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Abstract

Since Milgram experiment in 1967, that demonstrated the ability of people to find
short paths efficiently in networks, based only on their own local view of the network,
different models have been proposed to study the “small world phenomenon”. In
2000, Kleinberg shows that most of the previously known models for small world fail
to capture an important feature of the phenomenon: no local information based (i.e.,
decentralized) algorithm can find short paths in these graphs, when they exists. He
then introduces a model composed of a lattice (representing the local acquaintances)
augmented with directed links (symbolizing long-range contacts) distributed harmon-
ically. He proposes to model people behavior by the greedy algorithm that forwards
the message to the contact (local or long-range) of the current holder, which is the
closest to its destination. He shows that this greedy algorithm computes paths of ex-
pected length Θ(log2 n) between any pair of nodes. The present paper questions the
choice of the greedy strategy to model social behavior. We proposes a new strategy in
which nodes consult their acquaintances near by, before deciding where to forward the
message. Our algorithm presents the same computational characteristics as Klein-
berg’s original algorithm: uses Θ(log n) bits of memory and visits O(log2 n) nodes.
However, it computes much shorter paths, of expected length O(log n(log log n)2),
between any pair of nodes. This algorithm demonstrates that consulting their ac-
quaintances near by, leads to considerable improvements in performances. It also
shows that this consultation is less and less useful as one gets closer to the target.
As far as we know, this is the first algorithm to “break the Θ(log2 n) barrier” for the
paths length in Kleinberg’s network.

Keywords: algorithms on random structures, routing, small world and social behavior models.

Résumé

Depuis l’expérience de Milgram de 1967, qui démontre que les individus trouvent
efficacement des courts chemins dans de grands graphes en utilisant uniquement
leur vision locale du graphe, plusieurs modèles ont été proposés pour étudier ce
phénomène de ”petit monde”. En 2000, Kleinberg a montré que la plupart des modèles
précédemments connus manquaient une caractéristique importante du phénomène:
aucun algorithme décentralisé ne pouvait trouver les courts chemins lorsqu’ils exis-
taient. Il a alors introduit un modèle composé d’une grille carrée (représentant les
connaissances locales) augmentée de liens dirigés (symbolisant les contacts distants)
distribués harmoniquement. Il propose de modéliser le comportement des individus
par l’algorithme glouton qui passe le message au contact (local ou distant) du pos-
sesseur actuel du message qui est le plus proche du destinataire. Il montre que cet
algorithme glouton calcule un chemin de longueur moyenne Θ(log2 n) entre toute paire
de noeuds. Nous nous poserons la question de la pertinence du choix de la stratégie
gloutonne pour modéliser les comportements sociaux. Nous proposons une nouvelle
stratégie dans laquelle les noeuds consultent leurs connaissances avant de décider
à qui envoyer le message. Notre algorithme présente les mêmes caractéristiques de
complexité que l’algorithme original de Kleinberg: il utilise Θ(log n) bits de mémoire
et visite O(log2 n) noeuds. Il calcule des chemins plus courts, de longueur moyenne
O(log n(log log n)2), entre toute paire de noeuds. Cet algorithme montre que consulter
son voisinage conduit à des améliorations de performances, il montre aussi que cette
consultation est de moins en moins utile lorsque l’on s’approche de la destination.

Mots-clés: algorithmes sur les structures aléatoires, routage, petit monde et modèles de comportements

sociaux.



1 Introduction

1.1 Motivations and previous work

The small world experiment. This experiment was introduced by Milgram in 1967 [7]. People were
asked to forward a letter to one of their acquaintance they believe to be the closest to the target person,
described by its name, location, and occupation. The striking result was that, when the letter finally
reached its target, only 5 to 6 steps were needed. This is a typical small world phenomenon. Since this
experiment, a lot of social graphs (such as the co-author graph, the web graph,...) were discovered to
share similar properties : a very small diameter (typically poly-logarithmic in the size of the network)
and the existence of short paths between random nodes, that can be found very efficiently, based only
on the local view of the network.

