M)N →V M 〈x = N〉).

Proof. dd(λx.M)NccXα =∆

ddλx.MccX
γ γ̂ † ŷ(ddNccX

β β̂ [y] ẑ〈z.α〉) =∆

(x̂ddMccX
δ δ̂ ·γ)γ̂ † ŷ(ddNccX

β β̂ [y] ẑ〈z.α〉) → (exp-med)

ddNccXβ β̂ † x̂(ddMccXδ δ̂ † ẑ〈z.α〉) → (bend-R)

ddNccXβ β̂ †x̂(ddMccX
δ δ̂ † ẑ〈z.α〉) → (2.11-2)

ddNccXβ β̂ †x̂ddMccXα
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Notice that this reduction sequence is valid in the CBN-evaluation, which proves
point 1. As for the CBV-evaluation, the step (bend-R) is only possible if ddNccX

β intro-
duces β, that is, if N is a value. If N is not a value, then ddNccX

β does not introduce
β. The active weld ddNccXβ β̂ †x̂ddMccXα that has to be reached was either already in
dd(λx.M)NccXα or was created (by rule (bend-R)) along the reduction. The first case
is impossible, since the weld should either be in ddNccX

β or in ddMccXδ which are both
smaller in size than the weld. The second case is also impossible because in the CBV-
evaluation, rule (bend-R) requires ddNccXβ to introduce β. �

Theorem 4.4 (Simulation of the other rules)

If M →x N then ddMccX
γ →V ddNccX

γ and ddMccX
γ →N ddNccX

γ

Proof.

• dd(PQ)〈x = N〉ccX
α → dd(P 〈x = N〉)(Q〈x =N〉)ccXα

dd(PQ)〈x =N〉ccX
α =∆ ddNccX

β β̂ †x̂ddPQccX
α =∆

ddNccX
ββ̂ †x̂(ddP ccX

γ γ̂ † ŷ(ddQccXβ β̂ [y] ẑ〈z.α〉)) → ( †weld)

(ddNccXβ β̂ †x̂ddP ccX
γ)γ̂ † ŷ(ddNccX

β β̂ †x̂(ddQccXβ β̂ [y] ẑ〈z.α〉))

→ ( †med2)

ddP 〈x = N〉ccX
γ γ̂ † ŷ((ddNccX

β β̂ †x̂ddQccXβ)β̂ [y] ẑ(ddNccX
ββ̂ †x̂〈z.α〉))

=∆

ddP 〈x = N〉ccX
γ γ̂ † ŷ(ddQ〈N = x〉ccX

ββ̂ [y] ẑ(ddNccX
β β̂ †x̂〈z.α〉))

→ († cap)

ddP 〈x = N〉ccX
γ γ̂ † ŷ(ddQ〈N = x〉ccX

ββ̂ [y] ẑ〈z.α〉) =∆

dd(P 〈x = N〉)(Q〈x = N〉)ccXα

• dd(λy.M)〈x = N〉ccX
α → ddλy.M 〈x = N〉ccX

α

dd(λy.M)〈x = N〉ccXα =∆ ddNccX
β β̂ †x̂ddλy.MccXα =∆

ddNccX
ββ̂ †x̂(ŷddMccX

γ γ̂ ·α) → ( †exp)

ŷ(ddNccX
ββ̂ †x̂ddMccX

γ)γ̂ ·α =∆

ŷddM 〈x = N〉ccX
γ γ̂ ·α =∆ ddλy.M 〈x = N〉ccXα.

• ddx〈x = N〉ccXα → ddNccX
α.

ddx〈x = N〉ccXα =∆ ddNccXβ β̂ †x̂ddxccX
α =∆

ddNccX
ββ̂ †x̂〈x.α〉 → (dR)

ddNccX
ββ̂ † x̂〈x.α〉 → (2.11-2) ddNccX

α

• ddy 〈x = N〉ccXα → ddyccX
α.

ddy 〈x =N〉ccX
α =∆ ddNccX

ββ̂ †x̂ddyccXα =∆

ddNccXβ β̂ †x̂〈y.α〉 → († cap) 〈y.α〉 =∆ ddyccX
α
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• ddM 〈x = N〉ccXα → ddMccX
α, if x 6∈ fv(M).

ddM 〈x = N〉ccXα =∆ ddNccX
β β̂ †x̂ddMccX

α → (gc-R) ddMccXα

�

Hence, we deduce the fact that reduction in λx is preserved by the interpretation of
terms into X .

