Luc Boug

Joaquim Gabarr

Xavier Messeguer

Nicolas Schabanel March

Nicolas Schabanel

Height-relaxed AVL rebalancing: A uni ed, ne-grained approach to concurrent dictionaries

Keywords: Concurrent algorithms, Search trees, AVL trees, Concurrent insertions and deletions, Concurrent generalized rotations, Safety and liveness proofs, Emulation Algorithmes concurrents, Arbres de recherche, Arbres AVL, Insertions et suppressions concurrentes, Rotations concurrentes g en eralis ees, Preuves de terminaison distribu ee, Simulation. Height-relaxed AVL rebalancing: Concurrent algorithms, Search trees, AVL trees, Concurrent insertions and deletions, Concurrent generalized rotations, Safety and liveness proofs, Emulation

We address the concurrent rebalancing of almost balanced binary search trees (AVL trees). Such a rebalancing may for instance be necessary after successive insertions and deletions of keys. We show that this problem can be studied through the self-reorganization of distributed systems of nodes controlled by l o c a l e v olution rules in the line of the approach of Dijkstra and Scholten. This yields a much simpler algorithm that the ones previously known. Based on the basic rebalancing framework, we describe algorithms to manage concurrent insertion and deletion of keys. Finally, this approach is used to emulate other well known concurrent A VL algorithms. As a by-product, this solves in a very general setting an old question raised by H.T. Kung and P.L. Lehman: where should rotations take place to rebalance arbitrary search trees?

Introduction

Search trees are the core in implementing large data structures where keys are searched, inserted and deleted. As the performances are directly related to the height of the tree, sophisticated schemes have been devised to to keep it as small as possible. This is usually done by reorganizing the whole tree after each access, moving subtrees around so as to minimize the height whilst keeping the keys in a sorted order.

The scheme introduced by Adel'son-Velsk and Landis AL62, Knu73], nowadays known as the AVL scheme, consists in keeping all internal nodes balanced, that is, the height of their subtrees di ering at most by one. Search trees with this property are called AVL trees. E v en though an fLuc.Bouge,Nicolas.Schabanelg@ens-lyon.fr y LSI, UPC, Campus Nord{M odul C6, C/ Jordi Girona Salgado 1{3, E-08034 Barcelona, Spain. Contact: fgabarro,peypochg@lsi.upc.es AVL tree is not of minimal height among all search trees with the same set of keys, it turns out that this organization yields very good asymptotic worst-case and average performances. Moreover, rebalancing an AVL tree after an insertion boils down to a small number of pointer manipulations known as AVL rotations (deletion is slightly more di cult). Starting from the inserted leaf upwards to the root, the nodes are recursively rotated by m o ving up high subtrees.

Adapting this scheme to support highly concurrent updates (insertion and deletion), such a s i n large databases accessed asynchronously by users, is a valuable challenge. In e ect, rebalancing a node may alter and worsen the balance of its ancestors. Concurrent rebalancing may t h us lead to \very unbalanced" search trees. In an early attempt, Ellis Ell80] proposed a complex machinery based on a locking technique combined with roll-back updates (see also BS77] for a similar approach for concurrent B-trees). The explicit low-level manipulation of locks leads to a very operational (and error-prone!) description. Moreover, the root of the tree is a dramatic bottleneck in this approach, which can be quali ed as \coarse-grained".

Later attempts have t h us explored higher-level approaches. Kessels Kes83] proposes to see the reorganization of the data structure as a side e ect of the access. The reorganization is split into atomic steps involving a small number of nodes, so as to allow concurrency. Additional registers, local on each node, are used to store the necessary information on intermediate states.

At each update, a reorganizing process is launched, which proceeds asynchronously. This approach is extended by Nurmi, Soisalon-Soininen and Wood NSSW87, NSSW92]. Finally, Larsen Lar94] shows that the reorganization process converges in O(k:log(n + 2 :k)) steps in a tree with n nodes updated with k insertions. Each step consists in propagating a piece of information from a son to its father, and applying the appropriate sequence of rotations to the father so as to restore its balance. These transformations are described by 9 di erent rules, depending on the values of the local registers. As an atomic step may include complex operation, this approach can be quali ed as \medium-grained". This approach has been used by Nurmi and Soisalon-Soininen NSS96a] to de ne Chromatic Trees by relaxing the rules of Red-Black T rees. Two surveys on the topic are [START_REF] Sedgewick | Analysis of algorithms[END_REF][START_REF] Gabarr | Massively parallel and distributed dictionaries on AVL and Brother Trees[END_REF].

The contribution of this paper is to go one step further towards a \ ne-grained" solution to concurrent updates of AVL search trees. As for Kessels, our source of inspiration is the seminal work by Dijkstra, Lamport at al. DLM + 78] on concurrent \on the y" garbage-collection. Their key idea is to completely uncouple the reorganization of the data structure (collecting the garbage cells and linking them into the free list) from its updates (creating garbage cells by pointer manipulations). Taking this viewpoint in our problem lets us consider the insertions or deletions of keys in the data structure as external perturbations done by m utator processes on which w e h a ve n o c o n trol. Reorganizing the data structure is the job of asynchronous daemons which h a ve no knowledge about the ongoing mutations. They just compete with the mutator processes to access the data structure. The only consistency restriction on their behavior is that it should respect the invariant on which the insertion and deletion protocols are based: the keys appear in sorted order.

The crux of our contribution is the following amazing remark.

Applying the original AVL rebalancing rules to an arbitrary tree (even very unbalanced!) in an arbitrary order, does eventually reshape it into an AVL tree, even in the presence of incomplete information on the heights of the subtrees. This is the reason why w e h a ve coined the term AVL rebalancing applied to a Height-Relaxed Search tree (HRS-tree, for short) which generalizes the original AVL scheme. The Rotation Rules are exactly the same, except that they are applied to arbitrarily unbalanced trees.

We e v en go one step further by splitting the macro-steps of Larsen into ner atomic steps, and we de ne two kinds of daemon actions: Propagation: Flowing the information about current updates upwards in the tree, from the leaves to the root. Rotation: Rebalancing the nodes according to their best knowledge about the shape of the tree. It turns out that only one rule su ces to specify propagations, and three for the rotations, which makes our approach signi cantly simpler than the previous ones. Moreover, as the daemons have no knowledge of the keys, the rules apply to any binary tree, without regards to the way it has been obtained by successive insertions and deletions. As a byproduct, it answers in a very general setting an old question raised by H.T. Kung and P.L. Lehman KL80]: where should rotations take place for to rebalance arbitrary trees? The answer is: anywhere, in any order! The price to pay for this \ ne-grained approach" is that O(n 2) steps are needed to rebalance an arbitrary binary tree in the worst case, instead of Larsen's O(n: log(n)) for an empty tree lled by n successive insertions. Note however that a single atomic step of Larsen corresponds to several steps here which m a k es the comparison slightly more balanced. Also, we provide the user with a better degree of concurrency. Finally, there is good experimental evidence that the convergence is obtained in O(n) steps in the average. The rest of the paper is organized as follows. Section 2 describes the basic data structure we use, so called Height-Relaxed S e arch Trees (HRS-trees). Section 3 describes the daemons. Section 4 proves the (partial) correctness. It is easy: once no daemon can work any longer, the tree is balanced. On the other hand, convergence turns out to be much more di cult, as shown in Section 5. Section 6 reports on experimental measures of the average behavior. Section 7 describes an algorithm to manage concurrent insertions and deletions. In Section 8 shows that our scheme can emulate other concurrent extension of the original AVL scheme by enforcing specialized schedules on the behavior of the daemons. Finally, all results are summarized in Section 9.