Models for the small world phenomenon. Newman in [8, 9] presents an interesting state of the art
on the matter. Several models have been proposed to capture what are the specific properties that makes
a graph a small world. Watts and Strogatz [11] observed that most of the small world graphs are locally
strongly interconnected : two nodes with a common neighbor are very likely to be connected to each
other. They proposed a model based on a ring where each nodes is connected to its k closest neighbors on
the ring, and where each edge is uniformly rewired with higher and higher probability. This model shows
that, as randomness increases, the diameter gets smaller and smaller, until the network gets disconnected.
More tractable variants of this model, that replace the rewiring process by edge percolation [10] or by
the addition of a random matching [3], have been studied theoretically, in particular, their diameter.
But these models failed to capture the specific nature of small world, as demonstrates Kleinberg in his
seminal paper [5]. He shows that, for these models, there does not exist any algorithm that can find short
path (with poly-logarithmic length in the size of the network) based only on local information, even if
the diameter is poly-logarithmic. He then introduces a new model : a 2-dimensional lattice augmented
with random directed links. The 2-dimensional lattice represents the underlying geographic relationships
between the people. In addition to its four local neighbors, each node u is the origin of a directed edge
pointing to its long range contact v, chosen randomly according to the s-harmonic distribution, i.e.,
with probability proportional to 1/δ(u,v)s, where δ(u,v) is the lattice (Manhattan) distance between
u and v. Kleinberg introduces the notion of decentralized algorithm to model human social behavior,
such as passing a letter from acquaintance to acquaintance to reach as fast as possible its destination
[7], or to model the search for informations in the web by clicking on hyperlinks or on back-button [6].
A decentralized algorithm constructs a path between any random pair of nodes u and v, based only on
local information, that is to say, with the knowledge of the underlying lattice structure, but constrained
to explore only neighbors of already visited nodes, and ignoring all of the long-range contacts of the
nodes it did not go through. Kleinberg demonstrates that when s �= 2, no decentralized algorithm can
find a poly-logarithmic length path in the network. He also describes the very simple greedy algorithm
that follows, from each node, the link to its closest contact to the target, among the five possible,
until it reaches the target. He shows that if s = 2, this algorithm computes a path of expected length
Θ(log2 n), between any random pair of nodes [5, 1]. This result demonstrates that there is more to the
small effect than simply the existence of short paths, and that the algorithmic nature of the experiment
has to be considered. Kleinberg’s model and result have been generalized to an arbitrary d-dimensional
lattice augmented with long range contacts s-harmonically distributed in [1] : only s = d defines a small
world, in the decentralized algorithm sense. And, when s = d, Kleinberg’s greedy algorithm computes
path of expected length Θ(log2 n) between any pair of nodes, somehow surprisingly independent of the
dimension. The authors of [1] conclude that the d-harmonic distribution of the long-range links create a
strong correlation with the dimension of the lattice, and then that one could equivalently focus on the
one-dimensional case, without significant changes in the properties of the network. Undirected versions
of this graph, based on edge percolation, have been studied in [2, 4].

On the algorithmic perspective. The works in [5, 1] raise several important questions : how should
we define a small world algorithmically ? How should we limit decentralized algorithms to match social
behavior, such as people consulting their acquaintances before sending the letter ? Is Kleinberg’s greedy
algorithm the most natural decentralized algorithm? Does it compute optimal paths ? Is it an approxi-
mation ? Can we give a tight bound on the diameter of the Kleinberg’s network ? More generally, is this
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algorithm “canonical” to define small world graphs ? These last points raise another important algo-
rithmic perspective : since most of the “real-life” graphs share small world properties, practical interest
dictates to design algorithms that take advantage of these specific structures.