Theorem 4.5 (Simulation of λx)

1. If M →V N then ddMccXγ →V
∗ddNccXγ

2. If M →N N then ddMccXγ →N
∗ddNccXγ

5 Typing for X

The notion of type assignment on X that we present in this section is the basic implica-
tive system for Classical Logic (Gentzen system LK)g. The Curry-Howard property is
easily achieved (see Section 10).

Definition 5.1 (Types and Contexts)

1. The set of types is defined by the grammar:

A, B ::= ϕ | A→B

The types considered in this paper are normally known as simple (or Curry)
types.

2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set
of statements x:A, such that the subject of the statements (x) are distinct. When
we write Γ1, Γ2 we mean the union of Γ1 and Γ2 when Γ1 and Γ2 are coherent
(if Γ1 contains x:A1 and Γ2 contains x:A2 then A1 = A2).

Contexts of plugs ∆ are defined in a similar way.

Definition 5.2 (Typing for X ) 1. Type judgements are expressed via a ternary re-
lation P ·

·· Γ ` ∆, where Γ is a context of sockets and ∆ is a context of plugs,
and P is a circuit. We say that P is the witness of this judgement.

2. Type assignment for X is defined by the following sequent calculus:

(cap) : 〈y.α〉 ·
·· Γ, y:A ` α:A, ∆

(exp) :
P ·

·· Γ, x:A ` α:B, ∆

x̂P α̂·β ··· Γ ` β:A→B, ∆

(med) :
P ··· Γ ` α:A, ∆ Q ··· Γ, x:B ` ∆

P α̂ [y] x̂Q ··· Γ, y:A→B ` ∆

(cut) :
P ··· Γ ` α:A, ∆ Q ··· Γ, x:A ` ∆

P α̂ † x̂Q ··· Γ ` ∆

We write P ··· Γ ` ∆ if there exists a derivation that has this judgement in the
bottom line, and write D :: P ·

·· Γ ` ∆ if we want to name that derivation.
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Γ and ∆ carry the types of the free connectors in P , as unordered sets. There is no
notion of type for P itself, instead the derivable statement shows how P is connectable.

We can now provide the type of two kinds of term we already studied.

• The type of natural numbers in X is N ·
·· x:A, f :A → A ` α:A.

• The type of ddMccXα is M ··· Γ ` α:A if Γ `λ M : A.

The soundness result of simple type assignment with respect to reduction is stated
as usual:

Theorem 5.3 (Subject reduction) If P ·
·· Γ ` ∆, and P → Q, then Q ·

·· Γ ` ∆.

Theorem 5.4 (Strong normalisation [25])
If P ·

·· Γ ` ∆, then P is strongly normalising.

Theorem 5.5 (Subject congruence) If P ·
·· Γ ` ∆, and P

X
Q, then Q ·

·· Γ ` ∆.

Proof. We will only prove the result for the rule (med-assoc). Consider the two
following typing trees:

• for the term (P1α̂ † x̂P2)β̂ † ŷP3

P1 ··· Γ ` β:B, α : A, ∆ P2 ··· Γ, x:A ` β:B, ∆

P1α̂ † x̂P2 ·
·· Γ ` β:B, ∆ P3 ·

·· Γ, y : B ` ∆

(P1α̂ † x̂P2)β̂ † ŷP3 ··· Γ ` ∆

• and for the term P1α̂ † x̂(P2β̂ † ŷP3)

P1 ·
·· Γ ` α:A, ∆

P2 ··· Γ, x:A ` ∆, β:B P2 ··· Γ, x:A, y:B ` ∆

P2β̂ † ŷP3 ·
·· Γ, x:A ` ∆

P1α̂ † x̂(P2β̂ † ŷP3) ··· Γ ` ∆

But the preconditionsβ 6∈ fp(P1) for med-assoc allows us to conclude P1 ·
·· Γ `∆, β:B, α:A

from P1 ··· Γ ` ∆, α:A, by weakening and the same for P3 hence the Subject congru-
ence. �

6 Interpreting the λµµ̃-calculus

In its typed version, X is a proof-term syntax for a classical sequent calculus. Another
proof-system has been proposed for (a variant of) classical sequent calculus: Curien
and Herbelin’s λµµ̃-calculus [10]. It is interesting to relate those two formalisms and
realize that λµµ̃ can be interpreted in X as well.