Remark: A preliminary version of this work has appeared in BGMS97]. It includes the results presented up to Section 5. The remaining material is new.

2 HRS-trees: a data structure for concurrent AVL rebalancing

Goal

Our goal is to design a general rebalancing strategy based on sets of local atomic actions applied concurrently. T o ensure good concurrency, e a c h action should lock as few nodes as possible for a time as short as possible. Thus, no reliable knowledge on the current global shape of the tree can be assumed. Each node stores in local registers its best local knowledge on the tree. The only reliable information is that the nodes with empty sons are aware of it. Structural knowledge has thus to be explicitly owed through the tree from the leaves to the root.

Since insertions and deletions are unpredictable and actions have only a local scope, no global termination may be expected from this basic scheme. Instead, one has to consider a distributed form of termination: if no perturbation occurs any longer (insertion or deletion of keys), then eventually no action applies. The algorithm blocks waiting to detect new perturbations. Standard techniques can be used to superimpose a distributed termination detection algorithm to this scheme, so as to enforce global termination Fra80] i f w anted.

Observe that no extra assumption is made on the original shape of the tree excepted the one mentioned above. In particular, we do not assume that the tree was actually yielded by a sequence of insertions and deletions from a balanced tree. Our scheme just takes any search t r e e a t a n y time with arbitrary (even incorrect!) information at each node and eventually rebalances it. In contrast with the previous solutions, it is thus highly fault tolerant. Also, it is compatible with any method for inserting and deleting keys.

The life of a daemon runs as follow: it wakes up at some point, selects a set of nodes satisfying one of its guards and locks it while it applies the appropriate action. The selection step may b e roughly implemented by a random draw among all the nodes or more e ciently by a problem queue as suggested Larsen in Lar94].

Finally, observe that our approach supports any n umber of asynchronous daemons. A possible extreme approach is to allocate one daemon to each node of the tree: this leads to a kind of (rather unrealistic) self-balancing intelligent tree. The other extreme is to consider that the tree is a large database managed by a m ultiprocessor server: the system steals the cycles left idle by the clients to reorganize the structure optimally.

Let u be a node of the search tree. We respectively denote by u!p u !ls u !rs the parent, the left son and the right s o n o f u in the tree. The empty tree is denoted `nil' and the root of the tree `root'. The real height realh(u) is de ned as usual:

realh(nil) = 0 realh(u 6 = nil) = 1 + m a x (realh(u!ls) realh(u!rs))
As concurrent modi cations in the tree prevent from maintaining realh on each node, each n o d e u 6 = nil encodes its local knowledge of the state of the structure in two private registers in addition to the key register: lefth(u) and righth(u) are respectively the apparent heights of the left and right sons of u, a t t h e best of the knowledge of u.

De nition 1 We call Height-Relaxed S e arch Tree (HRS-tree) a search tree whose nodes are equipped with the two p r i v ate registers lefth and righth satisfying the following consistency condition: lefth(u) = 0 (resp. righth(u) = 0) for any n o d e u with an empty left (resp. right) son. In other words, all values may be arbitrary except the ones at the leaves: If I have no son, then I know i t .

The following auxiliary functions on the nodes of HRS-trees will be useful. localh(u) is the apparent local height of u, as computed from the two previous registers:

localh(u) = 1 + m a x (lefth(u) righth(u))
car(u), the carry of u, is the gap of knowledge between u and its parent: car(u) = lefth(u!p) ; localh(u) if u is the left son of its parent righth(u!p) ; localh(u) if u is the right son of its parent

The car function measures the inconsistency of local information on the structure of the tree.

A n o d e u is said reliable if car(u) = 0. By convention car(root) = 0 . A n o d e u is said apparently balanced if jbal(u)j 1.

On Fig. 1], some examples of HRS-trees are displayed. On Fig. 1(a)], a graphical notation for lefth, righth and key registers is given, and examples of reliability and apparent balance are shown. On Fig. 1(b)], a tree with really bad local information is given: all nodes \believe" they are leaves, nodes are unreliable but apparently balanced (car(u) = ;1 a n d bal(u) = 0 , f o r a n y node). This case appears when the tree is built by a series of consecutive insertions with no intermediate update. Each node \remembers" the instant w h e n i t w as attached at the tree as a new leave. The Fig. 1(c)] shows a tree with reliable local information (car(u) = 0 , f o r a n y u). In this case, quantity localh coincides with realh. Finally, Fig. 1(d)] displays an HRS-tree with no special structure. It could appear at some intermediate step of the rebalancing algorithm.

The following fact expresses that this extension of the classical notion of an AVL tree behaves properly.

Lemma 1 If each node of an HRS-tree T is reliable and apparently balanced, then T is an AVL.

3 Ruling the daemons' behavior

Propagation rule

This rule propagates information upwards from a son to its parent. As a convention, the nal state of a node u after application of a rule is denoted u 0 . W e only present the variations of the lefth and righth registers, from which the registers localh, car and bal are computed.

Rule (LP) { Left Propagation

Guard: Node u is the left son of node v and u is not reliable: car(u) 6 = 0 Action: the apparent left height o f v is updated Fig. 2]:

lefth(v 0) = localh(u)
Note that: bal(v 0) = bal(v) ; car(u).

Spatial scope: Node u and its parent v = u!p.

The Right Propagation Rule (RP) where u is the right s o n o f v, can be deduced symmetrically from Rule (LP). It is easy to see that applying these rules repeatedly will eventually set the apparent local height o f e a c h node to its real height.

Rotation rules

These rules are inspired from the original AVL rules AL62] but extended to the case where the balances of the nodes may exceed 2. These relaxed preconditions allow to rebalance any t r e e w i t h any initial local knowledge. The rotation rules tend to reduce the apparent balance, but of course, can worsen not only the consistency of the local heights but also the real balance if the apparent balance was wrong.

