Steffen Van Bakel

Stéphane Lengrand

Pierre Lescanne

The language X : circuits, computations and Classical Logic

Keywords: Language design, mobility, circuits, classical logic, Curry-Howard correspondance Conception de langage, mobilité, circuits, logique classique, correspondance de Curry-Howard

X is an untyped language for describing circuits by composition of basic components. This language is well suited to describe structures which we call "circuits" and which are made of parts that are connected by wires. Moreover X gives an expressive platform on which algebraic objects and many different (applicative) programming paradigms can be mapped. In this paper we will present the syntax and reduction rules for X and some its potential uses. To demonstrate the expressive power of X , we will show how, even in an untyped setting, elaborate calculi can be embedded, like the naturals, the λ-calculus, Bloe and Rose's calculus of explicit substitutions λx, Parigot's λµ and Curien and Herbelin's λµμ.

Introduction

In this paper we will present a language called X that describes circuits, and its reduction rules that couple (weld) circuits. Among others, we will show how X can be used to describe the behaviour of functional programming languages at a very low level of granularity.

X as a language for describing circuits

The basic pieces of X can be understood as components with entrance and exit wires and ways to describe how to connect them to build larger circuits. Those component will be quickly surveyed in the introduction and receive a more detailed treatment in Section 2. We call "circuits" the structures we build, because they are made of components connected by wires.

X as a syntax for the sequent calculus

Starting from the proof of Dragalin [START_REF] Dragalin | Mathematical Intuitionism: Introduction to Proof Theory[END_REF], Herbelin proposed in his PhD [START_REF] Herbelin | Séquents qu'on calcule : de l'interprétation du calcul des séquents comme calcul de λ-termes et comme calcul de stratégies gagnantes[END_REF] a Curry-Howard correspondence; this was more elaborated in [START_REF] Curien | The duality of computation[END_REF] leading to the definition of the language λµμ (see Section 6). Among other approaches we need to mention [START_REF] Girard | A new constructive logic: classical logic[END_REF][START_REF] Vincent Danos | Computational isomorphisms in classical logic[END_REF][START_REF] Vincent Danos | A new deconstructive logic: Linear logic[END_REF][START_REF] Barendregt | Lambda terms for natural deduction, sequent calculus and cut-elimination[END_REF]; more generally, this work has connections with linear logic [START_REF] Girard | Linear logic[END_REF]. The relation between call-by-name and call-by-value in the context of λµμ is studied in detail in [START_REF] Wadler | Call-by-Value is Dual to Call-by-Name[END_REF].

The origins of the language X we propose in this paper lie in the notations for the sequent calculus as presented first by Urban in his PhD thesis [START_REF] Urban | Classical Logic and Computation[END_REF] and later studied in relation with λµμ [START_REF] Curien | The duality of computation[END_REF] by Lengrand [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF]. The study of the connections between X and λµμ as reported on in [START_REF] Curien | The duality of computation[END_REF] was not fortuitous, and was taken as starting point for our investigations; in this paper, we will show in detail the interplay between X and λµμ.

An interesting aspect of X is its role within the context of cut-elimination. For this, X is naturally typed. One main step forward with respect to previous work is that we went to an untyped language which serves as a expressive framework for representing the untyped lambda calculus, the untyped calculus of explicit substitutions and the untyped language λµμ. Some of the contributions of this paper are to make the notation more intuitive and readable by moving to an infix notation, and to insist on the computational aspect. This is achieved by studying X in the context of the normal functional programming languages paradigms, but, more importantly, to cut the link between X and Classical Logic. We achieve this by studying our language without types; this way, we also consider circuits that do not correspond to proofs. In particular, we consider also nontermination circuits. In fact, we aim to study X outside the context of Classical Logic in much the same way as the λ-calculus is studied outside the context of Intuitionistic Logic.

X as a fine grained operational model of computation

When taking the λ-calculus as a model for programming languages, the operational behaviour is provided by β-contraction. As is well known, β-contraction expresses how to calculate the value of a function applied to a parameter. In this, the parameter is used to instantiate occurrences of the bound variable in the body via the process of substitution. This description is rather basic as it says nothing on the actual cost of the 1 substitution, which is quite high at run-time. Usually, a calculus of explicit substitutions [START_REF] Bloo | Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection[END_REF][START_REF] Abadi | Explicit substitutions[END_REF][START_REF] Lescanne | From λσ to λυ, a journey through calculi of explicit substitutions[END_REF][START_REF] Lengrand | Intersection types for explicit substitutions[END_REF] is considered better suited for an accurate account of the substitution process and its implementation. When we refer to the calculus of explicit substitution we rather intend λx, the calculus of explicit substitution with explicit names, due to Bloo and Rose [START_REF] Bloo | Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection[END_REF]. λx gives a better account of substitution as it integrates substitutions as first class citizens, decomposes the process of inserting a term into atomic actions, and explains in detail how substitutions are distributed through terms to be eventually evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit substitutions can in fact be lowered substantially. In X , we reach a 'subatomic' level by decomposing explicit substitutions into smaller components. At this level, the calculus X explains how substitutions and terms interact.

The calculus is actually symmetric [START_REF] Barbanera | A symmetric lambda calculus for classical program extraction[END_REF] and, unlike λx where a substitution is applied to a term, a term in X can also be applied to a substitution. Their interaction percolates subtly and gently through the term or substitution according to the direction that has been chosen. We will see that the these two kinds of interaction have a direct connection with call-by-value and call-by-name strategies, that both have a natural description in X .

The ingredients of the syntax

It is important to note that X does not have variables 1 -like λ-calculus or λµμas possible places where terms might be inserted; instead, X has wires, also called connectors, that can occur free or bound in a term. As for the λ-calculus, the binding of a wire indicates that it is active in the computation; other than in the λ-calculus, however, the binding is not part of a term that is involved in the interaction, but is part of the interaction itself.