Definition 6.1 (Syntax and Reduction λµµ̃)

c ::= 〈v|e〉 (commands)

v ::= x | µβ.c | λx.v (terms)
e ::= α | µ̃x.c | v · e (contexts)
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(→) 〈λx.v1|v2 · e〉 → 〈v2|µ̃x.〈v1|e〉〉

(µ) 〈µβ.c|e〉 → c[e/β]

(µ̃) 〈v|µ̃x.e〉 → c[v/x]

Definition 6.2 (Typing for λµµ̃)

(cut) :
Γ ` v:A | ∆ Γ | e:A ` ∆

〈v|e〉 : Γ ` ∆

(Ax-n) : Γ | x:A ` x:A, ∆

(Ax-v) : Γ, α:A ` α:A | ∆

(RI) :
Γ, x:A ` v:B | ∆

Γ ` λx.v:A→B | ∆

(LI) :
Γ ` v:A | ∆ Γ | e:B ` ∆

Γ | v · e:A→B ` ∆

(µ) :
c : Γ ` α:A, ∆

Γ ` µα.c:A | ∆
(µ̃) :

c : Γ, α:A ` ∆

Γ | µ̃α.c:A ` ∆

One feature of λµµ̃ is that its syntax and reduction rules reveal a duality between
call-by-value and call-by-name. Indeed, the call-by-value evaluation is obtained by
forbidding a µ̃-reduction when the redex is also a µ-redex, whereas the call-by-name
evaluation forbids a µ-reduction when the redex is also a µ̃-redex.

We show here how X accounts for this duality. A simulation of λµµ̃ by X has al-
ready been proposed in [19], but we strengthen the result by stating that this simulation
preserves the CBV and CBN evaluations:

Definition 6.3 (Translation of λµµ̃ into X )

ddxccλµµ̃
α = 〈x.α〉

ddλx.vccλµµ̃
α = x̂ddvccλµµ̃

β β̂ ·α

ddµβ.cccλµµ̃
α = ddcccλµµ̃β̂ † x̂〈x.α〉

ddαccλµµ̃
x = 〈x.α〉

ddv · eccλµµ̃
x = ddvccλµµ̃

α α̂ [x] ŷddeccλµµ̃
y

ddµ̃y.cccλµµ̃
x = 〈x.β〉β̂ † ŷddcccλµµ̃

dd〈v|e〉ccλµµ̃ = ddvccλµµ̃
α α̂ † x̂ddeccλµµ̃

x

The interpretation function preserves typeability:

Lemma 6.4 ([19])

1. If Γ ` v:A | ∆, then ddvccλµµ̃
α : Γ ` α:A, ∆.

2. If Γ | e:A ` ∆, then ddeccλµµ̃
x : Γ, x:A ` ∆.

3. If c : Γ ` ∆, then ddcccλµµ̃ : Γ ` ∆.

Theorem 6.5 (Simulation of λµµ̃)

1. If c→V c′ then ddcccλµµ̃ →V ddc
′ccλµµ̃

2. If c→N c′ then ddcccλµµ̃ →N ddc
′ccλµµ̃

18



7 Interpreting λµ

Parigot’s λµ-calculus [24] is yet another proof-term syntax for classical logic, but ex-
pressed in the setting of Natural Deduction. Curien and Herbelin have shown how the
normalisation in λµ can be interpreted as the cut-elimination in λµµ̃. But to reflect the
CBV-evaluation and CBN-evaluation, they define two encodings, respectively:

Definition 7.1 ([10]) The CBV-interpretation ·< and CBN-interpretation ·> of λµ are
defined as follows:

x< = x

(λx.M)< = λx.M<

(MN)< = µα.〈N<|µ̃x.〈M>|x · α〉〉

(µβ.c)< = µβ.c<

([α]M)< = 〈M<|α〉

x> = x

(λx.M)> = λx.M>

(MN)> = µα.〈M>|N> · α〉

(µβ.c)> = µβ.c>

([α]M)> = 〈M>|α〉

Curien and Herbelin’s result is:

Theorem 7.2 (Simulation of λµ in λµµ̃ [10])

1. If t→V t′ then t< →V
∗t′

<.