Rule (RR) { Right Rotation, Unbalanced case Guard: Node u is the left son of node v, n o d e u is reliable, bal(u) > 0 a n d bal(v) 2 Action: Nodes u and v execute a right rotation Fig. 3(a)] with the obvious updating:

lefth(u 0) = lefth(u) righth(u 0) = localh(v 0) lefth(v 0) = righth(u) righth(v 0) = righth(v)
Note that: localh(u 0) = localh(v) ; 1, so car(u 0) = car(v) + 1 . Spatial scope: Node u and its parent v = u!p.

The rule (LR), where u is the left son of v, a n d u and v execute a left rotation when bal(u) < 0 and bal(v) ;2, is obtained symmetrically from (RR).

Rule (RR =) { Right Rotation, Balanced case Guard: Node u is the left son of node v, n o d e u is reliable, bal(u) = 0 e t bal(v) 2. Action: Nodes u and v execute a right rotation Fig. 3(b)] with the obvious updating:

lefth(u 0) = lefth(u) righth(u 0) = localh(v 0) lefth(v 0) = righth(u) righth(v 0) = righth(v)
Note that: localh(u 0) = localh(v), so car(u 0) = car(v). Spatial scope: Node u and its parent v = u!p.

The rule (LR =), where u is the left son of v and, u and v execute a left rotation when bal(u) = 0 and bal(v) ;2, is obtained as before, symmetrically from (RR =).

Right Rotation lefth(u) righth(u) bal(v) ; 2 bal(u) ; 1 u A B C A B C bal(u) > 0 righth(u) righth(v) lefth(u) righth(v) bal(v) 2 u 0 v 0 v (a) Rule (RR), right rotation if car(u) = 0 , bal(u) > 0 and bal(v) 2. localh(u 0) = localh(v) Right Rotation lefth(u) righth(v) lefth(u) lefth(u) u A B C A B C bal(v) ; 1 bal(u 0) = ;1 u 0 v 0 v bal(v) 2 lefth(u) righth(v) (b) Rule (RR=), right rotation if car(u) = 0 , bal(u) = 0 a n d bal(v) 2.
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Left-Right bal(u) < 0 bal(v) 2 lefth(u) righth(v) w lefth(w) righth(w) u v A B C D A B C D lefth(u) Double Rotation lefth(w) righth(w) u 0 w 0 v 0 localh(v) = 2 + righth(u) localh(w 0) = 1 + righth(u) = localh(v) ; 1 righth(v) (c) Rule (LRR) left-right double-rotation if car(u) = car(w) = 0 , bal(u) < 0 and bal(v) 2.
lefth(u 0) = lefth(u) righth(u 0) = lefth(w) lefth(v 0) = righth(w) righth(v 0) = righth(v) lefth(w 0) = localh(u 0) righth(w 0) = localh(v 0)
Note that: localh(w 0) = localh(v) ; 1, so car(w 0) = car(v) + 1 .

Spatial scope: Node u, its parent v = u!p and its right s o n w = u!rs.

The symmetrical rule (RLR) where w is the left son of the right s o n u of v and u, v and w execute a right-left double rotation, applies when u and w are reliable, bal(u) > 0 and bal(v) ;2.

On Fig. 4], a possible behavior of daemons is shown. They start acting over tree given in Fig. 1(d)]. We s k etch t wo possible evolutions. In the rst case, applying only propagation rules, we get an AVL tree. In the second case (the last tree in the gure) we can get a really unbalanced tree with bad local information. It is not so clear that this tree is \closer" to an AVL tree than the initial one: it could even happen that daemons lead to a never ending reshaping process! The following sections address these questions.

Invariant properties

The following lemma ensures the safety of the algorithm: \nothing bad can happen: if the algorithm blocks, then we hold the right result".

Lemma 2 (Safety p roperty) Let T be an HRS-tree. If T 0 is obtained by applying on T any one of the rules described above, then T 0 is an HRS-tree holding the same keys than T. Moreover if no rule applies on T, then T is an AVL. Proof. Thanks to Lemma 1, the proof just consists in noticing that rotations preserve the depthrst traversal order.

2

A closer look at the rules reveals the following fact which is actually the key to the proof of convergence below.

Lemma 3 (Stable state) Let T be an HRS-tree, so that 8u 2 T car(u) 0. I f T 0 is obtained by applying on T any one of the rules described above, then 8u 0 2 T 0 car(u 0) 0. Proof. This claim is easy to prove as soon as the predicate 8u car(u) 0 is rewritten as \each parent o verestimates the height of its sons". It is clear that if v overestimates the height o f its son u and if u updates the height o f v, then the height o f v cannot increase and v is thus even more overestimated by its parent. The same remark also applies to the rotation rules because a rotation rule cannot increase the height of the root of the rotation, and it leaves the other nodes reliable.

Convergence

As long as perturbations occur in the tree (insertion or deletion of keys), the daemons just compete with the mutators. The resulting behavior essentially depends on their relative speeds. For the convergence analysis, we hence assume that no insertion or deletion occurs any longer and prove then that at most (n 2) successive rules may be applied, where n is the number of nodes of the tree. By Lemma 2, the resulting tree is an AVL: the algorithm rebalances thus any arbitrary tree in at most (n 2) steps.

To prove the convergence, observe that if some rules are applied in parallel, their spatial scope are necessary disjoint and then the e ect is exactly the same as if they would have been executed sequentially in any order: we will then assume that the rules are applied sequentially. W e need to appreciate the global e ect of each local rule. This is usually done by extracting a variant which strictly decreases on each rule application. Essentially, the propagation rule improves the global consistency of the local heights by erasing the carries whereas the rotation rules weaken the apparent i m balance of each node. Unfortunately, these two families of rules ght one against the other: three cases in point are shown on Fig. 5].

On Fig. 5(a)], the application of the rule (LP) erases the carry of u and not only modi es the local height o f v (and then its carry), but also decreases the imbalance of v (by jcar(u)j). Conversely on Fig. 5(b)], the application of the rule (LP) increases the imbalance of v (by jcar(u)j). On Fig.

5(c)

] the e ect of the propagation on the balance of v depends on the relative apparent heights of the two subtrees.

Similarly, the application of a rotation rule Fig. 3(a)] reduces the imbalance of the root of the rotation but modi es its local height a n d m a y increase its carry.

There is thus a subtle interaction between car and bal: they cannot be independently considered to prove the convergence. A tedious exhaustive case analysis is necessary which is summed up in tables Tab. 1 a n d 2] . A s k etch of the analysis is presented in the sections bellow.

In the following sections, we only consider the rules (LP), (RR), (RR =), and (LRR), the same results hold trivially for the symmetrical rules (RP), (LR), (LR =), and (RLR).