There are two kinds of wires: sockets that are reminiscent of values and plugs (corresponding to variables and covariables, respectively, in [START_REF] Wadler | Call-by-Value is Dual to Call-by-Name[END_REF]) that are reminiscent of continuations. Wires are not supposed to denote a location in a term like variables in λ-calculus. Rather, wires are seen a bit like ropes that can be knotted or tightened (like chemical bonds) with ropes of other components. This, in fact, corresponds in a way to the practice of sailing. Sailors give a very specific name to each rope (main sail halyard, port jib sheet, etc.), and on a modern competition sailboat every rope has its own colour to be sure that one tightens (or loosens) a rope to (or from) its appropriate place or with (or from) the appropriate rope; loosening the wrong rope can be catastrophic. In X , those colours naturally become types, and like a rope has a colour, a wire has a type.

One specificity of X is that syntactic constructors bind two wires, one of each kind. In X , bound wires receive a hat, so to show that x is bound we write x [START_REF] Whitehead | Principia Mathematica[END_REF][START_REF] Whitehead | Principia Mathematica to *56[END_REF]. That a wire is bound in a term implies, naturally, that this wire is unknown outside that term, but also that it 'interacts' with another 'opposite' wire that is bound into another term. The interaction differs from one constructor to another, and is ruled by basic reductions (see Section 2). In addition to bound wires an introduction rule exhibits a free wire, that is exposed and connectable. Often -but not always-this exhibition corresponds to the creation of the wire.

Contents of this paper

In this paper we will present the formal definitions for X , via syntax and reduction rules, and will show that the system is well-behaved by stating a number of essential properties. We will define a notion of simple type assignment for terms in X , in that we will define a system of derivable judgements for which the terms of X are witnesses; we will show a soundness result for this system by showing that a subject-reduction result holds.

We will also compare X with a number of its predecessors. In fact, we will show that a number of well-know calculi are easily, elegantly and surprisingly effectively implementable in X . For anyone familiar with the problem of expressibility, in view of the fact that X is substitution-free, these result are truly novel. With the exception of the calculus λµμ, the converse is unobtainable. This can easily be understood from the fact that the vast majority of calculi in our area is confluent (Church-Rosser), whereas X is not.

The X -calculus

The circuits that are the objects of X are built with three kinds of building stones, or constructors, called capsule, export and mediator.. In addition there is an operator we call weld, which is handy for describing circuit construction, and which will be eliminated eventually by rules. In addition we give congruence among circuits.

The operators

Circuits are connected through wires that are named. In our description wires are oriented. This means we know in which direction the 'ether running through our circuits' moves, and can say when a wire provides an entrance to a circuit or when a wire provides an exit. Thus we make the distinction between exit wires which we call plugs and enter wires which we call sockets. Plugs are named with Greek letters α, β, γ, δ, . . . and sockets are named with Latin letters x, y, z,

When connecting two circuits P and Q by an operator, say , we may suppose that P has a plug α and Q has a socket x which we want to connect together to create a flow from P to Q. After the link has been established, the wires have been plugged, and the name of the plug and the name of the socket are forgotten. To be more precise, in P x αQ the name x is not reachable outside P and the name α is not reachable outside Q. This reminds of construction like ∀x.P or λx.M in logic where the name x is not known outside the expressions. Logicians say that those names are bound. Likewise, in X , in a construction like P x αQ where α is a plug of P and x is a socket of Q, there are two bound names namely α and x, that are bound in the interaction. We use the "hat"-notation, keeping in line with the old tradition of Principia Mathematica [START_REF] Whitehead | Principia Mathematica[END_REF], writing x to say that x is bound. For connecting P and Q through we write P α xQ.

Definition 2.1 (Syntax)

The circuits of the X -calculus are defined by the following grammar, where x, y, . . . range over the infinite set of sockets, and α, β over the infinite set of plugs.

P, Q :

:= x.α | yP β •α | P β [y] xQ | P α † xQ
Notice that, using the intuition sketched above, for example, the connector β is supposed not to occur outside of P ; this is formalised below by Definition 2.2 and Barendregt's Convention (see also below).

Assume that the terms of the left-hand sides of the rules introduce the socket x and the plug α.

(cap-cap) : y.α α † x x.β → y.β (exp) :

(We could justify the constructions of X through the example of the "translations" in a huge international organisation2 . The arguments below will be better established and formalised in Section 5 when we will speak about types which are the correct framework. But of course X is basically an untyped language.

yP β •α) α † x x.γ → yP β •γ (med) : y.α α † x(P β [x] zQ) → P β [y] zQ (exp-med) : (yP β •α) α † x(Q γ [x] zR) → Q γ † yP β † zR -y α -- α x -x β -→ -y β - -y P -β -α - α x -x γ -→ -y P -β -γ -y α -- α x Q -β [x] z -P -x → Q -β [y] z -P -y -y P -β -α - α x Q -γ [x] z -R -x → Q - γ y P - β z R
Suppose wires carry words in a language like Estonian, or Portuguese, etc, but also translators from language to language like "French to Dutch." A capsule x.α connects inside the socket x with the plug α. Everything entering the capsule on x in one language will leave it in the same language on α. An export (yP α•β) can be seen as follows: P provides a device that transforms words in a language received on y to words in a(nother) language returned on β, therefore (yP β •α) is a translator that is returned on a specific wire α which can be connected later on. An export can also be seen as T-diagrams like those used in compiling technology for bootstrapping (see [START_REF] Aho | Compilers: Principles, Techniques and Tools[END_REF] Section 11.2). A mediator (P α [y] xQ) is required when one tries to connect two wires α and x to carry words from different languages. To be able to achieve that task, one needs to receive a translator to be connected to the wire y, a socket.

The operator † is called a weld and a term of the form (P α † xQ) is called a welt term, and corresponds to an operation on the switch board. A weld is specific, it just connects (more precisely, it welds) two circuits, connecting the socket x of Q to the plug α of P ; this assumes that the language expected on x agrees with the language delivered by α. The weld expresses the need for a rewiring of the switch board: a language is on offer on a plug, and demanded on a socket, and "dealing" with the weld, which expresses the need for the connection to be established, will cause the weld to be eventually eliminated.