1.2 Our contribution

We focus on the one-dimensional Kleinberg’s small world network model. We study a new decentra-
lized algorithm that computes a path of expected length O(log n(log log n)2) between any pair of nodes
in the network, and visits O(log2 n) nodes to build it. As far as we know, this is the first algorithm to
“break the Θ(log2 n) barrier” in Kleinberg’s network. This demonstrates that Kleinberg’s greedy algo-
rithm computes paths arbitrarily longer than the optimal. Interestingly enough, the average length of
the paths between random nodes in Kleinberg’s original network with directed long-range contacts and
bounded out-degree, is very close to Θ(log n/ log log n), the expected length of the shortest path in the
undirected version, with unbounded degree, of this network studied in [4]. This may allow to reduce the
size of routing table in application using Kleinberg’s structure (as in [12]).

2 Model and main results

The network. We consider the one-dimensional variant proposed in [1] of the long-range contact
network model introduced by Kleinberg in [5]. The network is an augmented ring of 2n + 1 nodes,
numbered from −n to n. In addition to its two neighbors in the ring (its local contacts), each node u
has an extra directed link pointing towards a node v (u’s long-range contact), chosen independently
according to the 1-harmonic distribution, i.e., with probability proportional to 1/δ(u, v), where δ(u, v)
is the distance between u and v on the ring. The exact probability that v is u’s long range contact is
1/(2Hnδ(u, v)), where Hn =

∑n
i=1 1/i is the normalizing constant. From now on, the distance between

two nodes refers to their distance on the underlying ring, and log stands for the logarithm base 2, while
ln denotes the natural logarithm, base e. Note that ln (n + 1) < Hn < ln n + 1.

Kleinberg also defines variants of its model, where nodes are connected by an undirected edge to
their lattice neighbors at distance ≤ k, or are given k′ long-range contacts i.i.d. for given constants k
and k′. These variants do not change significantly the properties of the network. Our analysis and results
are also identical on these variants up to a constant factor. Therefore, the present paper focuses on the
k = k′ = 1 case described above.

Decentralized algorithms with bounded memory. A path is a sequence of links (local or long-
range) between neighboring nodes from a source to a target ; its length is the number of links used ;
a path is said local if it is composed of local links only. We study algorithms that compute a path to
transmit a message from its source to its target, along the edges and arcs of the network. Following
Kleinberg’s definition, such an algorithm is decentralized if it navigates through the network using only
local informations to compute the path. In particular, it has the knowledge 1) of the underlying lattice
structure (here, the ring), 2) of the coordinates of the target, and 3) of the nodes it has previously visited
as well as their long-range contacts. But, crucially, 4) it cannot visit a node which is not the local or
long-range contact of a previously visited node, and 5) does not know the long-range contact of any node
that has not yet been visited. However, 6) the algorithm (but not the path it computes) is authorized to
travel across any directed links it has already followed. As pointed out in [6], this is a crucial component
of human ability to find short paths : one can interpret point 6) as a web user pushing the back button,
or an individual returning the letter to its previous holder.

If this definition is sufficient to prove that, among the small world model candidates with poly-
logarithmic diameter in the size of the network, some do not have any decentralized algorithm that
computes poly-logarithmic length path, (such as [11, 3] or the Kleinberg network with an s-harmonic
distribution for the long-range contacts, when s differs from the dimension of the underlying lattice
[5, 1]), one should however limit the memory of the algorithm. It is unreasonable to assume that social
individuals may remember all the previous holders of the message. We thus refine Kleinberg’s definition
as follows : an algorithm is a decentralized algorithm with bounded memory if it is decentralized and keeps
only a poly-logarithmic number (in the size of the network) of bits in memory.
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As far as we know, only one decentralized algorithm has been studied so far, essentially in [5, 1] :
the “simplest” greedy algorithm that always transmits the message to the closest neighbor (local or
long-range) of the current holder to the target, in the sense of the distance. In [5] and [1], this algorithm
is shown to compute a path of expected length Θ(log2 n), independly of the dimension of the network.
Note that this algorithm uses exactly Θ(log n) bits of memory (to store the target coordinates). However
it is unlikely that, in Milgram experiment, individuals just forward the message to the first acquaintance
that comes to their mind. It is more likely that they contact their immediate friends to discuss with
them who would be the closest to the target, among their friends. The same is true for the web : when
searching for some data, it is usually much more efficient to try several links before deciding which one to
follow. This raises several questions : is Kleinberg’s greedy algorithm the most natural algorithm? should
we use it to test the small world property ? In other word, is it “canonical” ? Also, from an algorithmic
point of view, does it compute optimal paths ? or an approximation of the optimal paths ? What is the
diameter of Kleinberg’s small world network ?