Taking care of negative carries

Lemma 3 ensures that no negative carry can appear in a subtree bearing only positive carries. Negative carries ow upward to the root where they vanish. To c a t c h this phenomenon, we shall introduce Out(u), the number of nodes of the tree which a r e not in the subtree rooted in u, a s proposed by Kessels in Kes83]. Quantity Out(u) is a kind of distance from node u to the root of the tree, which is left unchanged outside the spatial scope of any rule. We i n troduce the NEG quantity, which measures the total negative carry of a tree. NEG = X car(u)<0 Out(u) j car(u)j On a propagation from a node u to its parent v, car(u) is erased, car(v) m a y increase or decrease depending on the value of car(u), whereas all the other nodes remain unchanged.

If u bears a positive carry, then the carry of v cannot increase, and NEG cannot increase.

If u bears a negative carry, then the carry of v decreases by jcar(u)j but since the carries are weighted by Out and, since Out strictly decreases from sons to parents, then NEG strictly decreases.

On a rotation, the only carry to be modi ed is the one at the root of the rotation. Since Out remains unchanged in each e x c hanged subtree and since their roots are reliable, then the only term that varies in NEG is the one of the root of the rotation. Since the local height of this root cannot increase, its carry cannot decrease. Thus, negative carries cannot increase in absolute value, and NEG cannot increase.

Lemma 4 (Negative carries) NEG does not increase on any rule application and it strictly decreases on any propagation from a node bearing a negative c a r r y .

Taking care of positive carries

The three cases in point presented on Fig. 5] show that car and bal seem to be correlated: their respective v ariations appear to have close magnitudes. We i n troduce the POS and BAL quantities which respectively measure the positive inconsistency of the local heights and the apparent global imbalance of the tree: ;car(u) POS 0 depending on car(v) and BAL = ;car(u) < 0 Case 5(b). The local height o f v is left unchanged and jbal(v 0)j = jbal(v)j + car(u), so: POS = ;car(u) < 0 and BAL = car(u) > 0

Case 5(c). A careful analysis shows that:

POS ;car(u) + bal(v) < 0 and BAL = car(u) ; 2:bal(v)

Therefore, for any 2, (:POS + BAL) decreases strictly on any propagation rule application from a node bearing a positive c a r r y .

Rotation Rules. A q u i c k look at the rotation rules shows the following e ects.

Rules (RR) and (LRR). On applying these rules, POS 1 and BAL ;3.

Rule (RR =). In this case, POS = BAL = 0.

Thus, the right c hoice is = 2 : (2:POS + BAL) strictly decreases on applying the rules (RR) and (LRR) at a node bearing a positive c a r r y , and it left unchanged by o n applying rule (RR =).

To x the remaining case, namely the rule (RR =), we i n troduce an ad-hoc quantity RBAL which disregards the apparently balanced nodes: RBAL = X jbal(u)j 2 jbal(u)j ; 1 It is easy to check that on applying the rule (RR =): RBAL = ;1. Thus, RBAL strictly decreases on applying the rule (RR =).

A rst variant

The two previous subsections show that NEG does not increase on any rules application. If it remains unchanged, then 2:POS + BAL does not increase. And if this latter quantity r e m a i n s unchanged, then RBAL strictly decreases. This can be summarized as follows:

Property 5 (Liveness property { rst variant) The integer quantity hNEG 2:POS+BAL RBALi is a valid variant: it strictly decreases for the lexicographic order on any rule application and it is greater than h0 0 0i. Therefore, no in nite sequence of rule applications is possible.

It can be moreover checked that 8u localh(u) realh(u) is a stable predicate through rule applications. This provides a rough bound on the convergence time of the algorithm for the HRStrees with n nodes where initially 8u localh(u) realh(u) (s a y, 8u localh(u) = 1) , a s 8u realh(u) n.

At a n y step, NEG n 3 , POS n 2 , BAL n 2 and RBAL n 2 . The algorithm converges on these trees after at most 3n 7 rule applications.

A closer look at the rules

The rst variant is not precise enough to give a satisfactory bound on the execution time of the algorithm. A tedious case analysis reveals that there exists a ne interaction between NEG, POS, BAL and RBAL.

Lemma 6 On any rule application, the variations of NEG, POS and BAL satisfy:

(2:POS + BAL) j NEGj

Proof. The inequality is obtained by a long chain of cases summarized in Tab. 1 and 2]. We shall study one of the worst cases as an illustration. Let us consider a left propagation from a node u to a node v such that car(u) < 0, car(v) 0 a n d bal(v) 0. In this case jcar(v 0)j = jcar(v)j+ jcar(u)j, s o NEG car(u) < 0, POS = 0, and BAL = ;car(u) > 0. Thus (2:POS + BAL) j NEGj holds.

2

Corollary 7 h2:(NEG + POS) + BAL RBALi is a valid variant for the algorithm.

Moreover the variations of RBAL and BAL are correlated:

Lemma 8 If the absolute values of the balances of q nodes are modi ed on a rule application, the variations of BAL and RBAL satisfy:

RBAL BAL + q
Proof. We can assume q = 1 w.l.o. # 3 ; 1 + f2:(NEG + POS) + BAL + (RBAL ; BAL)g ;3 ; 1 + 3 < 0 If the rule is (RR =), then NEG = POS = BAL = 0 and RBAL = ;1, thus # < 0.

Thus # is a valid variant. A careful analysis of RBAL shows that RBAL BAL + 2 on any rule application. The same analysis nally leads to: Theorem 9 (Variant) 6:(NEG + POS) + 2 :BAL + RBAL is a valid variant for the algorithm.

Let c max and b max respectively denote the maximum absolute values of car and bal initially. We get the following worst convergence time bound: Corollary 10 (Worst convergence time) The algorithm applies at most 6:c max n(n + 1) + 3 :b max n rules to rebalance any arbitrary HRS-tree from any initial shape.

For instance at most 6:(n 2 + n) rules are applied to rebalance a tree of size n whose nodes have their initial local heights set to 1.

Examples for w orst convergence times

We describe two executions of the algorithm with (n 2) rule applications: Fig. 6(a)] show s a s c heme of (n 2) propagations in a linear tree where initially each node believes to be a leaf: each node, starting by the son of the root and ending by the leaf, informs in turn the root of its presence. Fig. 6(b)] shows a scheme of (n 2) propagations and (n) rotations in a linear tree where initially each node knows its own real height: In turn, one node out of three, beginning by the leaf and nishing by the root, executes a rotation and informs the root of the modi cations of its local height.

An amazing fact is that we could not nd any execution scheme involving more than O(n) rotations. It is tempting to relate this to the two parts of the variant: 6 c max n(n + 1) = O(n 2) may be related to the number of propagations, and 3 b max n = O(n) to the number of rotations. We therefore conjecture that at most O(n) rotations may be applied. I t i s l i k ely that such a bound would certainly shed a new light on the intimate structure o f A VL trees among the space o f a l l binary trees.

Experimental worst convergence time analysis

The goal of this section is to present some experimental results on the practical behavior of our rebalancing scheme. Observe that the rules have exclusive guards with respect to the node u according to the notations of Section 3. Therefore, our simulation repeatedly picks up a node u in the tree at random and applies to it the appropriate rule if any u n til no rule applies anywhere.