The calculus, defined by the reduction rules (Section 2.2) explains in detail how welds are distributed through circuits to be eventually erased at the level of capsules.

Diagrammatically, we represent the basic circuits as:

-x α - -y P -α -β P -α [y] x -Q -y P - α x Q
We spoke above about bound names; we will introduce now formally those notions with that of free sockets and plugs into X .

Definition 2.2

The free sockets and free plugs in a circuit are:

fs(x.α) = {x} fs(xP β •α) = fs(P) \ {x} fs(P α [y] xQ) = fs(P) ∪{y} ∪(fs(Q) \ {x}) fs(P α † xQ) = fs(P) ∪(fs(Q) \ {x}) fp(x.α) = {α} fp(xP β •α) = (fp(P) \ {β}) ∪{α} fp(P α [y] xQ) = (fp(P) \ {α}) ∪ fp(Q) fp(P α † xQ) = (fp(P) \ {α}) ∪ fp(Q)
A socket x or plug α which is not free is called bound, written x ∈ bs(P) and α ∈ bp(P). We will write x ∈ fs(P, Q) for x ∈ fs(P) ∧ x ∈ fs(Q).

We will normally adopt Barendregt's convention (called convention on variables by

Barendregt, but here it will be a convention on names). An exception to that convention is the definition of natural numbers in Section 3.

Convention on names.

In a term or in a statement, a name is never both bound and free in the same context.

As the main concept is that of a name, we define only renaming, i.e., substitution of a name by another name as it makes no sense to define the substitution of a name by a term. The definition of renaming relies on Barendregt's convention on names; if a binding, say xP of x in P violates Barendregt's convention, one can get it back by renaming, i. e., ŷP [y/x] and this renaming can be internalise (see Section 2.5). Renaming will play an important part in dealing with α-conversion, a problem we will discuss in Subsection 2.5.

Definition 2.3 (Renaming of sockets and plugs)

x.α [y/x] = y.α u.α [y/x] = u.α , x = u (zP β •α)[y/x] = z(P [y/x]) β •α (P α [x] zQ)[y/x] = (P [y/x]) α [y] z(Q[y/x]) (P α [u] zQ)[y/x] = (P [y/x]) α [u] z(Q[y/x]), x = u (P α † zQ)[y/x] = (P [y/x]) α † z(Q[y/x]) x.α [β/α] = x.β x.γ [β/α] = x.γ , α = γ (zP δ•α)[β/α] = z(P [β/α]) δ•β (zP δ•γ)[β/α] = z(P [β/α]) δ•γ, α = γ (P δ [x] zQ)[β/α] = (P [β/α]) δ [y] z(Q[β/α]) (P δ † zQ)[β/α] = (P [β/α]) δ † z(Q[β/α]) Left propagation (dL) : y.α α † xP → y.α α † xP († cap) : y.β α † xP → y.β , β = α († exp1) : (yQ β •α) α † xP → (y(Q α † xP) β •γ) γ † xP , γ fresh († exp2) : (yQ β •γ) α † xP → y(Q α † xP) β •γ, γ = α († med) : (Q β [z] yR) α † xP → (Q α † xP) β [z] y(R α † xP) († weld) : (Q β † yR) α † xP → (Q α † xP) β † y(R α † xP) Right propagation (dR) : P α † x x.β → P α † x x.β (†cap) : P α † x y.β → y.β , y = x (†exp) : P α † x(yQ β •γ) → y(P α † xQ) β •γ (†med1) : P α † x(Q β [x] yR) → P α † z((P α † xQ) β [z] y(P α † xR)), z fresh (†med2) : P α † x(Q β [z] yR) → (P α † xQ) β [z] y(P α † xR), z = x (†weld) : P α † x(Q β † yR) → (P α † xQ) β † y(P α † xR)

The rules

It is important to know when a socket or a plug is introduced, i.e. is connectable, i.e. is exposed and unique. Indeed circuits that introduce sockets and plugs will play an important role in the reduction rules. Informally, a circuit P introduces a socket x if P is constructed from subcircuits which do not contain x as free socket, so x only occurs at the "top level." This means that P is either a mediator with a middle connector [x] or a capsule with left part x. Similarly, a circuit introduces a plug α if it is an export that "creates" α or a capsule with right part α. We say now formally what it means for a terms to introduce a socket or a plug (Urban [START_REF] Urban | Classical Logic and Computation[END_REF] uses the terminology "freshly introduce").

Definition 2.4 (Introduction)

P introduces x: P = x.β or P = R α [x] yQ, with x ∈ fs(R, Q). P introduces α: P = y.α or P = xQ β •α with α ∈ fp(Q).
We first present a simple family of reduction rules. They say how to reduce a circuit that welds subcircuits that introduce connectors. They are naturally divided in four categories whenever a capsule is welt with a capsule, an export with a capsule, a capsule with a mediator or an export with a mediator. There is no other pattern in which a plug is introduced on the left of a † and a socket is introduced on the right.

Definition 2.5 (Logical Reduction)

The logical rules and their diagrammatical representation are given in Figure 1.

Notice that, in rule (exp-med), in addition to the conditions for introduction of the connectors that are active in the weld (α ∈ fp(P) and x ∈ fs(Q, R)) we can also state that β ∈ fp(Q)\{γ}, as well as that y ∈ fs(R)\{z}, due to Barendregt's convention.

Still in rule (exp-med) the reader may have noticed that we did not put parenthesis in the expression Q γ † yP β † zR, which therefore is officially not a circuit. Instead, we should have given both the circuits (Q γ † yP) β † zR and Q γ † y(P β † zR) as result of the rewriting. However there is, in fact, a kind of associativity at play which means that we can omit the parenthesis; this will be made more clear in the next section.