2. If t→N t′ then t> →N
∗t′

>.

Hence, combining this result to Theorem 6.5 we also get:

Theorem 7.3 (Simulation of λµ in X )

1. If t→V t′ then ddt<ccλµµ̃ →V
∗ddt′

<ccλµµ̃.

2. If t→N t′ then ddt>ccλµµ̃ →N
∗ddt′

>ccλµµ̃.

8 Improving the interpretation
of the λ-calculus

Theorem 7.2 also holds for the restriction of λµ to the traditional λ-calculus. How-
ever, one might be disappointed that the preservation of the CBV-evaluation and CBN-
evaluation relies on two distinct translations of terms. For instance, the CBV-λ-calculus
and the CBN-λ-calculus can both be encoded into CPS [3], and there it is clear that what
accounts for the distinction CBV/CBN is the encodings themselves, and not the way CPS
reduces the encoded terms.

So it could be the case that, similarly, when encoding the λ-calculus in λµµ̃, the
distinction between CBV and CBN mostly relies on Curien and Herbelin’s two distinct
encodings rather than the features of λµµ̃. The same holds for [27]. Whereas their
CBN-translation seems intuitive, they apparently need to twist it in a more complex
way in order to give an accurate interpretation of the CBV λ-calculus, since

Lemma 8.1 M< →∗ M>
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dd∆∆ccNβ =∆ ddλx.xxccN
γ γ̂ † ẑ(ddλx.xxccN

γ γ̂ [z] ŷ〈y.β〉) =∆

(x̂ddxxccN
αα̂·δ)δ̂ † ẑ(ddλx.xxccNγ γ̂ [z] ŷ〈y.β〉) → (exp-med)

ddλx.xxccN
γ γ̂ † x̂(ddxxccNαα̂ † ŷ〈y.β〉) → (2.11-2)

ddλx.xxccN
γ γ̂ † x̂ddxxccN

β =∆

ddλx.xxccN
γ γ̂ † x̂(〈x.δ〉δ̂ [x] ŷ〈y.β〉) → (bend-R)

ddλx.xxccN
γ γ̂ †x̂(〈x.δ〉δ̂ [x] ŷ〈y.β〉) → ( †med1)

ddλx.xxccN
γ γ̂ † ẑ((ddλx.xxccNγ γ̂ †x̂〈x.δ〉)δ̂ [z] ŷ(ddλx.xxccNγ γ̂ †x̂〈y.β〉)) → († cap)

ddλx.xxccN
γ γ̂ † ẑ((ddλx.xxccNγ γ̂ †x̂〈x.δ〉)δ̂ [z] ŷ〈y.β〉) → ( ††)

ddλx.xxccN
γ γ̂ † ẑ((ddλx.xxccNγ γ̂ † x̂〈x.δ〉)δ̂ [z] ŷ〈y.β〉) → (2.11-2)

ddλx.xxccN
γ γ̂ † ẑ(ddλx.xxccN

δ δ̂ [z] ŷ〈y.α〉) =∆ dd∆∆ccN
β

Figure 6: Reduction of the interpretation of the lambda term (λx.xx)(λx.xx).

Proof. By structural induction on M , the interesting case being:
(NP ) <=∆ µα.〈N<|µ̃x.〈M>|x · α〉〉

→µ̃ µα.〈M>|N> · α〉

=∆ (NP )>
�

This is a bit disappointing since the CBN-encoding turns out to be more refined than
the CBV-encoding, breaking the nice symmetry.

On the other hand, we will show here that X fully preserves this symmetry. Of
course, by Theorem 6.5, we also have

Lemma 8.2 ddM<ccλµµ̃
β →∗ ddM>ccλµµ̃

β

But we now show that we can take the simplest translation (i.e. dd·>ccλµµ̃
β ) for both cases

CBV and CBN and that the evaluation strategies of X reflect the distinction between
them.

We assume the reader to be familiar with the λ-calculus [5]. We can define the
direct encoding of the λ-calculus into X :

Definition 8.3 Let ddMccN
α = ddM>ccλµµ̃

α , in other words:

ddxccN
α = 〈x.α〉

ddλx.MccNα = x̂ddMccN
β β̂ ·α

ddMNccNα = ddMccNγ γ̂ † x̂(ddNccN
β β̂ [x] ŷ〈y.α〉)

Notice that this is the encoding as defined in Definition 4.2.