Main result. As suggested in [1], we focus on the one-dimensional network. The following theorem
shows that with Θ(log n) bits of memory, one can find a path of expected length O(log n(log log n)2)
from any source to any target, while visiting O(log2 n) nodes.

Theorem 1 There is a decentralized algorithm A with Θ(log n) bits of memory so that, for any pair of
nodes i and j, A computes a path from i to j of expected length O(log n(log log n)2), and visits O(log2 n)
vertices to compute this path, on expectation.

The principle of our algorithm is the following : the closer one gets to the target, the less useful are
the long-range contacts. As long as the message is “far” from the target, the algorithm looks around
for the best long-range contact among the nodes a few links away (local or long-range), and gets to it ;
once the message is “close” to the target, checking around the neighborhood gets useless, and we use
Kleinberg greedy algorithm to finally reach the target.

As far as we know, this is the first algorithm to break the Θ(log2 n) barrier in Kleinberg’s graph.
This theorem answers some of the questions asked above. First, Kleinberg’s greedy algorithm computes
paths arbitrarily longer than the optimal. Second, with the same amount of memory, that is to say, with
the same hypothesis on the computational power of a social individual, one can compute shorter paths,
following a very natural principle.

The following section presents the algorithm and its analysis in details. The proofs of the pure
probabilistic lemmas is postponed to section 4.

3 The algorithm

Description of the algorithm. Without loss of generality, we assume that the target is 0. We
denote by x the current position of the message, and by x its distance to the target. If x < log2 n,
we apply Kleinberg’s greedy algorithm that reaches the target in O(log n log x) = O(log n log log n) steps
on expectation (see [5]).

From now on, we assume that x ≥ log2 n. Let us introduce the following definitions.

Definition 1 A link (local or long-range) from a node u to a node v is called a jump if v is strictly
closer to the target than u. Every node u (but the target) is the origin of at least one (local) jump and,
with some probability, of a second (long-range) one.
A node v is said to be h jumps away from u, if there is a path only made of jumps from u to v.

Each step of the algorithm proceeds in two phases : 1) the exploration phase that basically looks for
the closest node to the target, among Θ(log n) nodes less than Θ((log n log log n)/ log x) jumps away from
x ; and 2) the routing phase, that forwards the message to this node. Proposition 2 shows that each step
divides the distance of the message to its target by 2 with constant positive probability (independent of
n and x).

An important fact is that each exploration phase is independent of the previous ones. Since the
algorithm only follows jumps towards the target, and forwards the message to the visited node which
is the closest to the target, during every new exploration phase, the algorithm explores only unvisited
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nodes. We can then conveniently assume that their long-range contact are independently generated at
this moment.

The key to Proposition 2 is to guarantee that Ω(log n) distinct nodes are visited during the exploration
phase, with constant positive probability. We have to deal with three facts : 1) we have less and less
long-range jumps as we get closer to the target, since it is more and more likely to “jump” over the
target ; 2) the risk of visiting twice a node increases with the number of long-range jumps we take ; 3) we
seek for a “good” node, close to the target, but also as close as possible from x (in order to minimize the
path length). Fact 1 implies that we will have to look further and further as we get closer to the target.
In order to find a “good” node, as close as possible from x (Fact 3), the best strategy is to choose the
smallest h so that one can reach log n nodes in h jumps. Unfortunately, the likelihood of visiting twice
a node increases too fast (Fact 2) and this strategy does not work. We obtain then the trade-off below.