We now need to define how to reduce a welt circuit in case when one of its subcircuits does not introduce a socket or a plug. This requires to extend the syntax with two new operators that we call bent welds:

P ::= . . . | P α † xQ | P α † xQ
Circuits where welds are not bent are called pure (the diagrammatical representation of bent welds is the same as that for straightened out (i.e. not bent) welds). Bent welds are propagated through the terms.

Definition 2.6 (Bending the welds)

(bend-L) : P α † xQ → P α † xQ, if P does not introduce α (bend-R) : P α † xQ → P α † xQ, if N does not introduce x
Notice that both side-conditions can be valid simultaneously, thereby validating both rewrite rules at the same moment. This gives, in fact, a critical pair or superposition for our notion of reduction, and is the cause for the loss of confluence.

We will now define how to propagate a bent weld through sub-circuits. The direction of the bending shows in which direction the weld should be propagated, hence the two sets of reduction rules. We imagine the diffusion of bents like the diffusion of a protein at the level of molecular interaction (picture taken from [START_REF] Yarovsky | Computer simulation of peptide interaction with an rp-hplc sorbent[END_REF]): We will subscript the arrow that represents our reduction to indicate certain subsystems, defined by a reduction strategy: for example, we will write → A for the reduction that uses only rules in Left propagation or Right propagation. In fact, → A is the reduction that pushes † and † inward.

(†-assoc) (P α † xQ) β † yR X P α † x(Q β † yR) if β ∈ fp(P) ∧ x ∈ fs(R) (left-comm) P α † x(Q β † yR) X Q β † y(P α † xR) if x ∈ fs(Q) ∧ y ∈ fs(P) (right-comm) (P α † xQ) β † yR X (P β † yR) α † xQ if α ∈ fp(R) ∧ β ∈ fp(Q) Figure 3: The structural congruences for † (med-assoc) P α [z] x(Q β [u] yR) X (P α [z] xQ) β [u] yR if β ∈ fp(P)\{α} ∧ x ∈ fs(R)\{y}
The rules († exp1) and (†med1) deserve some attention. For instance, in the left-hand side of († exp1), α is not introduced, hence α occurs more than once in yQ β •α, that is once after the dot and again in Q. The occurrence after the dot is dealt with separately by creating a new name namely γ. Note that the weld associated with that γ is then unbent; this is because, after the bent welt has been pushed through y(Q α † xP) β •γ (so leaves a circuit with no bent weld), the resulting term (yR β •γ) γ † xP needs to be considered in its entirety: although we now that now γ is introduced, we know not if x is. So, in any case, it would be wrong to active the weld before the result of Q α † xP (i.e. R) is known.

The same thing happens with x in (†med1) and a new name z is created and the external weld is unbent.

Structural congruences

One describes the simplification theory of Abelian groups with two reduction rules, namely

x + 0 → x x + (-x) → 0 and two congruences namely

x + (y + z) = (x + y) + z x + y = y + x.
The same kind of division in presentation appears in the π-calculus [START_REF] Milner | Communicating and mobile systems: the π-calculus[END_REF] under the name of structural congruences. Rewriting modulo a set of equations is the basis of rewriting logic [START_REF] Borovansky | An overview of elan[END_REF][START_REF] Clavel | The maude 2.0 system[END_REF].

We observe the same in X . We define two congruences for † that look like associativity and commutativity. (Actually, purists would say left commutativity x + (y + z) = y + (x + z) and right commutativity (x + y) + z = (x + z) + y.) Definition 2. [START_REF] Borovansky | An overview of elan[END_REF] The structural congruences are given in Figure 3.

Rule (†-assoc) allows us to write P α † xQ β † yR (provided the side-condition is fulfilled) since the order of the applications of † is irrelevant. Notice that the sidecondition for this rule is the one we have indicated for (exp-med), and comes from the variable convention. This is consistent with the parenthesis-free notation we have used for the right-hand side of (exp-med). Notice that now writing P α † xQ α † xR is licit. The second rule is left-commutativity and the third rule is right-commutativity.

There is another rule asserting the associativity of the mediators given in Figure 4. One may see that the side-condition is the same as for the weld, which is not surprising. We will freely write P α [z] xQ β [u] yR.

Call-by-name and call-by-value

In this section we will define two sub-systems of reduction, that correspond to callby-name (CBN) and call-by-value (CBV) reduction. Notice that this is essentially different from the approach of [START_REF] Wadler | Call-by-Value is Dual to Call-by-Name[END_REF], where, as in λµμ, only one notion of reduction is defined; the CBN-CBV result there was obtained via different interpretation functions from CBN/CBV calculi (see also Section 8).

As mentioned above, when P does not introduce α and Q does not introduce x, P α † xQ is a superposition, meaning that two rules, namely (bend-L) and (bend-R), can both be fired.

The critical pair P α † xQ, P α † xQ . may lead to different irreducible terms. This is to say that the reduction relation → is not confluent. Non-determinism is a a key feature of both classical logic and rewriting logic.

We introduce two strategies which explicitly favour one kind of bending whenever the above critical pair occurs: Definition 2.9

• The CBV strategy only bends a weld via (bend-L) when it could be bent in two ways; we write P → V Q in that case.

• The CBN strategy only bends such a weld via (bend-R); like above, we write P → N Q.

We will now show some basic properties, which essentially show that the calculus is well-behaved.

Lemma 2.10 (Cancellation)

1. P α † xQ → A P if α ∈ fp(P) and P is pure.

2. P α † xQ → V P if α ∈ fp(P) and P is pure.

P α † xQ →

A Q if x ∈ fs(Q) and Q is pure. 4. P α † xQ → N Q if x ∈ fs(Q) and Q is pure.
We will now show that a weld with a capsule leads to renaming. First we show this, with the capsule on the right, for left welds in part 1, and generalise this to unlabelled welds in part 2. Similarly, we show this for right welds with the capsule on the left in part 3, and for unlabelled welds in part 4.

Lemma 2.11 (Renaming)

1. P δ † z z.α → A P [α/δ], if P is pure. 2. P δ † z z.α → P [α/δ], if P is pure. 3. z.α α † xP → A P [z/x], if P is pure. 4. z.α α † xP → P [z/x], if P is pure.
These results motivate the extension (in both strategies) of the reduction rules, formulating new rules in the shape of the above results.