Definition 8.4 (Curry types for the λ-calculus)
The type assignment rules for the Curry Type Assignment system for λ-calculus are:

(Ax) :
Γ, x:A `λ x : A

(→I) :
Γ, x:A `λ M : B

Γ `λ λx.M : A→B

(→E) :
Γ `λ M : A→B Γ `λ N : A

Γ `λ MN : B
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We can now show that typeability is preserved by dd·ccNα:

Theorem 8.5 If Γ `λ M : A, then ddMccN
α ·
·· Γ ` α:A.

So, when encoding the Call-by-Value λ-calculus, we also use the dd·ccN
α interpreta-

tion. And, in contrast to λµµ̃, we can get an accurate interpretation of the Call-by-Value
λ-calculus into X by using the CBV strategy, which we can reformulate as:

(bend-L) : Mα̂ † x̂N → Mα̂† x̂N, if M does not introduce α

(bend-R) : Mα̂ † x̂N → Mα̂ †x̂N,

if M introduces α and N does not introduce x

If M introduces α and N introduces x, the logical rules apply. (This makes the calculus
deterministic, but that is OK, since we want to simulate CBV reduction.)

Now notice that when M is a value (i.e. either a variable or an abstraction) then
ddMccN

α introduces α. In fact, M is a value if and only if ddMccNα introduces α. Then
ddMccN

αα̂ † x̂ddNccN
β cannot be reduced by rule (bend-L), but by either rule (bend-R) or a

logical rule. This enables the reduction

ddMccN
αα̂ † x̂ddNccNβ →V

∗ddN [M/x]ccNβ .

So Call-by-Value reduction for the λ-calculus is respected by the interpretation func-
tion, using the CBV strategy.

Theorem 8.6 (Simulation of λ-calculus)

1. If M →V N then ddMccNγ →V
∗ddNccNγ .

2. If M →N N then ddMccNγ →N
∗ddNccNγ .

Proof. This is a direct corollary of Theorem 4.5, the simulation result for λx pre-
sented in the Section 4. �

9 Infinite Computations

To strengthen the fact that we consider more than just those circuits that represent
proofs, we will show an example of a non-terminating reduction sequence.

Example 9.1 (Reducing dd∆∆ccN
β) Notice that

ddxxccN
α =∆

ddxccN
γ γ̂ † ẑ(ddxccN

ββ̂ [z] ŷ〈y.α〉) =∆

〈x.γ〉γ̂ † ẑ(〈x.β〉β̂ [z] ŷ〈y.α〉) → (med)

〈x.β〉β̂ [x] ŷ〈y.α〉

and that this reduction is unique and deterministic. So we can define the short-hand

ddxxccNα = 〈x.β〉β̂ [x] ŷ〈y.α〉

ddλx.xxccNγ = x̂ddxxccNαα̂·γ

dd∆∆ccN
β = ddλx.xxccN

γ γ̂ † ẑ(ddλx.xxccN
γ γ̂ [z] ŷ〈y.β〉)
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and notice that now a weld only appears in the interpretation of ∆∆. Now this term
reduces as in Figure 6.

An alternative reduction sequence is:

(x̂ddxxccN
αα̂·δ)δ̂ † ẑ(ddλx.xxccNγ γ̂ [z] ŷ〈y.β〉) → (exp-med)

(ddλx.xxccN
γ γ̂ † x̂ddxxccNα)α̂ † ŷ〈y.β〉 → (2.11-2)

ddλx.xxccN
γ γ̂ † x̂ddxxccN

β

so this forms a small diamond. In fact, all renaming reductions can be postponed
without affecting the end result.

10 From sequent calculus to X

As mentioned in the introduction, X is inspired by the sequent calculus, so it is worth-
while to recall some of the principles. The sequent calculus we consider has only
implication, no structural rules and a changed axiom. It offers an extremely natural
presentation of the classical propositional calculus with implication, and is a variant of
system LK. It has four rules: axiom, right introduction, left introduction and cut.

(ax) : Γ, A ` A, ∆ (R→) :
Γ, A ` B, ∆

Γ ` A→B, ∆

(cut) :
Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆
(L→) :

Γ ` A, ∆ Γ, B ` ∆

Γ, A→B ` ∆

As one knows, the rule (cut) plays a major role in proofs, since for proof theo-
reticians, cut-free proofs enjoy nice properties and proof reductions by cut-elimination
have been proposed by Gentzen. Those reductions become the fundamental principle
of computation in X .