Let h = Θ((log n log log x)/ log x) and k = Θ((log n log log n)/ logx) (their precise values will be given
later). During the exploration phase, the algorithm first explores all the vertices less than h jumps away
from x ; let A be the set of these vertices. Then, the algorithm visits all the nodes at distance less than
k towards the target, from the nodes in the “boundary” of A, that is to say from the nodes at h jumps
exactly from x ; let B be the set of these nodes. If, at any time, the algorithm visits a node at distance
≤ x/2 from the target, it stops the exploration process and forwards the message to it. Otherwise, it
forwards the message to the closest node to the target, among A ∪ B and their long-range contacts.

The values of h and k claimed above lead to the expected result :

Proposition 2 There exists a constant c1 > 0, independent of n and x, such that with probability c1,
there is a node in B whose long-range contact is at distance ≤ x/2 from the target.

Analysis of the algorithm. The proof of this proposition relies on the following lemmas.

Lemma 3 ([5]) Given s > 0, there is a constant c2 > 0, such that, for any subset S of s · log n vertices
at distance in (x/2, x] to the target, one vertex in S (at least) has its long-range contact at distance ≤ x/2
to the target, with probability c2.

Proof. This lemma is essentially proved in [5]. Let u be a vertex at distance u ∈ (x/2, x] to the target.
The probability that u’s long-range contact is at distance ≤ x/2 to the target, is : 1/(2Hn)

∑u+x/2
i=u−x/2 1/i ≥

1/(2Hn)
∫ u+x/2

u−x/2
dt/t ≥ ln 2/(2Hn). The probability that all the long-range contacts of the nodes in S are

at distance > x/2 to the target, is then less than
(
1 − ln 2/(2Hn)

)s log n ≤ e−s/2 < 1. �

The following lemma is the key to ensure that when following the long-range jumps, we do not revisit
previously visited node during the exploration step.

Lemma 4 Let u a node at distance u ∈ (x/2, x] to the target, v its long-range contact, S a set of f
forbidden nodes, and q an integer. Assuming that v is at distance < u from the target, the probability
that v is at distance ≥ q from any node of S is ≥ 1 − H2fq−1/Hx−1.

Proof. Let E be the event that v is at distance ≥ q from any node of S, given that v is at distance
< u from the target. E can be seen as the event that v does not belong to the f intervals of length 2q
centered on the vertices of S. We use an important property of the long-range link length distribution
to bound the probability of E : the probability that v is at distance δ from u is decreasing with δ.
Therefore, the probability of E is minimized when the f intervals are all disjoint, as close as possible
to u, and between u and the target. The probability of E is then greater than the probability that
v is at distance ≥ 2fq from u, given that v is at distance < u from the target. We conclude that :
Pr E ≥ 1

H2u−1

∑2u−1
i=2fq

1
i ≥ 1 − H2fq−1

Hx−1
. �

We now study the structure of the set A in details. As pointed out above, every node u in the network
is the origin of one (local) jump or two (one local and one long-range) jumps. The probability that a node
u, at distance u, is the origin of two jumps is αu = H2u−1/(2Hn) (the probability that its long-range
contact is closer to the target than it is). A can thus be seen as a partial binary tree of height h, where
each node u has one child with probability 1 − αu, and two children with probability 1 − αu (note that
some nodes may appear twice in the tree, but Lemma 4 will guarantee that this will not happen with
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constant probability). Let us color local jumps in blue and long-range jumps in red in the tree. Let R
be the number of red jumps in the tree. The tree is now the union of exactly (R + 1) blue branches.
Thus A can be decomposed in R + 1 intervals (i.e., local paths) of length ≤ h on the ring, connected to
each other by R long-range jumps. The set A ∪ B is thus exactly the union of R + 1 intervals of length
≤ h + k, connected to each other by long-range jumps.