α-conversion

Normally, renaming is an essential part of α-conversion, the process of renaming bound objects in a language to avoid clashes during computation. The most familiar context in which this occurs is of course the λ-calculus, where, when reducing a term like (λxy.xy)(λxy.xy), α-conversion is essential. We will now discuss briefly the solution of [START_REF] Steffen Van Bakel | Term graphs, α-conversion, and principal types for X[END_REF], that deals accurately with this problem in X .

Example 2.12 Take the following reduction:

(y y.ρ ρ•γ) γ † x(x.δ δ [x] w w.α) → (bend-R), (†med1), (dR), (exp) (y y.ρ ρ•γ) γ † z((y y.ρ ρ•δ) δ [z] w w.α) → (exp-med) (y y.ρ ρ•δ) δ † y y.ρ ρ † w w.α
If we now re-introduce the omitted brackets, it is clear that we are in breach with Barendregt's convention: ρ is both free and bound in (y y.ρ ρ•δ) δ † y y.ρ . If we were to continue the reduction, we obtain:

((y y.ρ ρ•δ) δ † y y.ρ) ρ † w w.α → (exp) (y y.ρ ρ•ρ) ρ † w w.α
Notice that ρ is not introduced in y y.ρ ρ•ρ, since ρ ∈ fp(y.ρ). So the weld is propagated, and we obtain:

→ (bend-L), († exp1), (dL) (y(y.ρ ρ † w w.α) ρ•ρ) ρ † w w.α → (cap-cap), (exp) y y.α ρ•α.
This is not correct; by α-conversion, (y y.ρ ρ•ρ) ρ † w w.α is actually (y y.σ σ•ρ) ρ † w w.α , where the ρ is introduced, and we should have obtained y y.ρ ρ•α.

It is clear from this example that α-conversion is needed to some extent in any implementation of X . The solution to this problem as proposed in [START_REF] Steffen Van Bakel | Term graphs, α-conversion, and principal types for X[END_REF] is to avoid nested binding by changing, for example, the rule (exp-med):

(yP β •α) α † x(Q γ [x] zR) → Q γ † yP β † zR
Remember that the side-condition we need to be able to drop the parenthesis is β ∈ fp(Q)\{γ}, as well as that y ∈ fs(R)\{z}. But, to avoid an α-conflict, this is not enough. In fact, the α-conversion problem is generated in this rule (and here alone) by the fact that perhaps β = γ or y = z, or β occurs bound in Q, or y in R. If so, these connectors need to be renamed; one of the great plus points of X is that this can be done within the language itself, unlike for the λ-calculus. In fact, using Lemma 2.11, we can give an α-conflict free version of X .

In contrast, notice that this is not possible for the λ-calculus. There the only reduction rule is (λx.M)N → M [N/x], where the substitution is supposed to be immediate. In particular, it is impossible to predict (or even prevent) α-conflicts that typically depend on bindings occurring inside M and N .

To consider the substitution as a separate syntactic structure implies moving from the λ-calculus to λx. There the situation is slightly different, in that we can now say that (λy.M)

x = N → λz.(M y = z x = N),
thereby preventing a conflict on a possibly bound y in N . This is expensive though, as it is performed on all substitutions on abstractions, and does not actually detect the conflict, but just prevents it. In X , not only is the α-conflict solved, but also detected, all within the reduction system of X itself, by essentially expressing

(λy.M) x = N → λz.(M y = z x = N), if y bound in N
As shown in [START_REF] Steffen Van Bakel | Term graphs, α-conversion, and principal types for X[END_REF], to accurately deal with α-conversion the rule (exp-med) needs to be replaced by:

(yR β •α) α † x(Q γ [x] zP) → Q γ † y(R β † zP) α, x int., y = z, y ∈ bs(P) (yR β •α) α † x(Q γ [x] zP) → Q γ † v((v.δ δ † yR) β † zP) α, x int., (y = z ∨ y ∈ bs(P)), v, δ fresh (yR β •α) α † x(Q γ [x] zP) → (Q γ † yR) β † zP α, x int., γ = β ∈ bp(Q) (yR β •α) α † x(Q γ [x] zP) → (Q γ † y(R β † v v.δ)) δ † zP α, x int., (β = γ ∨ β ∈ bp(Q)), v, δ fresh
It is even possible to check if y or β occur free in P , and to, if not, skip the renaming. Of course, other rules need dealing with as well. This modified reduction system preserves Barendregt's convention.

:

x.α x α -1 :

x

.α α [f] x x.α -x α -[f] -x α - 2 : x.α α [f] x x.α α [f] x x.α -x α -[f] -x α -[f] -x α - 3 : x.α α [f] x x.α α [f] x x.α α [f] x x.α -x α -[f] -x α -[f] -x α -[f] -x α - Figure 5: The first natural numbers in X 3
The natural numbers into X

The example of expressing natural numbers into X that we will give in this section is extremely interesting in two respects. Firstly, it shows how a basic structure can be embedded in X . Secondly, it shows many features and among them alpha-conversion.

λx is a calculus of explicit substitutions introduced by Bloo and Rose [START_REF] Bloo | Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection[END_REF], where any β-reduction of λ-calculus can be split into several more atomic steps of computation. In this section we show that X has a lower level of atomicity as it simulates each reduction step by describing how the explicit substitutions interact with terms.

We briefly recall here the calculus λx. Its syntax is an extension of that of λcalculus:

M ::= x | λx.M | M 1 M 2 | M x = N Definition 4.1 (λx)
The reduction relation is defined by the following rules

(λx.M)P → M x = P (B) (M N) x = P → M x = P N x = P (App) (λy.M) x = P → λy.(M x = P) (Abs) x x = P → P (VarI) y x = P → y (VarK) M x = P → M, if x ∈ fv(M) (gc)
The notion of reduction λx is obtained by deleting rule (gc), and the notion of reduction λx gc is obtained by deleting rule (VarK). The rule (gc) is called 'garbage collection', as it removes useless substitutions.