As the number of binary trees of size n and the number of possible executions per tree grow exponentially, it is hopeless to simulate every possible behavior (the number of trees of size n = 15 is 9 694 845, and 6 564 120 420 for n = 20).

Rank of trees Worst convergence time observed

Figure 7: Worst convergence times observed on 10 000 executions over each tree of size n = 6, on 5 000 executions per tree for n = 8 and on 1 000 executions per tree for n = 10. The ` ' point out the linear trees. The dashed rectangles highlight the worst convergence time localizations. First, we concentrate on small trees and record for each tree the worst convergence time measured on a large number of simulations. The results are displayed on Fig. 7]. The diagrams are based on the following tree enumeration: we e n umerate the binary trees of xed size n simply by enumerating recursively all the possible right subtrees for all the possible left subtrees and we index each tree by i t s rank in this enumeration. The advantage of this method is that it respects the recursive structure of binary trees in particular trees which h a ve close indexes have close shapes.

We execute between 1 000 and 10 000 simu l a t i o n s o n e a c h tree depending on their size n (a total of 16 796 000 s i m ulations for n = 10).

It appears that these diagrams have fractal structures: the diagram for n = 6 appears in the diagram where n = 8 which appears in the diagram where n = 10. As the rank respects the recursive structure of trees, this means that our rebalancing algorithm is somehow c o n tinuous with respect to the shape of the tree. A closer look at the enumeration shows that the central part of the diagram corresponds to the highly balanced trees and the peaks on the sides to the linear trees as shown Fig. 7].

Thus, linear trees seem to be the most di cult ones to rebalance. More precisely, the second pair of peaks from the borders of the diagrams In fact further intensive s i m ulations (not presented here) show that the regular zigzag trees appear to be the most di cult to rebalance among the linear trees.

Figure 8: A regular zigzag of size n = 6.

Again, intensive simulations on the regular zigzag trees with up to 5 000 nodes yield a w orst convergence time of :nrules applications, where = 4 Fig. 9].

The quadratic executions exhibited in Section 5.5 are thus likely to be extremely singular.

Experimental Average Convergence Time Analysis.

A more precise analysis of the convergence time distribution con rms the above assumption. The result of the simulations is shown Fig. 9].

The behavior of our algorithm appears to be very smooth : the convergence time seems to follow a \Gaussian-like" distribution as well as the number of rotation rule applications. The average convergence time appears to be :n with = 3:5 with a standard deviation of p n with = 4:1. This Gaussian-like distribution con rms the previous result on practical worst cases: the probability o f c o n vergence time greater than 4:n tends to 0 as n grows. Thus, our scheme rebalances in practice an arbitrary binary tree after at most O(n) rule applications.

Unfortunately we do not have a n y theoretical estimation concerning the convergence time distribution. Note however that the analysis of the standard sequential AVL algorithm is still one of

Concurrent insertion and deletion of keys

Re ning this basic rebalancing framework, we c a n n o w design algorithms to manage the concurrent insertion and deletion of keys in AVL trees. We only sketch these algorithms, a complete development can be found in BGM95].

Concurrent insertions

Our approach is to consider the action of inserting keys into the tree as a percolation of the keys along the tree, starting from the root down to the leaves. The keys percolate in accordance with the key ordering: at any moment, a key a percolating in the left (resp. right) subtree of a node v should be lower (resp. greater) than the key key(v) stored at v. An arbitrary number of keys may concurrently percolate along the tree, and new keys may be dropped at the root at any point. At any moment, each n o d e u in the tree stores a number of keys waiting to percolate down in a bag waiting(u), as shown on Fig. 10]. When a percolating key reaches a leaf node, then a new leaf node is created as a son of the former one. The rebalancing scheme will eventually reshape the tree into an AVL within a nite delay after the last key to be inserted has been stored. Of course, this percolation process runs concurrently with the rebalancing scheme, and we h a ve to guarantee that no interference may occur:

Creating a new leaf node should respect the consistency condition of HRS-trees: a leaf node knows it is a leaf. Rotating a subtree should respect the consistency of the percolation process: a percolating key should not be moved away from its percolation path by a rotation. These two conditions are su cient to ensure the correct concurrent behavior of the whole scheme.

We equip each node of the tree with a new register waiting(u) (the waiting bag at u) which holds the keys waiting at node u for downwards percolation. Operation + adds a key to the set and operation ; removes it. De nition 2 (Strongly sorted HRS-tree) A HRS-tree is strongly sorted if the following holds: If u is in the left (resp. right) subtree of v, a n d a 2 waiting(u), then a key(v) (resp. a key(v)) (see Fig. 10]).

As a simple example of such a tree, consider a single node u and n keys a 1 : : : a n with key(u) = a 1 waiting(u) = fa 2 : : : a n g lefth(u) = 0 righth(u) = 0 We present t h e Insert Left Percolation rule (ILP), moving a key a in waiting(u) with a key(u) from u to u!ls. The Insert Right P ercolation rule with a > key(u) is deduced symmetrically.

Rule (ILP) { Insert Left Percolation

Guard: Node u, k ey a 2 waiting(u), a key(u).

Action: If u has a left son v, then waiting(u 0) = waiting(u) ; a waiting(v 0) = waiting(v) + a Otherwise, create a new node v, left son of u and: waiting(u 0) = waiting(u) ; a key(v 0) = a waiting(v 0) = lefth(v 0) = 0righth(v 0) = 0 Spatial scope: Node u and the potential new node v.

Unfortunately, as shown on Fig. 11], the rotation rules may i n validate the strong sortedness property. W e h a ve to re ne them so as to take i n to account the waiting bags of the nodes involved in their spatial scopes. A rst possibility is to gather all the keys waiting at the nodes in the spatial scope at the new root of the rotated subtree. An alternative c hoice is to allow a rotation to be applied only if no key is waiting at the nodes in its spatial scope. The choice between these two strategies depends on the relative priority one assigns to percolation with respect to rebalancing. For instance, we present the re nement of the (RR) rule according to the second alternative b e l o w. It is clear that is vacuously preserves strong sortedness.

Rule (IRR) { Insert Right Rotation, Unbalanced case Guard: Node u is the left son of node v, n o d e u is reliable, bal(u) > 0 a n d bal(v) 2, waiting(u) = waiting(v) = .

Action: Nodes u and v execute a right rotation Fig. 3(a)] with the obvious updating:

lefth(u 0) = lefth(u) righth(u 0) = localh(v 0) lefth(v 0) = righth(u) righth(v 0) = righth(v)
Note that: localh(u 0) = localh(v) ; 1, so car(u 0) = car(v) + 1 . Spatial scope: Node u and its parent v = u!p.