We now count these intervals, that is to say, the number Bh of branches in the tree at level h
(Bh = R + 1).

Lemma 5 Take h = (log Hx − log log Hn)/ log(1 + Hx−1/(2Hn)), (h = O(log n log log x/ log x)). Assu-
ming that the exploration phase is completed, the expected value of Bh is : E[Bh] = Θ(log x/ log log n) ;
and there exist three constants µ > λ > 0 and c3 > 0, independent of n and x, such that with probability
c3 : λ log x/ log log n ≤ Bh ≤ µ logx/ log log n.

Proof. Since the exploration phase is completed, all nodes in A are at distance between x/2 and x
from the target, thus for all u in A, Hx−1/(2Hn) ≤ αu ≤ H2x−1/(2Hn). Let α− = Hx−1/(2Hn) and
α+ = H2x−1/(2Hn). Let B−

h (resp., B+
h ) the number of branches at level h in the branching process that

starts with one node, and where each node has one child with probability 1−α− (resp., 1−α+), and two
children with probability α− (resp., α+). B+

h stochastically dominates Bh which in turn stochastically
dominates B−

h .
To improve the readability of the algorithm, we have transfered the analysis of the branching processes

to the separate section 4. Lemma 7 from section 4, states that : E[B−
h ] = (1+α−)h and E[B+

h ] = (1+α+)h.
Therefore, (1 + α−)h ≤ E[Bh] ≤ (1 + α+)h.

From Markov bound, for any ν > 1, Pr{B+
h ≤ ν(1 + α+)h} ≥ 1 − 1/ν. Lemma 8 states that :

there are two constants λ > 0 and c > 0, independent of α− and h, i.e., of x and n, such that :
Pr{B−

h ≥ λ(1 + α−)h} ≥ c. Therefore :

Pr
{

λ(1 + α−)h ≤ Bh ≤ 2
c
(1 + α+)h

}
≥ Pr

{
B−

h ≥ λ(1 + α−)h and B+
h ≤ 2

c
(1 + α+)h

}
≥ c/2 > 0.

But, with the claimed value of h, (1 + α−)h = Hx/ logHn, and there exists a constant a > 0,
independent of n and x, such that (1 + α+)h ≤ aHx/ logHn. This concludes the proof. �

We can now accomplish the last step to prove Proposition 2.

Corollary 6 Take k = log n log log n/ logx. There exists three constants λ > 0, c4 > 0, and n0, such
that for n ≥ n0, with probability c4, there are more than λ log n distinct nodes in B.

Proof. As pointed out earlier, A∪B is the union of Bh intervals of length ≤ h + k, connected to each
other by long-range jumps. The probability p that one of these intervals does not intersect any of the
other, is bounded by Lemma 4 : p ≥ 1 − H2Bh·(h+k)

Hx−1 .

Thus all nodes in A ∪ B are visited only once with probability ≥ (1 − H2Bh·(h+k)

Hx−1
)Bh . Since the

computation of Bh is the result of a branching process independent of the effective positions of the long-
range jumps, we are free to use Lemma 5 to bound the collision probability. There exist three constants
0 < λ < µ and c3 > 0, independent of n and x, such that : λ log x/ log log n ≤ Bh ≤ µ log x/ log log n,
with probability c3. Note that h + k ≤ 2k ≤ 2 log n log log n/ log x. There exists n0 > 0 such that for
n ≥ n0, Hx−1 ≥ Hlog2 n ≥ 3

2H4µ log n. Then, for n ≥ n0, the probability that no node in A ∪ B is visited
twice is :