Definition 4.2 (Interpretation of λx in X) x X α = x.α λx.M X α = x M X β β •α M N X α = M X γ γ † x(N X β β [x] y y.α) M x = N X α = N X β β † x M X α .
The interpretation of the λ-calculus is just made of the first three rules. Now we show that the reductions can be simulated, preserving the evaluation strategies. But what is the CBV-λx? Our notion is naturally inspired by that of the λ-calculus: in a CBV-β-reduction, the argument must be a value, so that means that when it is simulated by the CBV-λx, all the substitutions created are of the form M x = N where N is a value, that is, either a variable or an abstraction, just as in λ-calculus. Hence, we build the CBV-λx by a syntactic restriction:

M ::= x | λx.M | M 1 M 2 | M x = λx.N | M x = y Now notice that, again, N is a value if and only if N X α introduces α. Theorem 4.3 CBN: (λx.M)N X α → N M x = N X α CBV: (λx.M)N X α → V M x = N X α iff N is a value (that is, if and only if (λx.M)N → V M x = N). Proof. (λx.M)N X α = ∆ λx.M X γ γ † y(N X β β [y] z z.α) = ∆ (x M X δ δ•γ) γ † y(N X β β [y] z z.α) → (exp-med) N X β β † x(M X δ δ † z z.α) → (bend-R) N X β β † x(M X δ δ † z z.α) → (2.11-2) N X β β † x M X α
Notice that this reduction sequence is valid in the CBN-evaluation, which proves point 1. As for the CBV-evaluation, the step (bend-R) is only possible if N X β introduces β, that is, if N is a value. If N is not a value, then N X β does not introduce β. The active weld N X β β † x M X α that has to be reached was either already in (λx.M)N X α or was created (by rule (bend-R)) along the reduction. The first case is impossible, since the weld should either be in N X β or in M X δ which are both smaller in size than the weld. The second case is also impossible because in the CBVevaluation, rule (bend-R) requires N X β to introduce β.

Theorem 4.4 (Simulation of the other rules)

If M → x N then M X γ → V N X γ and M X γ → N N X γ
Proof.

• (P Q) x = N X α → (P x = N)(Q x = N) X α (P Q) x = N X α = ∆ N X β β † x P Q X α = ∆ N X β β † x(P X γ γ † y(Q X β β [y] z z.α)) → (†weld) (N X β β † x P X γ) γ † y(N X β β † x(Q X β β [y] z z.α)) → (†med2) P x = N X γ γ † y((N X β β † x Q X β) β [y] z(N X β β † x z.α)) = ∆ P x = N X γ γ † y(Q N = x X β β [y] z(N X β β † x z.α)) → († cap) P x = N X γ γ † y(Q N = x X β β [y] z z.α) = ∆ (P x = N)(Q x = N) X α • (λy.M) x = N X α → λy.M x = N X α (λy.M) x = N X α = ∆ N X β β † x λy.M X α = ∆ N X β β † x(y M X γ γ •α) → (†exp) y(N X β β † x M X γ) γ •α = ∆ y M x = N X γ γ •α = ∆ λy.M x = N X α . • x x = N X α → N X α . x x = N X α = ∆ N X β β † x x X α = ∆ N X β β † x x.α → (dR) N X β β † x x.α → (2.11-2) N X α • y x = N X α → y X α . y x = N X α = ∆ N X β β † x y X α = ∆ N X β β † x y.α → († cap) y.α = ∆ y X α • M x = N X α → M X α , if x ∈ fv(M). M x = N X α = ∆ N X β β † x M X α → (gc-R) M X α
Hence, we deduce the fact that reduction in λx is preserved by the interpretation of terms into X .

1. If M → V N then M X γ → V * N X γ 2. If M → N N then M X γ → N * N X γ
5 Typing for X

The notion of type assignment on X that we present in this section is the basic implicative system for Classical Logic (Gentzen system LK)g. The Curry-Howard property is easily achieved (see Section 10). and P is a circuit. We say that P is the witness of this judgement.

2. Type assignment for X is defined by the following sequent calculus:

(cap) : y.α • • • Γ, y:A α:A, ∆ (exp) : P • • • Γ, x:A α:B, ∆ xP α•β • • • Γ β:A→B, ∆ (med) : P • • • Γ α:A, ∆ Q • • • Γ, x:B ∆ P α [y] xQ • • • Γ, y:A→B ∆ (cut) : P • • • Γ α:A, ∆ Q • • • Γ, x:A ∆ P α † xQ • • • Γ ∆ We write P • • • Γ ∆ if
(cut) : Γ v:A | ∆ Γ | e:A ∆ v|e : Γ ∆ (Ax-n) : Γ | x:A x:A, ∆ (Ax-v) : Γ, α:A α:A | ∆ (RI) : Γ, x:A v:B | ∆ Γ λx.v:A→B | ∆ (LI) : Γ v:A | ∆ Γ | e:B ∆ Γ | v • e:A→B ∆ (µ) : c : Γ α:A, ∆ Γ µα.c:A | ∆ (μ) : c : Γ, α:A ∆ Γ | μα.c:A ∆
One feature of λµμ is that its syntax and reduction rules reveal a duality between call-by-value and call-by-name. Indeed, the call-by-value evaluation is obtained by forbidding a μ-reduction when the redex is also a µ-redex, whereas the call-by-name evaluation forbids a µ-reduction when the redex is also a μ-redex.