The safety and the liveness of this re ned scheme can be established without any di culty. Safety. If no rule applies, then the tree is an AVL whose all waiting bags are empty, and all keys dropped at the root have been stored into nodes. Liveness. A v ariant can be designed along the idea developed in the previous sections. Let KEYS be the number of currently percolating keys:

KEYS = X u jwaiting(u)j
This quantity cannot increase after the last key to be inserted has been dropped at the root of the tree. It strictly decreases on creating a new leaf to store a key. It is left unchanged by all other rules, including reshaping rules.

Let quantity In(u) be the number of nodes in the subtree rooted at node u (this is the complementary of quantity Out(u)). Let WAIT be the number of percolating keys weighed by their distance to the leaves, as measured by In. This quantity strictly decreases on moving a key downwards. It is left unchanged by all reshaping rules, at least if we restrict rotations so that the nodes in their spatial scope have empty w aiting bags (second alternative). Therefore, the integer quantity hKEYS WAIT NEG 2:POS + BAL RBALi is a valid variant.

Note that there is no need here to assume anything about the unicity of the inserted keys.

Concurrent insertion and deletion

Remark This crucially relies on the fact that key a and key a follow the same insertion path along the tree. Therefore, we must restrict ourselves to the case where all keys are unique. (Multiple keys with identical values could be handled by a suitable labeling.)

A negative k ey a may v anish in two exclusive w ays. Either it percolates down to a waiting bag waiting(u) where key a already sits. In this case, both keys vanish together:

waiting(u 0) = waiting(u) ; f a ag Or it may reach the waiting bag waiting(u) of a node u storing key a: key(u) = a. Then, key a vanishes, but we cannot \reset" node u in general: due to the structure of a search tree, a node may be removed only if it is a leaf! We simply mark node u as dead, a leave it as such.

It will eventually be removed once it has been pushed down to the leaves, see below.

There is no other possibility: if a negative k ey a reaches the waiting bag of a tree, then it means that no insertion of key a had occur beforehand.

The last problem remaining to be solved is the deletion of dead nodes. If a dead node is a leaf, then it can be safely removed. Otherwise, it must be pushed down to the leaves by a series of single rotations (Right and Left Rotation rules). The problem is that such rotations may temporarily increase the local unbalance of the tree, and thus compete with the basic rebalancing scheme: a dead node could be pushed down by such a rotation, and immediately pushed up by the original scheme. Therefore, we m ust re ne the rules so as to prevent a n y i n terference between them. A straightforward x is the following (we do not present the symmetric rules, as they as obvious).

A copy of the single rotation rule is added to take care of the dead nodes speci cally. I t c a n be used only is the root of the rotated subtree is a dead node with an alive son, disregarding their respective balances. Applying this rule ensures that one dead node gets closer to the leaves of the tree. The original rules are re ned so that they apply only if no node in their spatial scope is dead.

Rule (DRR) { Delete Right Rotation

Guard: Node u is the left son of node v, n o d e v is dead and node u is alive, and waiting(u) = waiting(v) = .

Action: Nodes u and v execute a right rotation Fig. 3(a)] with the obvious updating:

lefth(u 0) = lefth(u) righth(u 0) = localh(v 0) lefth(v 0) = righth(u) righth(v 0) = righth(v)
Note that: localh(u 0) = localh(v) ; 1, so car(u 0) = car(v) + 1 .

Spatial scope: Node u and its parent v = u!p.

Once a dead node has been pushed down to the leaves, it can be removed if its waiting bags are empty. The registers of the father have to be adjusted so as to maintain the consistency condition of the HRS-trees.

Rule (DLDL) { Delete Left Dead Leaf Guard: Node u is the left son of node v, u is a leaf, u is dead, and waiting(u) = . Action: Node u is deleted, and the left register of v is adjusted. lefth(v 0) = 0 Note that: There is no restriction on v: i t m a y be also dead. Spatial scope: Node u and its parent v = u!p.

It can be shown that if no rule applies, then the tree is an AVL whose all waiting bags are empty and whose all nodes are alive. The crucial observation is that keys may a l w ays percolate down, and that a lowest dead node (there is no other dead node in the subtrees rooted at it) with empty w aiting bags may a l w ays be rotated down to the leaves.

We should stress that these algorithms o er many opportunity o f v ariation. For instance, a dead left son may be removed as soon as it has no right son. Yet, the overall impact of all these variants on the e ciency is far from being clear.

Emulation of other AVL based algorithms

The approach given here is \ ne-grained" with a high degree of concurrency and atomicity. W e c a n use it to emulate other existing \medium-grained" algorithms. An algorithm A can be emulated by an algorithm B if any rule of A can be simulated by a concatenation of a xed and bounded number of rules of B. W e k eep the discussion informal, but it could be formally rewritten with the notion of homomorphisms between models of parallel computation systems introduced by T . K a s a i and R. Miller KM82]. We will only take i n to account the rebalancing phase (when all the keys have been transformed into new leaves).

Sequential algorithm

In this algorithm, every node u holds a register bf(u) = realh(u!ls) ; realh(u!rs) w i t h v alues in f;1 0 1g. E s s e n tially, the sequential insertion phase reconstructs the tree bottom up in order to maintain the balances. Let us consider what happens with our approach. Assume that a new key has just been added to the tree at the end of the percolation process. We can apply the propagation rules bottom up updating the value of bf(u) along the nodes of the restructuring path (the path going from the new leaf to the last node of the insertion path with a non-zero balance Ell80]). On reaching the critical node (the last node having a non-zero balance), a single rotation is possibly applied if ever necessary. The distributed algorithm mimics a bottom-up version of the sequential one.

Another de nition of relaxed height in HRS-trees

Let us consider the emulation of some distributed algorithms based on local rules Kes83, NSSW87, NSSW92, Lar94]. They are based on various approximate notions of height. For the sake of this presentation, we i n troduce the following alternate de nition.

Kessels' approach

We n o w consider emulating the algorithm proposed by J.L.W. Kessels in Kes83]. We start with a brief description. Each node holds two p r i v ate registers: its dynamic balance dbal and its dynamic carry dcarry. The dynamic height quantity is de ned as: dheight(nil) = 0 dheight(u) = 1 ; dcarry(u) + m a x (dheight(u!ls) dheight(u!rs)) Note that dheight is not a private register. The dynamic balance is de ned as dbal(u) = dheight(u!ls) ; dheight(u!rs)

We borrow the following de nition from Kessels:

De nition 4 A Carry-Relaxed A VL Tree (CarryRelaxedAVL-tree) is a binary search tree whose nodes are equipped with two p r i v ate registers dbal and dcarry ssatisfying dbal(u) 2 f ; 1 0 +1g and dcarry(u) 2 f 0 1g.

To be precise, Kessels adds to the preceding de nition the condition: any n o d e u such that dheight(u) 6 = 0 and dcarry(u) = 1 satis es dbal(u) 6 = 0. We relax this condition.