≥
(

1 − H4µ log n

Hx−1

)µ log x
log log n

≥ c3(1 − 2/3)3/2 > 0

Thus with probability c3
33/2 , the number of distinct nodes in B is k · Bh ≥ λ log n. �
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Proof of Proposition 2. Let λ > 0, and c4 > 0 from Corollary 6. With probability c4, there are
λ log n distinct nodes in B, and none of their long-range contacts have been visited yet. Let c2 > 0 from
Lemma 3. Since both events are independent, with constant probability c2c4 > 0, at least one node in B
has its long-range contact at distance ≤ x/2 to the target. �

We now conclude with the proof of the theorem for d = 1.

Proof of Theorem 1. Assume that we want to transmit a message from u to 0. Let x denote the
current message holder of the message. First recall that at the end of each exploration step, the algorithm
selects the closest node in A ∪ B from the target, and that the set A ∪ B grows by jumps towards the
target ; therefore, every exploration step visits unexplored nodes, and each exploration step is independent
of the previous ones.

We divide the execution of A in log n phases ; the execution is in phase K, 0 < K < log n, if
2K < δ(x,0) ≤ 2K−1. We say that an exploration step in phase K succeeds if it leads to a phase
≤ K − 1. Let YK and ZK , the random variables for the number of visited nodes in phase K, and for the
length of the path along which the message is routed in phase K, respectively.

Suppose that we are in phase K, with log n < K ≤ 2 log log n. According to Proposition 2, each
exploration step succeeds with probability ≥ c1. Each exploration step visits (h + k)E[Bh] nodes in
expectation, and routes the message, along a path of length ≤ h + k towards the target. Then, E[YK ] ≤
(h + k)E[Bh]/c1 = O(log n) and E[ZK ] ≤ (h + k)/c1 = O(log n log log n/K).

Once K ≤ 2 log log n, the algorithm uses Kleinberg’s greedy algorithm. From [5], we have : E[YK ] =
E[ZK ] = O(log n).

The expected length of the path computed by our algorithm from u to 0 is :

log n∑
K=0

E[ZK ] ≤
∑

K≤2 log log n

O(log n) +
∑

K>2 log log n

O(log n log log n/K)

= O
(
log n(log log n)2

)
.

The expected number of nodes visited by our algorithm is :

log n∑
K=0

E[YK ] = O(log2 n).

This algorithm just needs Θ(log n) bits to keep : the location of the target, the state of the stack
during the depth-first search of A∪B, and both location and state of the stack for the current best node
in A ∪ B. �

One could also use the same technics as in [4], to show that the total number of exploration steps
in our algorithm is bounded by O(log n) with probability 1 − o(1/n). Unfortunately, this does not yield
a bound with high probability on the length of the path computed, nor on the diameter of the graph,
since the path length within an exploration depends on the phase number, which is the key of our result.
Finding a better bound than O(log2 n) with high probability, on the diameter of Kleinberg’s network,
remains an open question.

4 Analysis of the branching process

Let 0 < α ≤ 1. Consider the following branching process : start with one node ; during the h-th step,
every node at level h − 1, is given one child with probability 1 − α, and two children with probability
α. The following lemma evaluates the expected number of branches at level h and its variance, in the
resulting binary tree. This probabilistic lemma is the key to Lemma 5.

Let Bh be the random variable for the number of branches at level h.

Lemma 7 E[Bh] = (1 + α)h and Var[Bh] ≤ 1−α
1+α (1 + α)2h.
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Proof. We proceed by induction. For h = 0, E[B0] = 1 and Var[B0] = 0 ≤ 1−α
1+α . Suppose now h > 0.

The expected number of children of every node at level h− 1, is (1 + α). The expected number of nodes
at level h, is thus (1 + α)E[Bh−1]. Therefore, E[Bh] = (1 + α)h.