We show here how X accounts for this duality. A simulation of λµμ by X has already been proposed in [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF], but we strengthen the result by stating that this simulation preserves the CBV and CBN evaluations: x

< = x (λx.M) < = λx.M < (M N) < = µα. N < |μx. M > |x • α (µβ.c) < = µβ.c < ([α]M) < = M < |α x > = x (λx.M) > = λx.M > (M N) > = µα. M > |N > • α (µβ.c) > = µβ.c > ([α]M) > = M > |α
Curien and Herbelin's result is:

Theorem 7.2 (Simulation of λµ in λµμ [10]) 1. If t → V t then t < → V * t < . 2. If t → N t then t > → N * t > .
Hence, combining this result to Theorem 6.5 we also get:

Theorem 7.3 (Simulation of λµ in X) 1. If t → V t then t < λµμ → V * t < λµμ . 2. If t → N t then t > λµμ → N * t > λµμ .
8 Improving the interpretation of the λ-calculus Theorem 7.2 also holds for the restriction of λµ to the traditional λ-calculus. However, one might be disappointed that the preservation of the CBV-evaluation and CBNevaluation relies on two distinct translations of terms. For instance, the CBV-λ-calculus and the CBN-λ-calculus can both be encoded into CPS [START_REF] Appel | Continuation-passing, closure-passing style[END_REF], and there it is clear that what accounts for the distinction CBV/CBN is the encodings themselves, and not the way CPS reduces the encoded terms. So it could be the case that, similarly, when encoding the λ-calculus in λµμ, the distinction between CBV and CBN mostly relies on Curien and Herbelin's two distinct encodings rather than the features of λµμ. The same holds for [START_REF] Wadler | Call-by-Value is Dual to Call-by-Name[END_REF]. Whereas their CBN-translation seems intuitive, they apparently need to twist it in a more complex way in order to give an accurate interpretation of the CBV λ-calculus, since Lemma 8.1 M < → * M > and notice that now a weld only appears in the interpretation of ∆∆. Now this term reduces as in Figure 6.

An alternative reduction sequence is: β so this forms a small diamond. In fact, all renaming reductions can be postponed without affecting the end result.

(x xx N α α•δ) δ † z(λx.
10 From sequent calculus to X

As mentioned in the introduction, X is inspired by the sequent calculus, so it is worthwhile to recall some of the principles. The sequent calculus we consider has only implication, no structural rules and a changed axiom. It offers an extremely natural presentation of the classical propositional calculus with implication, and is a variant of system LK. It has four rules: axiom, right introduction, left introduction and cut. As one knows, the rule (cut) plays a major role in proofs, since for proof theoreticians, cut-free proofs enjoy nice properties and proof reductions by cut-elimination have been proposed by Gentzen. Those reductions become the fundamental principle of computation in X .

Another nice property of proof systems that is known as the Curry-Howard correspondence is the fact that one can associate a term with a proof such that propositions become types and proof reductions become term reductions (or computations in X). This phenomenon was first discovered for the λ-calculus and its connection with intuitionistic logic was put in evidence. The Curry-Howard correspondence for X is with classical propositional calculus and is given through the sequent calculus described above. Proposition receives names. Those that appear in the left part of a sequent receive names like x, y, z, . . . and those that appear in the right part of a sequent receive name like α, β, γ, . . .

An example: a proof of Peirce's Law

Peirce's Law can be shown to be inhabited in λµμ by the term λz.µα. z|(λy.µβ. y|α) • α [START_REF] Ghilezan | Classical proofs, typed processes and intersection types[END_REF] which is itself the reduction of the translation of the λµ-term given by Ong and Steward [START_REF] Ong | A Curry-Howard foundation for functional computation with control[END_REF]. Using the translation function • λµμ on this term, we obtain the first term of Figure 7. Notice that the process obtained via translation has four welds: removing these produces the (in-side out) reduction sequence.

Conclusions and future work

This study is the first step of many researches. We want to focus in two directions: X as a language for designing circuit, especially with calculi like π-calculus, decidable typing in X and intersection types.

Figure 1 :

 1 Figure 1: The logical rules and their diagrammatical representation

Figure 2 :

 2 Figure 2: The propagation rules.

Definition 2 . 7 (

 27 Propagation Reduction) The rules of propagation are given in Figure 2.

Figure 4 :

 4 Figure 4: Structural congruence for the mediators

Theorem 4 . 5 (

 45 Simulation of λx)

Definition 6 . 3 (Lemma 6 . 4 ([19]) 1 .

 6364191 Translation of λµμ into X)x λµμ α = x.α λx.v λµμ α = x v λµμ β β •α µβ.c λµμ α = c λµμ β † x x.α α λµμ x = x.α v • e λµμ x = v λµμ α α [x]y e λµμ y μy.c λµμ x = x.β β † y c λµμ v|e λµμ = v λµμ α α † x e λµμ x The interpretation function preserves typeability: If Γ v:A | ∆, then v λµμ α : Γ α:A, ∆. 2. If Γ | e:A ∆, then e λµμ x : Γ, x:A ∆.

3 .Theorem 6 . 5 (Definition 7 . 1 (

 36571 If c : Γ ∆, then c λµμ : Γ ∆. Simulation of λµμ)1. If c → V c then c λµμ → V c λµμ 2. If c → N c then c λµμ → N c λµμ7 Interpreting λµParigot's λµ-calculus[START_REF] Parigot | An algorithmic interpretation of classical natural deduction[END_REF] is yet another proof-term syntax for classical logic, but expressed in the setting of Natural Deduction. Curien and Herbelin have shown how the normalisation in λµ can be interpreted as the cut-elimination in λµμ. But to reflect the CBV-evaluation and CBN-evaluation, they define two encodings, respectively: [10]) The CBV-interpretation • < and CBN-interpretation • > of λµ are defined as follows:

 xx N γ γ [z] y y.β) → (exp-med) (λx.xx N γ γ † x xx N α) α † y y.β → (2.11-2) λx.xx N γ γ † x xx N

 z((z. † x((y((y.ρ ρ † u u.α) β † v v.η) η•φ) φ [x] w w.α)) α † x x.δ) δ•γ → z((z. † x((y(y.α β † v v.η) η•φ) φ [x] w w.α)) α † x x.δ) δ•γ → z((z. † x((y y.α η•φ) φ [x] w w.α)) α † x x.δ) δ•γ → z(((y y.α η•φ) φ [z] w w.α) α † x x.δ) δ•γ → z((y y.δ η•φ) φ [z] w w.δ) δ•γ.