The quantities virtualh and dheight obey similar equations: Recall that a node u of a HRS-tree holds the registers lefth(u) a n d righth(u). In a CarryRelaxedAVL-tree, node u holds the registers dbal(u) a n d dcarry(u).

Lemma 11 (Bijection property) There is a bijection between HRS-trees whose all nodes u satisfy car(u) = f0 ;1g and bal(u) 2 f ; 1 0 +1g and CarryRelaxedAVL-trees.

Proof. The shape of the trees is kept constant through the bijection. Only the contents of the local registers is changed. Given a node u in a CarryRelaxedAVL-tree, the corresponding node in the HRS-tree is computed using lefth(u) = dheight(u!ls) and righth(u) = dheight(u!rs).

Given a node u in a HRS-tree, it can be transformed into an CarryRelaxedAVL node using dbal(u) = bal(u) and dcarry(u) = car(u). Action: The apparent left height o f v is updated:

w u h + 1 h h h + 1 h v k 3 k 2 h + 1 < > k 1 < k 1 k 2 k w 0 u 0 h h h 0 = < 1 > 0 v 0 h + 1 h + 2 h + 2 C B A D B A D C
lefth(v 0) = lefth(v) ; 1 if car(u) > 0 lefth(v) + 1 if car(u) < 0
Spatial scope: Nodes u and v.

On applying Rule (OneLP), the quantities are modi ed by at most one unit. The Fig. 15] displays an example with positive carries (car(u) > 0 and car(v) > 0). In general we h a ve the following straightforward lemma:

Lemma 13 In one application on Rule (OneLP) nodes u 0 and v 0 satisfy:

car(u 0) = car(u) ; 1 if car(u) > 0 car(u) + 1 if car(u) < 0 virtualh(u 0) = virtualh(u) ; 1 if car(u) > 0 virtualh(u) + 1 if car(u) < 0 car(v 0) = car(v) + (bal(v) > 0)?1 : 0 if car(u) > 0 car(v) ; (bal(v) 0)?1 : 0 if car(u) < 0 virtualh(v 0) = virtualh(v)
The bal(u) quantity e v olves as:

bal(v 0) = bal(v) ; 1 if car(u) > 0 bal(v) + 1 if car(u) < 0

We can get (with patience!) new versions for rules dealing with rotations and double rotations with one unit carry variations. Let call (UnitRules) this set of modi ed rules.

Lemma 14 (Emulation property) Using the (UnitRules) version of the HRS scheme, we can mimic the restructuring transformations in TagRelaxedAVL-trees coupling unit propagations and unit rotations.

8.5 Larsen's approach.

Finally, let us consider the approach proposed by K.L. Larsen Lar94]. Recall that, given a node u with father u!p, the transformations given by Nurmi et al. in NSSW92] require as a precondition tag(u) 6 = 0 and tag(u!p) = 0 . This precondition has been relaxed by Larsen so as to accept non-zero values for tag(u!p). to avoid the accumulation of negative v alues in tag(u!p), Larsen modi es the transformations above b y coupling more tightly the propagations and the rotations. We can emulate this approach along the same lines as above.

Conclusion

This paper presents a ne-grained, distributed approach to the problem of managing concurrent requests in AVL search trees. Our major contribution is to demonstrate that an abstract view of the problem yields an algorithm simpler than previously known ones. In our view, inserting and deleting keys in a search tree is simply considered as an external perturbation made by anonymous mutators on which one has no control. Rebalancing the tree back t o a n A VL shape is the job of one asynchronous daemon which competes with the mutators. It repeatedly selects a local part of the structure in a nondeterministic way, l o c ks it, reshapes it if needed according to the information locally available, and unlocks it.

The key of our ne-grained approach i s t h us to completely uncouple the rebalancing process with respect to the perturbations. This yields a quite robust and exible scheme. It supports multiple concurrent daemons and arbitrary perturbations. In particular, one could even imagine that the scheme is applied concurrently with other restructuring schemes on the same data structure! Faults can be tolerated, as long as they preserve the basic underlying invariants (the HRS consistency requirement). In fact, such faults can be seen as yet another kind of perturbation.

The price to pay is that no information on the perturbation can be used to guide the rebalancing process optimally. In the worst case, rebalancing an arbitrary tree with n nodes necessitates O(n 2) steps, instead of the O(n: log n) steps of Larsen Lar94]. This is because we h a ve to explicitly ow information upwards in the tree, and we cannot guarantee that this is done in an e cient w ay i n all cases. The ne-grained, distributed feature of our rebalancing scheme makes its theoretical analysis rather di cult. Ye t , a n e x t e n s i v e experimentation provides strong evidence that quadratic behaviors are extremely exceptional. A linear average convergence time seems very likely. Unfortunately, a rigorous proof of such a conjecture is out of reach of our current skills.

In fact, this ne-grained scheme yields a useful basis to design more complex algorithms by restricting the scheduling of the rules to \e cient" ones. It turns out that many existing algorithms previously proposed in the literature can be seen as such specializations (up to suitable remaining of the registers). We s h o w that this is the case for the algorithms of Ellis Ell80] Kessels Kes83], Nurmi and al. NSSW87, NSSW92], and Larsen Lar94]. The initial sequential AVL algorithm even appears as a limit case. As our scheme has been proved correct (safety and liveness), any nondeadlocking specialization of it yields a correct algorithm, too. These results illustrate the power gained by taking a more abstract view of such concurrent manipulations of trees.

This approach has been used in GMR97] to extend Chromatic trees into Hyper-Red-Black trees having close daemons to increase the degree of concurrency. Table 1: Exhaustive case analysis for the rule (LP) according to the notation of Section 3.

 This work has been partly supported by the French CNRS Coordinated Research Program on Parallelism, Networks and Systems PRS, the EU HCM Program under Contract ERBCHGECT 920009 and the EU Esprit BRA Program ALCOM II 7141 and ESPRIT LTR Project no. 20244 |ALCOM-IT, the Spanish DGICYT under grant PB95-0787 (project KOALA), the Spanish CICIT TIC97-1475-CE LIP, ENS Lyon, 46 All ee d'Italie, F-69364 Lyon Cedex 07, France. Contact:

 An HRS-tree with no special structure.

Figure 1 :Figure 2 :

 12 Figure 1: Examples of HRS-trees.

Figure 3 :

 3 Figure 3: The rotation rules

 Figure 4: Some examples of rule applications.

Figure 5 :

 5 Figure 5: The three possible cases for a left propagation with car(u) > 0. The dotted subtree is the state of knowledge of v before the propagation. The symmetrical cases where car(u) < 0 a r e obtained by e x c hanging the dotted and continuous lines.