We now consider the variance. With probability 1 − α, the root of tree has one child ; let X be the
random variable for the number of branches of this only child. With probability α, the root has two
children ; let Y and Z be the random variable for the number of branches for each of them. X , Y and Z
are independent variables distributed identically to Bh−1. In particular, the expectation and variance of
X , Y and Z are equal to E[Bh−1] and Var[Bh−1], respectively. Now,

E[B2
h] = (1 − α)E[X2] + αE[(Y + Z)2] = (1 + α)E[B2

h−1] + 2αE[Bh−1]2,

since Y and Z are independent. And as E[Bh] = (1 + α)E[Bh−1], we have :

Var[Bh] = E[B2
h] − E[Bh]2 = (1 + α)(E[B2

h−1] − E[Bh−1]2) + α(1 − α)E[Bh−1]2

= (1 + α)Var[Bh−1] + α(1 − α)(1 + α)2h−2.

By induction, Var[Bh−1] ≤ 1−α
1+α (1 + α)2h−2, so :

Var[Bh] ≤ 1−α
1+α (1 + α)2h−2(1 + 2α) ≤ 1−α

1+α (1 + α)2h.

�

We now show that with constant positive probability, the number of branches in the branching process
is close to its expectation up to a constant factor.

Lemma 8 There exist three constants µ > λ > 0 and c3 > 0, independent of α and h, such that with
probability c3, λE[Bh] ≤ Bh ≤ µE[Bh].

Proof. For the sake of readability, let B and E refer to Bh and E[Bh]. For µ > λ > 0, let q = Pr{λ E ≤
B ≤ µE}. We will show that q is always greater than a positive constant for suitable values of λ and µ.
We rewrite E as follows :

E =
∑

0≤k≤λE

kPr(B = k) +
∑

λE≤k≤µE

kPr(B = k) +
∑

µE≤k

kPr(B = k).

Let us denote these three sums respectively S1, S2 and S3. Clearly, S1 ≤ λE and S2 ≤ µEq.
We bound the third sum with Cauchy-Schwarz inequality :

S3 ≤
√ ∑

µE≤k

k2 Pr{B = k}
√ ∑

µE≤k

Pr{B = k}.

According to Markov bound,
∑

µE≤k Pr(B = k) ≤ 1/µ. As
∑

µE≤k k2 Pr{B = k} ≤ E[B2], we get
S3 ≤ √

E[B2]/µ.
Finally, E ≤ λE + µqE +

√
E[B2]/µ, that is to say :

q ≥ 1 − λ

µ
−

√
E[B2]

µ3/2E
.

According to Lemma 7, Var[B] ≤ 1−α
1+α (1 + α)2h = 1−α

1+αE2 ≤ E2, since 0 < α ≤ 1. Thus :

q ≥ 1 − λ

µ
− 2

µ3/2

Setting λ = 1/2 and µ = 18, gives q ≥ 1/108 =def c3 > 0, which concludes the proof. �
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5 Conclusion

We prove that the expected path length between any pair of nodes in Kleinberg’s network is O(log n(log log n)2).
We don’t know at this point how to get the same bound with high probability. In particular, the question
of the diameter of Kleinberg’s network remains an open question. We currently study the generalization
of this algorithm to the d-dimensional network which should extend the same bound on the expected path
lengths. This raises the question of the influence of the dimension of the underlying lattice in Kleinberg’s
network.

Our algorithm demonstrates that, consulting its acquaintances before forwarding the message (or
snooping around web pages before choosing which hyperlinks to follow) allows to compute very short
paths, but is also less and less useful as one gets closer to its target. This reinforces our feeling that
this network model is very convincing to model the small world phenomenon. An interesting experiment
would be to get, from the real social data, how many long-range links are used by social agents as the
distance to the target decreases : this might be an interesting criterion to decide which algorithm is closer
to human behavior.

A crucial question remains open however : what “happens” in the graph structure with the d-harmonic
distribution, which makes decentralized algorithms work ?
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