Figure 7 :

 7 Figure 7: Peirce's Law in X .

 such that the subject of the statements (x) are distinct. When we write Γ 1 , Γ 2 we mean the union of Γ 1 and Γ 2 when Γ 1 and Γ 2 are coherent (if Γ 1 contains x:A 1 and Γ 2 contains x:A 2 then A 1 = A 2).

	Definition 5.1 (Types and Contexts)
	1. The set of types is defined by the grammar:
	A, B ::= ϕ | A→B
	The types considered in this paper are normally known as simple (or Curry)
	types.
	2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set
	of statements x:A, Contexts of plugs ∆ are defined in a similar way.
	Definition 5.2 (Typing for X) lation P • • • Γ ∆, where Γ is a context of sockets and ∆ is a context of plugs, 1. Type judgements are expressed via a ternary re-

 there exists a derivation that has this judgement in the bottom line, and write D ::P • • • Γ ∆ if we want to name that derivation. (→) λx.v 1 |v 2 • e → v 2 |μx. v 1 |e

	(µ)	µβ.c|e → c[e/β]
	(μ)	v|μx.e → c[v/x]
	Definition 6.2 (Typing for λµμ)	

We encourage the reader to not become confused by the use of names like x for the class of connectors that are called plugs; these names are, in fact, inherited from λµμ.

see http://europa.eu.int/comm/translation/index_en.htm)

Acknowledgements

We would like to thank Alexander Summers, Daniel Hirschkoff, Dragisa Zunic, Harry Mairson, Jayshan Raghunandan, Luca Cardelli, Luca Roversi, Maria Grazia Vigliotti, Nobuko Yoshida, and Simona Ronchi della Rocca for many fruitful discussion on the topic of this paper.

A natural number is represented in X by a sequence of capsules connected by mediating sockets, i.e., with the same used names. The first natural numbers are given in Figure 5.

We assume that natural numbers have two free sockets x and f and one free plug α, with x as an entering socket, α as an exiting plug and f as a mediating socket. We define 0 as x.α and succ(N) as N α [f] x x.α where N itself is a natural number (which violates Barendregt's convention and should be removed in actual use). Clearly x and α have both a unique occurrence in each natural number. This is true for 0 and comes by induction for succ(N).

Proof. In a first step, we rename bound variables to avoid confusion and capture. = α is the alpha conversion. Let us prove 1.

Now we prove 4.

Part 2 and 3 come by induction using 1 and 4 and (med-assoc). We define now Definition 3.3 (Addition and multiplication)

Using this definition, we can show that the normal properties for addition hold. Lemma 3.4 (Properties of add)

From Lemma 3.4 we get, by induction:

From them we can prove

Proof. The first reduction is a consequences of Lemma 2.10. Let us prove the second reduction (in what follows

Interpreting λx

After natural numbers, a good candidate is the λ-calculus. Actually, instead of λcalculus, we directly interpret a calculus of explicit substitutions, namely λx.

Γ and ∆ carry the types of the free connectors in P , as unordered sets. There is no notion of type for P itself, instead the derivable statement shows how P is connectable.

We can now provide the type of two kinds of term we already studied.

• The type of natural numbers in

The soundness result of simple type assignment with respect to reduction is stated as usual:

Theorem 5.4 (Strong normalisation [25]

)

Proof. We will only prove the result for the rule (med-assoc). Consider the two following typing trees:

• for the term

• and for the term P 1 α † x(P 2 β † yP 3)

But the preconditions β ∈ fp(P 1) for med-assoc allows us to conclude P 1 • • • Γ ∆, β:B, α:A from P 1 • • • Γ ∆, α:A, by weakening and the same for P 3 hence the Subject congruence.

Interpreting the λµμ-calculus

In its typed version, X is a proof-term syntax for a classical sequent calculus. Another proof-system has been proposed for (a variant of) classical sequent calculus: Curien and Herbelin's λµμ-calculus [START_REF] Curien | The duality of computation[END_REF]. It is interesting to relate those two formalisms and realize that λµμ can be interpreted in X as well. Proof. By structural induction on M , the interesting case being:

This is a bit disappointing since the CBN-encoding turns out to be more refined than the CBV-encoding, breaking the nice symmetry.

On the other hand, we will show here that X fully preserves this symmetry. Of course, by Theorem 6.5, we also have

But we now show that we can take the simplest translation (i.e. • > λµμ β) for both cases CBV and CBN and that the evaluation strategies of X reflect the distinction between them.

We assume the reader to be familiar with the λ-calculus [START_REF] Barendregt | The Lambda Calculus: its Syntax and Semantics[END_REF]. We can define the direct encoding of the λ-calculus into X :

, in other words:

Notice that this is the encoding as defined in Definition 4.2.

Definition 8.4 (Curry types for the λ-calculus)

The type assignment rules for the Curry Type Assignment system for λ-calculus are:

We can now show that typeability is preserved by • N α :

So, when encoding the Call-by-Value λ-calculus, we also use the • N α interpretation. And, in contrast to λµμ, we can get an accurate interpretation of the Call-by-Value λ-calculus into X by using the CBV strategy, which we can reformulate as:

If M introduces α and N introduces x, the logical rules apply. (This makes the calculus deterministic, but that is OK, since we want to simulate CBV reduction.) Now notice that when M is a value (i.e. either a variable or an abstraction) then M N α introduces α. In fact, M is a value if and only if M N α introduces α. Then M N α α † x N N β cannot be reduced by rule (bend-L), but by either rule (bend-R) or a logical rule. This enables the reduction

So Call-by-Value reduction for the λ-calculus is respected by the interpretation function, using the CBV strategy.

Theorem 8.6 (Simulation of λ-calculus)

Proof. This is a direct corollary of Theorem 4.5, the simulation result for λx presented in the Section 4.

Infinite Computations

To strengthen the fact that we consider more than just those circuits that represent proofs, we will show an example of a non-terminating reduction sequence.