 Since Lemma 4 addresses the case of a propagation from a node bearing a negative carry, w e shall study here the three last cases which are displayed Fig.5]:Case 5(a). The carry of v increases by car(u) and the balance of v decreases to bal(v 0) 0, so:

 g. Let b and b 0 be the initial and nal absolute values of the modi ed balance. Three cases have to be distinguished: (1) if b b 0 1, then RBAL = BAL (2) i f b 1 and b 0 = 0, then RBAL = BAL + 1 (3) i f b = 0 and b 0 1, then RBAL = BAL ; 1. 2 As each rule modi es at most 3 nodes, RBAL BAL + 3 holds on each rule application. Let us study the variations of # = 3 f 2:(NEG + POS) + BALg + f2:(NEG + POS) + RBALg on a rule application: If the rule is not the right rotation (RR =), then the proof of Corollary 7 ensures that (2:(NEG + POS) + BAL) < 0. Then:

 Initially, each node has its local height s e t t o 1 : cmax = 1 a n d bmax = 0 . Initially, the local heights are the real heights: cmax = 0 and bmax = n ; 1.

Figure 6 :

 6 Figure 6: Two examples of (n 2) rules executions highlighting the importance of the two t e r m s 6:c max n(n + 1) and 3:b max n.

Fig. 7]Figure 9 :

 79 Figure 9: Average convergence time observed on 100 000 executions over random trees of size n = 2 5 7 10 15 20 25 50 70 100 150 200 250 500. The dotted lines represent the dispersion intervals.

Figure 10 :

 10 Figure 10: A strongly sorted tree with its waiting sets

Figure 11 :

 11 Figure 11: Left-left rotations do not preserve strong sortedness

 virtualh(u) = 1 + car(u) + m a x (virtualh(u!ls) virtualh(u!rs)) dheight(u) = 1 ; dcarry(n) + m a x (dheight(u!ls) dheight(u!rs))This suggests us the following identi cations between CarryRelaxedAVL-trees and the HRS-trees:dheight(u) virtualh(u) dcarry(u) ; car(u)As a consequence, we can also identify dbal(u) bal(u) lefth(u) dheight(u!ls) righth(u) dheight(u!rs)

2

 On Fig.13] we give an example of the relationships between the two models. tree A Kessels' CarryRelaxedAVL tree (b) A concrete example of the bijection.

Figure 13 :

 13 Figure 13: Relations between CarryRelaxedAVL-trees and HRS-trees.

Figure 14 :

 14 Figure 14: Transformation C, Case dcarry(w) = 1 a n d dbal(w) = ;1.

We n o w address the deletion of keys, in concurrence with the insertion of keys and the rebalancing of the tree. The deletion of keys can be handled much in the same way as the insertion. To delete some key a, one drops a negative key a at the root. It percolates downwards along the tree as for an insertion until it reaches key a: at this point, both keys annihilate.

Figure 12: The virtualh and their relations with the localh (case with positive carries).

De nition 3 (Virtual height) The virtual height virtualh(u) of a node u in an HRS-tree is de ned by virtualh(u) = localh(u) + car (u) If u is a left son we h a ve car(u) = lefth(u!p) ; localh(u). Thus, virtualh(u) = lefth(u!p). In The virtual height approximately behaves as a height because it veri es the usual de nition corrected with a car(u). Therefore the virtualh can be rede ned as:

As car(root) = 0,the virtualh of the root veri es: virtualh(root) = 1 + m a x (virtualh(root!ls) virtualh(root!rs))

Note that car(u) 2 f : : : ;2 ;1 0 1 2 : : : g. Moreover the balance can be rewritten as: bal(u) = virtualh(u!ls) ; virtualh(u!rs)

On Fig. 12], a graphical interpretation of the virtualh and localh is given. We h a ve detailed two nodes u and v such that v!ls = u. In the depicted case, both nodes have positive carries. The other cases, for instance car(u) > 0 and car(v) < 0 also admit nice graphical interpretations.

Daemons in CarryRelaxedAVL-trees The following three local rules have been proposed by Kessels Kes83] in order to maintain the consistency condition of CarryRelaxedAVL-trees trough reshaping: dbal(n) 2 f ; 1 0 +1g and dcarry(u) 2 f 0 1g.

Rule (Transformation A) { Left Carry Propagation

Guard: Node u is the left son of node v, dcarry(u) = 1 , dcarry(v) = 0 and dbal(v) = f;1 0g. Action: First, set dcarry(u 0) = 0 and then:

Case dcarry(v) = ;1: Set dbal(v 0) = 0 a n d dbal(v 0) = 0 .

Case dbal(v) = 0 : Set dcarry(v 0) = 1 and dbal(v 0) = 1 . Spatial scope: Nodes v and u = v!ls. The following rule deals with double rotations. The version given here is a slightly modi ed version (cases 4 and 5) from the one given in [START_REF] Guibas | A dichromatic framework for balanced trees[END_REF]. With this version, the proof of liveness is easier and moreover the will get our emulation result. 12], this gure corresponds to the nal con guration. In the initial con guration, nodes u and v have positive carries and lefth(v) = virtualh(u) = 5. Note that lefth(v 0) = lefth(v) ; 1.

Nurmi et al.'s approach

We consider an extension of the Kessels' algorithm developed by O. Nurmi, E. Soisalon-Soininen and D. Wood in NSSW92] (see also NSSW87]). Each node holds two private registers, the relaxed balance rbal and the tag tag. T h e tag quantity denote the information on height y et to be propagated upwards by the node. A relaxed height for such trees is de ned as:

and rbal(u) = rheight(u!ls) ; rheight(u!rs). As in Kessels' approach, they introduce a a relaxed version of AVL trees.

De nition 5 A tag-relaxed A VL (TagRelaxedAVL-tree) is a binary search tree whose nodes are equipped with two private registers tag and rbal satisfying the following consistency condition: rbal(u) 2 f ; 1 0 +1g and tag(u) 2 f ; 1 0 1 2 : : : g.

As before, we consider only the rebalancing process. The transformations consist in two phases.

Phase 1 is designed to decrease the tag value of some node u. A t the end of this phase, the value of rbal(u!p) lies between ;2 and 2. Phase 2 brings back the value of rbal(u!p) b e t ween ;1 a n d 1 b y readjusting the tags and making a rotation if necessary. The algorithm eventually yields a tree such that tag(u) = 0. As the local transformations has to maintain the relaxed balance, only one-unit variations on the tag values can be c orrectly absorbed. This incremental variation of the tag values induces an additional level of complexity in the description of the transformations.

Let us consider emulating this algorithm. The de nitions of rheight and virtualh suggest us the identi cations:

Unfortunately, this algorithm cannot be directly emulated in our HRS scheme. It speci es that tag values vary by at most one unit on each rule application, whereas our HRS propagation rules directly set carries to zero in one step. The HRS rules have t h us to be recast to an incremental version. For instance, the new rule for one unit left propagation is as follows