Another nice property of proof systems that is known as the Curry-Howard corre-
spondence is the fact that one can associate a term with a proof such that propositions
become types and proof reductions become term reductions (or computations in X ).
This phenomenon was first discovered for the λ-calculus and its connection with intu-
itionistic logic was put in evidence. The Curry-Howard correspondence for X is with
classical propositional calculus and is given through the sequent calculus described
above. Proposition receives names. Those that appear in the left part of a sequent re-
ceive names like x, y, z, . . . and those that appear in the right part of a sequent receive
name like α, β, γ, . . .

An example: a proof of Peirce’s Law

Peirce’s Law can be shown to be inhabited in λµµ̃ by the term λz.µα.〈z|(λy.µβ.〈y|α〉) · α〉
[14] which is itself the reduction of the translation of the λµ-term given by Ong and
Steward [23]. Using the translation function dd·ccλµµ̃ on this term, we obtain the first
term of Figure 7. Notice that the process obtained via translation has four welds: re-
moving these produces the (in-side out) reduction sequence.

22



ẑ((〈z.ε〉ε̂ † x̂((ŷ((〈y.ρ〉ρ̂ † û〈u.α〉)β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →

ẑ((〈z.ε〉ε̂ † x̂((ŷ(〈y.α〉β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →

ẑ((〈z.ε〉ε̂ † x̂((ŷ〈y.α〉η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →

ẑ(((ŷ〈y.α〉η̂ ·φ)φ̂ [z] ŵ〈w.α〉)α̂ † x̂〈x.δ〉)δ̂ ·γ →

ẑ((ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉)δ̂ ·γ.

Figure 7: Peirce’s Law in X .

Typing the contractum gives the derivation

〈y.δ〉 ··· y:A ` δ:A, η:B

ŷ〈y.δ〉η̂ ·φ ·
·· ` φ:A→B, δ:A 〈w.δ〉 ·

·· w:A ` δ:A

(ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉 ··· z:(A→B)→A ` δ:A

ẑ((ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉)δ̂ ·γ ·
·· ` γ:((A→B)→A)→A

when we remove all circuit information from this derivation, we obtain exactly the
simplest proof for Peirce’s Law in Classical Logic.

A ` A, B

` A→B, A A ` A

(A→B)→A ` A

` ((A→B)→A)→A

11 Conclusions and future work

This study is the first step of many researches. We want to focus in two directions: X
as a language for designing circuit, especially with calculi like π-calculus, decidable
typing in X and intersection types.
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[20] St éphane Lengrand, Pierre Lescanne, Dan Dougherty, Mariangiola Dezani-
Ciancaglini, and Steffen van Bakel. Intersection types for explicit substitutions.
Information and Computation, 189(1):17–42, 2004.

[21] P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In
Hans Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Princi-
ples Of Programming Languages, Portland (Or., USA), pages 60–69. ACM, 1994.

[22] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, 1999.

[23] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional
computation with control. In Proceedings of the 24th Annual ACM Symposium
on Principles Of Programming Languages, Paris (France), pages 215–227, 1997.

[24] M. Parigot. An algorithmic interpretation of classical natural deduction. In Proc.
of Int. Conf. on Logic Programming and Automated Reasoning, LPAR’92, vol-
ume 624 of Lecture Notes in Computer Science, pages 190–201. Springer-Verlag,
1992.

[25] Christian Urban. Classical Logic and Computation. PhD thesis, University of
Cambridge, October 2000.

[26] Steffen van Bakel, Jayshan Raghunandan, and Alexander Summers. Term graphs,
α-conversion, and principal types for X . Submitted.

[27] Philip Wadler. Call-by-Value is Dual to Call-by-Name. In Proceedings of the
eighth ACM SIGPLAN international conference on Functional programming,
pages 189 – 201, 2003.

[28] A N. Whitehead and B. Russell. Principia Mathematica. Cambridge University
Press, 2nd edition, 1925.

[29] A. N. Whitehead and B. Russell. Principia Mathematica to *56. Cambridge
Mathematical Library. Cambridge University Press, 2nd edition, 1997.

25


